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To study implementations and optimisations of interactionnet systems we propose a calculus to allow
us to reason about nets, a concrete data-structure that is inclose correspondence with the calculus,
and a low-level language to create and manipulate this data structure. These work together so that
we can describe the compilation process for interaction nets, reason about the behaviours of the
implementation, and study the efficiency and properties.

1 Introduction

Interaction nets [5] offer a visual aspect to rewriting. Analogous to term rewriting systems, a specific
system is defined from a user-defined set of nodes (cf. terms) and a user-defined set of rewrite rules.
Nets are then graphs built from the set of nodes and rules are graph transformations. Interaction nets are
therefore a specific, in fact very constrained, form of graphrewriting.

Interaction nets have been used as a programming language, an intermediate language, and as a target
language for the compilation of other programming languages. In all these application areas, prototype
implementations have been built to support the work, but they are often not documented. The purpose of
this paper is to take a new look at the implementation of interaction nets. Specifically, we are interested
in documenting the implementation process, and in particular showing a compilation of nets to a low-
level language. We aim to build on the past experience and knowledge obtained from building other
implementations, and make a new contribution to this investigation. Specifically, we define: a calculus
that can represent and express results about interaction nets; a data-structure with a low-level language
that corresponds exactly to the calculus; and a compilationof the calculus to this low-level language.

In addition to defining the above, an important aspect of thiswork is the compilation of interaction
rules: the ability to implement rules efficiently will impact greatly on an implementation. The low-level
language is close enough to machine code that we essentiallyget atomic operations so that we can under-
stand the cost of an interaction. From a practical perspective, we get reliable, efficient implementations
of interaction nets from this work. In this paper we provide the foundations for this work, and point out
a number of directions that are currently being investigated.

A number of evaluators have been developed for interaction nets, and one of the first abstract ma-
chines was given by Sousa Pinto [9]. From another direction,a graphical interpreterin2 was proposed
by Lippi [7] and it showed an aspect of interaction nets as a visual programming tool. Some evaluators
have been proposed towards efficient computation, called INET [2] and amineLight [3]. Our approach
is to build the simplest implementation model for interaction nets that we believe can be the most useful
as well as providing the basis for more efficient (including parallel) implementations in the future. We
shall give some evidence to support this claim in the currentpaper.

The next section recalls some background material, and in Section 3 we describe the new calculus. In
Section 4 we give the data-structure that corresponds to thecalculus together with a low-level language.
We include also some notes about the compilation of nets intothe low-level language. In Section 5 we
evaluate the work, and give some directions for future work.We conclude the paper in Section 6.
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2 Background
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Figure 1: Agents

In the graphical rewriting system of interaction nets [5], we have a setΣ of symbols,
which are names of the nodes. Each symbol has an arityar that determines the num-
ber of auxiliary ports that the node has. Ifar(α) = n for α ∈ Σ, thenα hasn+ 1
ports: nauxiliary ports and a distinguished one called theprincipal port. Nodes are
drawn as shown in Figure1. Anetbuilt on Σ is an undirected graph with nodes at the
vertices. The edges of the net connect nodes together at the ports such that there is
only one edge at every port. A port which is not connected is called a free port. Two
nodes(α ,β )∈ Σ×Σ connected via their principal ports form anactive pair, which is the interaction nets
analogue of a redex. A rule((α ,β ) ⇒ N) replaces the pair(α ,β ) by the netN. All the free ports are
preserved during reduction, and there is at most one rule foreach pair of agents. The diagram in Figure 2
illustrates the idea, whereN is any net built fromΣ. The most powerful property of this graph rewriting
system is that it is one-step confluent—all reduction sequences are permutation equivalent.
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Figure 2: Interaction rules

There are many possible data-structures that
can be used to represent interaction nets, for ex-
ample single or double linked graphs. Agents
have exactly one principal port, so we can use this
to our advantage and represent nets as a collection
of trees, and use a simple, single linked structure.
Computationally the cost of evaluating a net is mostly due tothe cost of the rewrite step: building the
right-hand side of the rule; connecting the new net to the oldone; freeing up the left-hand side of the rule
(agentsα andβ in the diagram in Figure 2).

The goal of this paper is to build an implementation model, together with a calculus, that explains
this process and allows the study of the cost of computation.Specifically, we provide a framework where
we can focus on the compilation of rules where we can perform the above steps in the fewest instructions.

3 Calculus

It is possible to reason about the graphical representationof nets, but it is convenient to have a textual
calculus for compact representation. There are several calculi in the literature, and here we review the
Lightweight calculus[3], which is a refined version of [1].

Agents: Let Σ be a set of symbols, ranged over byα ,β , . . ., each with a givenarity ar : Σ → IN. An
occurrence of a symbol is called anagent, and the arity is the number of auxiliary ports.

Names: Let N be a set of names, ranged over byx,y,z, etc. N andΣ are assumed disjoint. Names
correspond to wires in the graph system.

Terms: A term is built onΣ andN by the grammar:t ::= x | α(t1, . . . , tn), wherex ∈ N , α ∈ Σ,
ar(α) = n andt1, . . . , tn are terms, with the restriction that each name can appear at most twice. If
n = 0, then we omit the parentheses. If a name occurs twice in a term, we say that it isbound,
otherwise it isfree. We writes, t,u to range over terms, and~s,~t,~u to range over sequences of terms.
A term of the formα(t1, . . . , tn) can be seen as a tree with the principal port ofα at the root, and
the termst1, . . . , tn are the subtrees connected to the auxiliary ports ofα . The term $t represents an
indirection node which is created by reduction, and is not normally part of an initial term.
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Equations: If t, u are terms, then the unordered pairt = u is anequation. ∆ ranges over multisets of
equations.

Rules: Rules are pairs of terms written:α(x1, . . . ,xn)=β (y1, . . . ,ym)⇒ ∆, where(α ,β ) ∈ Σ×Σ is the
active pair, and∆ is the right-hand side of the rule. All names occur exactly twice in a rule, and
there is at most one rule for each pair of agents. We call the free namesx1, . . . ,xn,y1, . . . ,ym in ∆
parametersand write it as∆(x1, . . . ,xn,y1, . . . ,ym). All other names are bound.

Configurations: A configurationis a pair(R,〈~t | ∆〉), whereR is a set of rules,~t a sequence of terms,
and ∆ a multiset of equations. Each variable occurs at most twice in a configuration, and we
extend the nomenclature of free and bound names from terms. The rules setR contains at most
one rule between any pair of agents, and it is closed under symmetry, thus ifα(~x) = β (~y) ∈ R

thenβ (~y) = α(~x) ∈ R. We useC,C′ to range over configurations. We call~t theheadand∆ the
bodyof a configuration.

Definition 1 (Names in terms) The setName(t) of names of a term t is defined in the following way,
which extends to sequences of terms, equations, sequences of equations, and rules in the obvious way.

Name(x) = {x}, Name(α(t1, . . . , tn)) = Name(t1)∪·· ·∪Name(tn), Name($t) = Name(t).

The notationt[u/x] denotes a substitution that replaces the free occurrence ofx by the termu in t.
This extends to equations and configurations in the obvious way.

Definition 2 (Instance of a rule) If r is a rule α(x1, . . . ,xn)=β (y1, . . . ,ym)⇒ ∆, then∆̂ denotes a new
generic instanceof r, that is, a copy of∆ where we introduce a new set of bound names so that those
new names do not overlap with others already exists, but leave the free names (parameters) unchanged.
Example: if∆ is α(x,x) = β (a), then∆̂ is α(y,y) = β (a), where y is a fresh name.

The configuration(R,〈~t | ∆〉) represents a net that we evaluate usingR; ∆ gives the set of active
pairs and the renamings of the net. We write〈~t | ∆〉 without R when there is no ambiguity. The roots of
the terms in the head of the configuration and the free names correspond to ports in the interface of the
net. We work moduloα-equivalence for bound names. The computation rules are defined below, and we
use→ instead of→com,→sub,→col,→int when there is no ambiguity.

Communication: 〈 ~u | ∆,x= t,x= s 〉 →com 〈 ~u | ∆, t = s 〉.

Substitution: 〈 ~u | ∆,β (~t) = u,x= s 〉 →sub〈 ~u | ∆,β (~t)[s/x] = u 〉 whereβ ∈ Σ andx occurs in~t.

Collect: 〈 ~u | ∆,x= s 〉 →col 〈 ~u[s/x] | ∆ 〉 wherex occurs in~u.

Interaction: 〈 ~u | ∆,α(t1, . . . , tn) = β (s1, . . . ,sm) 〉 →int 〈 ~u | ∆, ∆̂r [t1/x1, . . . , tn/xn,s1/y1, . . . ,sm/ym] 〉

whereα(x1, . . . ,xn) = β (y1, . . . ,yn)⇒ ∆r ∈ R.

Example 3 Rules in Figure 3 can be represented as follows:
Add(x1,x2) = S(y)⇒ Add(x1,w) = y,x2 = S(w), Add(x1,x2) = Z⇒ x1 = x2.
The net in Figure 3 is represented as〈r | Add(Z, r) = S(Z)〉, and it is performed:
〈 r | Add(Z, r) = S(Z) 〉 →int 〈 r | Add(Z,w′) = Z, r = S(w′) 〉 →col 〈 S(w′) | Add(Z,w′) = Z 〉

→int 〈 S(w′) | Z= w′ 〉 →col 〈 S(Z) | 〉.

We defineC1 ⇓C2 by C1 →
∗ C2 whereC2 is in normal form. The following theorem shows that all

Interaction rules can be performed without using Substitution and Collect [3]:

Theorem 3.1 If C1 ⇓ C2, then there is a configuration C such that C1 →∗ C →∗
sub→

∗
col C2 and C1 is

reduced to C by applying onlyCommunicationrule andInteractionrule. �
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Figure 3: An example of rules and rewritings of interaction nets

We defineC1 ⇓ic C2 by C1 →
∗ C2 whereC2 is a{→int,→com}−normal form. Because all critical pairs

that are generated by→int and→com are confluent, the determinacy property holds [3]:

Theorem 3.2 (Determinacy) Let C1 ⇓C2. When there are configurations C′,C′′ such that C1 ⇓ic C′ and
C1 ⇓ic C′′, then C′ is equivalent to C′′. �

3.1 Simpler calculus

In Lightweight calculus, equations are defined as unorderedpairs and configurations use multisets of
equations. Here, in order to facilitate the correspondencebetween the calculus and an implementation
model that has a code stack and an environment such as SECD-machine [6], we introduce another refined
calculus of Lightweight one, calledSimpler calculus, by changing the definition of equations into ordered
pairs and in configurations multisets of equations into sequences of ones.

Terms: A term is built onΣ andN by the grammar:t ::= x |α(t1, . . . , tn) | $t. Intuitively, $t corresponds
to a variable bounded witht (or a state such that an environment capturest).

Equations: If t andu are terms, then the ordered pairt =u is anequation. Θ will be used to range over
sequences of equations.

Rules: Rules are pairs of terms written:α(x1, . . . ,xn)=β (y1, . . . ,ym)⇒ Θ.

Configurations: A configurationis a pair(R,(~t | Θ)), whereΘ is a sequence of equations. The rules
setR contains at most one rule between any pair of agents, and it isclosed under symmetry. We
useS,S′ to range over configurations.

Definition 4 (Computation Rules) The operational behaviour of the system is given by the following:
Var1: (~u | Θ,x= t )−→ (~u | Θ)[$t/x] where t 6= $s. Var2: (~u | Θ, t = x)−→ (~u | Θ)[$t/x] where t 6= $s.

Indirection1: (~u | Θ,$t=s)−→ (~u | Θ, t =s). Indirection2: (~u | Θ, t =$s)−→ (~u | Θ, t =s).

Interaction: α(x1, . . . ,xn) = β (y1, . . . ,ym)⇒ Θr ∈ R, then
(~u | Θ,α(t1, . . . , tn) = β (s1, . . . ,sm))−→ (~u | Θ,Θ̂r [t1/x1, . . . , tn/xn,s1/y1, . . . ,sm/ym] ).
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To remove indirection terms, we introduce an operationremInd (it is extended to sequences of terms
and configurations in the obvious way):

remInd(x)
def
= x, remInd($t)

def
= remInd(t), remInd(α(t1, . . . , tn))

def
= α(remInd(t1), . . . , remInd(tn)).

Example 5 We show the computation of the configuration( r | Add(r,Z) = S(Z)) in Figure 3:
( r | Add(Z, r) = S(Z))−→ ( r | Add(Z,x) = Z, r = S(x)) −→ ($S(x) | Add(Z,x) = Z)
−→ ($S(x) | Z = x)−→ ($S($Z) |).

remInd($S($Z) |) = (S(Z) |).

These rules correspond directly to the graphical data-structure and operations given in the next sec-
tion. Indirection is introduced so that the data-structuremanipulations can be kept simple. However,
there is an overhead of dealing with indirection nodes. Computationally the interaction rule is the most
expensive: the other rules will turn out to be implemented with a small number of instructions or will be
equivalences in the data-structure.

3.2 Expressive power

We compare the expressive power of Simpler and Lightweight calculi. We define a translation of configu-

rations from Simpler calculus into the Lightweight one as:ToLight((~t | Θ))
def
= 〈remInd(~t) | remInd(Θ)〉.

Lemma 6 Let S1 and S2 be configurations such that S1 −→S2. When it is by Indirection1 or Indirection2
rules,ToLight(S1) = ToLight(S2). Otherwise,ToLight(S1)→ ToLight(S2).

Proof. In the case of Var1:S1 = (~u | Θ,x= t )−→ (~u | Θ)[$t/x] = S2. When we assumeToLight(S1) =
〈~u′ |Θ′,x= t ′〉, thenToLight(S2)= 〈~u′ |Θ′〉[t ′/x], and thusToLight(S1)→comToLight(S2) orToLight(S1)
→subToLight(S2). �

Every equation is reduced by a rule in Simpler calculus, the following holds:

Lemma 7 When S1 ⇓ (~u | Θ), thenΘ is empty.�

We define a translation of configurationsToSimple from Lightweight calculus into Simpler ones:

ToSimple(〈~t | ∆〉) def
= (~t | Θ) whereΘ is a sequence that is the result of fixing an order of the multiset ∆.

Theorem 3.3 Let C be a configuration in Lightweight calculus. When there is a configuration S in
Simpler one such thatToSimple(C) ⇓ S, then C⇓ ToLight(S).

Proof. AssumeS= (~u | Θ), and thenΘ is empty by Lemma 7. SinceToLight(~u |) is a normal form,
C ⇓ ToLight(~u |) by Lemma 6.�

Theorem 3.4 Let C1 and C2 be configurations in Lightweight calculus such that C1 ⇓ic C2. Then there is
a configuration S in Simpler one such thatToSimple(C1) ⇓ S and C2 ⇓ ToLight(S).

Proof. If ToSimple(C1) has no normal form, corresponding to an infinite reduction sequence from
ToSimple(C1) we can construct an infinite reduction sequence starting from C1 by Lemma 6 since each
reduction produces at most one equation such as $t = sor t = $s. This contradicts the assumption of this
theorem. There is, thus, a configurationSsuch thatToSimple(C1) ⇓ S. By Theorem 3.4C1 ⇓ToLight(S),
and thus there is a configurationC3 such thatC1 ⇓ic C3 andC3 ⇓ ToLight(S) by Theorem 3.1. By the
assumptionC1 ⇓ic C2 and the determinacy (Theorem 3.2),C3 =C2. �

We define a configuration of our abstract machine state by the following 3-tuple(E |~t | Θ), where

• E is an environment, which is a subset ofN ×T (N is a set of names,T is the set of terms),
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• ~t is an interface, which is a sequence of terms,

• Θ is a sequence of equations to operate.

In contrast to the SECD machine [6], the stackS, the environmentE and the controlC in the machine
correspond to the term sequence~t, the map E, and the equation sequenceΘ in this abstract machine
respectively. There is no element corresponding to the dumpD in SECD machine because, during an
execution of a rule, other rules are not called. To manage theenvironment, we define the following.

Definition 8 (Operations for pairs) LetPbe a set of pairs.

• We define a mapP as a set of pairs:P(n)
def
= m if (n,m) ∈ P, ⊥ otherwise.

• We use the following notations to operate maps:

– P(n) :=⊥ as a set (P−{(n,m)}) for any m,
– P(n) := m as a set (P[n] :=⊥)∪{(n,m)}).

We give the semantics of the machine as a set of the following transitional rules of the form(E |~u |
Θ) =⇒ (E′ |~u | Θ′ ) by applying in the order from A to C2:

A : (E |~u | Θ,α(~t) = β (~s)) =⇒ (E |~u | Θ,Θ1) where( | α(~t) = β (~s))−→ ( | Θ1 )
B1 : (E(x) =⊥ |~u | Θ,x= t ) =⇒ (E(x) := t |~u | Θ)
B2 : (E(x) =⊥ |~u | Θ, t = x) =⇒ (E(x) := t |~u | Θ)
C1 : (E(x) = s |~u | Θ,x= t ) =⇒ (E(x) :=⊥ |~u | Θ,s= t )
C2 : (E(x) = s |~u | Θ, t = x) =⇒ (E(x) :=⊥ |~u | Θ, t = s)

Intuitively, the rule ‘A’ corresponds Interaction rule, ‘B1’ and ‘B2’ correspond Var1 and Var2, and
‘C1’ and ‘C2’ correspond Indirection1 and Indirection2. Toforce captured terms in the environment to
be replaced when the execution is finished, we defineUpdate operation:

Update(E∪{(x,s)} |~u | Θ) =

{
Update(E[s/x] |~u[s/x] | Θ[s/x] ) (whenx occurs in E,~u or Θ)
Update(E |~u | Θ,x= s) (otherwise)

Update( /0 |~u | Θ) = (~u | Θ)

Example 9 A configuration( r | Add(Z, r) = S(Z)) which represents the net in Figure 3 is performed:
( /0 | r | Add(Z, r) = S(Z)) =⇒ ( /0 | r | Add(Z,x) = Z, r = S(x)) =⇒ ({(r,S(x))} | r | Add(Z,x) = Z)

({(r,S(x))} | r | Z= x) =⇒ ({(r,S(x)),(x,Z)} | r | −).

Update({(r,S(x)),(x,Z)} | r | −) = Update({(r,S(Z))} | r | −) = Update( /0 | S(Z) | −) = (S(Z) |).

4 Data-structures and language

I

EQ

. . .

.
 
.
 
.

Γ
Here we give a low-level language, called LL0, which de-
fines a set of instructions to build and reduce a net to normal
form. The concrete representation of a configuration can be
summarised by the diagram shown on the right, whereΓ rep-
resents the net,EQ a stack of equations, andI an interface.

For a net, we need two kinds of graph element: agents
and names nodes. Each of these is allocated memory in the heap. An element, such as an agent, may
contain pointers to other elements (representing auxiliary ports). An agent can be coded in C as follows:

typedef struct Agent {
int id; struct Agent *port[];

} Agent;
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Instruction Description
#agent α1 : p1, · · ·,αn : pn Declareα1, · · · ,αn as symbols of agents whose arity arep1, · · · , pn.
I=mkInterface(n) Create a fixedn-size interface and assign its pointer to the variableI.
x=mkAgent(id) Allocate (unused) memory for an agent node whose id isid and assign it to the

variablex.
x=mkName() Allocate (unused) memory for a name node, and assign it to thevariablex.
free(x) Dispose of just an assigned allocationx of a graph element (not recursively).
x[p]=y Assign a graph elementy to a portp> 0 of an agent nodex.
x[0]=α Change the id of an agent nodex into α.
push(x,y) Create an equation of two graph elementx,y in the stack of equations.
stackFree() Dispose of the top element of the equation stack.

Figure 4: Instructions of LL0

In this Agent structure, each symbolα1, . . . ,αn for agents is distinguished by a uniqueid. The length
of port corresponds to the number of auxiliary ports of an agent. Thestack of equationsEQ is initially
empty. Intuitively, an element of this stack can be written using the following code fragment in C:

typedef struct Equation {
Agent *a1; Agent *a2;

} Equation;

The interfaceI is a node arrays of fixed sizen as the size of the observable interface of a net can be
pre-determined (and it is preserved during execution). By using LL0, we encode Simpler calculus.

Building nets. Graph elements, the stack of equationsEQ and the interfaceI are managed by instruc-
tions as shown in Figure 4. The port numbers start from 1, and by using the instructionx[p]=y, we can
assign a graph nodey into a portp> 0 of a graph nodex. We also use the port 0 to refer to the id of an
element. For instance,x[0]=α changes the id of an agent nodex into α .

�

Here, we build terms in Simpler calculus. To assign an arity to an agent, we use the
following declaration:#agent α1 : p1, · · ·,αn : pn, wherepi is the arity for an agent
symbolαi such thatar(αi) = pi . After this declaration, a symbolαi can be represented
by a unique number and an agent’s aritypi can be referred to byarity(αi) = pi . We draw an agent node
α of arity 3 as shown the right above figure.

N $

Name nodes are graph elements whoseid is denoted by the symbolN and the arity
is 0. We also use indirection nodes by$ and the arity is 1. We assume thatN and$ are
selected from a set that does not overlap with the set of agentsymbols. To allocate an
agent node whose id isid to a variablex, we use the following instruction:x=mkAgent(id). A name node
is allocated byx=mkName(). An assigned allocationa of a graph element is disposed of (not recursively,
just one node) by usingfree(a).

A connection between a principal port and an auxiliary port is encoded by an assignment. In this
language, to assign a pointer of an existing graph elementb to a portp of another graph elementa, we
use the following instruction:a[p]=b. We note that the index of these ports start from 1. For instance, a
termAdd(Z,r) is encoded as shown below, together with the graphical representation.

1. #agent Z:0, Add:2

2. aAdd=mkAgent(Add)

3. aZ=mkAgent(Z)

4. aAdd[1]=aZ

5. r=mkName()

6. aAdd[2]=r

Add

Z N
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t

...

Generally, when agent nodes are connected together, they are trees that we represent in the
following way, where the free ports are at the top of the tree.

EQ

a2a1

The stack of equationsEQ is initially created empty. An equation node can point to
two graph elements. To create an equation of two graph elementsa1,a2 in the stackEQ,
we use the instruction:push(a1,a2). To pop an equation from the top of the stackEQ,
we use the instruction:stackFree(). We represent a connection between principal
ports by creating an equation between the two agent nodes into the stack.

EQ

Add

Z N

S

I

Z

N

Add

Z

Figure 5: Representation of( r |
Add(Z, r) = S(w), Add(Z,w) = S(Z))

Interfaces are created with the instruction:I=mkInterface(n).
Elements inI can be accessed using the usual array notation
I[1], · · · ,I[n] and can point to one graph element. As an ex-
ample, a configuration( r | Add(Z, r) = S(w), Add(Z,w) = S(Z))
is encoded using the instructions below. Figure 5 gives the corre-
sponding data-structure. For a connection between two auxiliary
ports, we assign one name node to two ports.

1. #agent Z:0,S:1,Add:2

2. /*interface*/

3. I=mkInterface(1)

4. /*Add(Z,r)*/

5. aAdd=mkAgent(Add)

6. aZ=mkAgent(Z)

7. aAdd[1]=aZ

8. r=mkName()

9. aAdd[2]=r

10. /*S(w)*/

11. bS=mkAgent(S)

12. w=mkName()

13. bS[1]=w

14. /*Add(Z,r)=S(w)*/

15. push(aAdd,bS)

16. /*Add(Z,w)*/

17. aAdd=mkAgent(Add)

18. aZ=mkAgent(Z)

19. aAdd[1]=aZ

20. aAdd[2]=w

21. /*S(Z)*/

22. bS=mkAgent(S)

23. bZ=mkAgent(Z)

24. bS[1]=bZ

25. /*Add(Z,w)=S(Z)*/

26. push(aAdd,bS)

27. /*interface*/

28. I[1]=r

Defining interaction rules. We introducerule proceduresto perform interaction rules. For an interac-
tion rule betweenα(~x) andβ (~y) we define a rule procedure using the syntax:rule α β { . . .} and we
write instructions between the brackets{ and} (rule block). In execution, the procedures provide special
variablesL,R that are pointers to the left and the right-hand side agents of the active pair equation. Vari-
ables used in the instructions are only visible within the rule procedure. Generally, these rule procedures
are represented as transformations on the data-structure.For instance, the rule betweenAdd andZ given
by Add(x1,x2) = Z⇒ x1 = x2 is represented using the following procedure:

1. rule Add Z {
2. stackFree()

3. push(L[1],L[2])

4. free(L)

5. free(R)

6. }

The following illustrates transformations that will be applied by the rule procedure given above.

EQ

Add Z

L R

L[1] L[2]

t s ⇒

stackFree()

EQ

Z

L R
t s

⇒

push(L[1],L[2])

u v

Add

L[1] L[2]

u v
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(a)x= t,u= s−→ u[$t/x] = s wherex∈ N (u)

t

u s

N

⇒

t

u s

$

(b) $t = s−→ t = s

t

s

$

⇒

t

s

Figure 6: Computation rules for name and indirection nodes

EQ

Add Z

L R

L[1] L[2]

t s ⇒

free(L), 
free(R)

EQ
t s

u v u v

In order to manage equations in the Simpler calculus, we needmechanisms that perform rules Var1,
Indirection1 and so on. Figure 6 (a) and (b) are instances of Var1 and Indirection1 rules to illustrate this.

Compilation of Simpler calculus into LL0. Here we introduce a translation of Simpler calculus into
LL0. We use a set of pairs and operations for the pairs defined in Definition 8. We also use a notation for
strings. We write “ and ” as a pair of delimiters to represent astring explicitly. We use the notation{x}
in a string as the result of replacing the occurrence{x} with its actual value. For instance, ifx= “abc”
andy= 89 then “1{x}2{y}” = “1abc289”. We use+ as an infix binary operation to concatenate strings.

Definition 10 (Compilation of terms and nets) Here we defined our compilation schemes that will gen-
erate LL0 for a given interaction net system.

• We use a subsetN of N ×Str (N is a set of names) so that a name x∈ N can correspond to a
string of a variable name in a code sequence and those correspondences can be looked up from
compilation functions. We also use two operationsN(x) := ⊥ and N(x) := str for str∈ Str as
defined in Definition 8. We define a functionmakeN to make such a setN and a code sequence for
those names by a given name set{x1, . . . ,xn}. The functionfreshStr() returns a fresh name.

makeN({x1, . . . ,xn})
def
= makeN’({x1, . . . ,xn}, /0);

makeN’({x1, . . . ,xn},N)
def
= let N0 = /0;

a1 = freshStr(); c1 = “ {a1}=mkName()” ; N1 = (N0(x1) := a1); · · ·
an = freshStr(); cn = “ {an}=mkName()” ; Nn = (Nn−1(xn) := an);
in (c1+ · · ·+ cn,Nn) end;

• We define a translationCompiles from a symbol setΣ into a code string as follows:

Compiles( /0)
def
= “”

| Compiles({α1, . . . ,αn})
def
= “ #agent ” + “ {α1}:{ar(α1)}” + · · ·+ “ ,{αn}:{ar(αn)}” ;
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• A translationCompilet from a term into a code string is defined as follows:

Compilet(x,N)
def
= (“” ,N(x))

| Compilet(α(t1, . . . , tn),N)
def
= let a= freshStr(); c= “ {a}=mkAgent({α})” ;

(c1, a1) = Compilet(t1,N); c1 = c1+ “ {a}[1]={a1}” ; · · ·
(cn, an) = Compilet(tn,N); cn = cn+ “ {a}[n]={an}” ;

in (c+ c1+ · · ·+ cn, a) end;

• A translationCompilei from an interface u1, . . . ,un into a code sequence is defined as follows:

Compilei(−,N)
def
= “”

| Compilei(u1, . . . ,un,N)
def
= let (c1, a1) = Compilet(u1,N); c1 = c1+ “ I[1]={a1}” ; · · ·

(cn, an) = Compilet(un,N); cn = cn+ “ I[n]={an}” ;
in “ I=mkInterface[n]” + c1+ · · ·+ cn end;

• A translationCompilee from an equation into a code string is defined as follows:

Compilee(t = s,N)
def
= let (c1, a1) = Compilet(t,N); (c2, a2) = Compilet(s,N);

in c1+ c2+ “ push({a1},{a2})” end;

• A translationCompilees from an equation sequence into a code string is defined as follows:

Compilees(e1, . . . ,en,N)
def
= Compilee(e1,N)+ · · ·+Compilee(en,N);

• We define a translationCompilec from a configuration(~u | Θ) with a symbol setΣ into a code
string c as follows:

Compilec(Σ, (~u | Θ))
def
= let c0 = Compiles(Σ); (c1,N) =makeN(Name(~u | Θ));

c2 = Compilees(Θ,N); c3 = Compilei(~u,N);
in c0+ c1+ c2+ c3 end;

• We write justCompile when there is no ambiguity.

Example 11 Let us take a configuration( r | Add(Z, r) = S(Z)) with a symbol set{Z,S,Add} as an exam-
ple. The compilationCompilec({Z,S,Add}, ( r | Add(Z, r) = S(Z))) generates the following instructions:

1. #agent Z:0,S:1,Add:2

2. r=mkName()

3. a1=mkAgent(Add)

4. a2=mkAgent(Z)

5. a1[1]=a2

6. a1[2]=r

7. b1=mkAgent(S)

8. b2=mkAgent(Z)

9. b1[1]=b2

10. push(a1,b1)

11. I=mkInterface[1]

12. I[1]=r

Definition 12 (Compilation of rules) We define a translationCompiler from a rule into a sequence of
code strings as follows:

Compiler(α(~x) = β (~y)⇒ Θ)
def
=

let
Nl = Compilern(~x,L, /0); Nr = Compilern(~y,R,Nl );
(c1,N) =makeN’(Name(Θ)−{~x,~y},Nr);
c2 = Compilees(Θ,N);

in
“ rule {α} {β} {”
+“ stackFree()”
+c1+ c2

+“ free(L)” + “ free(R)” + “ }”
end;

Compilern((x1, . . . ,xn), LR, N)
def
=

let
N0 = N;
N1 = (N0(x1) := {LR}[1]);

...
Nn = (Nn−1(xn) := {LR}[n]);

in
Nn

end;

Example 13 The results ofCompiler(Add(x1,x2) = Z⇒ x1 = x2) andCompiler(Add(x1,x2) = S(y) ⇒
Add(x1,w) = y,x2 = S(w)) are as follows:
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1. rule Add Z {
2. stackFree()

3. push(L[1],L[2])

4. free(L)

5. free(R)

6. }

1. rule Add S {
2. stackFree()

3. w=mkName()

4. a1=mkAgent(Add)

5. a1[1]=L[1]

6. a1[2]=w

7. push(a1,R[1])

8. b1=mkAgent(S)

9. b1[1]=w

10. push(L[2],b1)

11. free(L)

12. free(R)

13. }

Back-end of the compilation. Here we show how these translated codes are evaluated on the standard-
ised implementation model in the C language, showing the correspondence of codes in LL0 with the C
language.

• #agent α1 : p1, . . .,αn : pn. For each sort of agent, we assign a unique number that is greater
than 1. We also assign 0 to the id for name nodes. The declaration for agent symbols corresponds
as follows:

#define ID NAME 0

#define ID α1 1

· · ·
#define ID αn n
#define MAX AGENTID n

In addition, to manage symbols and arities, we define two arraysSymbols andArities as follows:

char Symbols[MAX AGENTID+1] = {"", "α1", . . .,"αn"};
int Arities[MAX AGENTID+1] = {1,p1, . . .,pn};

• I=mkInterface(n). This makes a globaln-size array for the interface and corresponds to:

#define SIZE_INTERFACE n
Agent *I[SIZE_INTERFACE];

• x=mkAgent(id). This makes a variablex whose type isAgent and assigns an agent node whose
id is id. This instruction corresponds to:Agent *x=mkAgent(id);

• x=mkName(). This makes a variablex whose type isAgent and assigns an agent node whoseid is
ID NAME. Then it assignsNULL to port[0] of thex in order to be distinguished from indirection
nodes:Agent *x=mkAgent(ID NAME); x->port[0]=NULL;

• free(x). This disposes of a graph node assigned tox (not recursively, just an assigned node):
freeAgent(x);

• x[p]=y. This assigns a graph elementy to a port p of an agent nodex. The port p in LL0
corresponds to the portp−1 in the standardised implementation method, and thus this instruction
corresponds to the following code:x[p−1]=y;

• x[0]=α . This changes the id of an agentx into α . This corresponds to the following code:
x->id=α;

• push(x,y). This pushes two agents onto the equation stack. This corresponds to the following
code:pushActive(x,y);

• stackFree(). This disposes of the top element of the equation stack. In the translation result, it
occurs in rule procedures. In this implementation, the function popActive manages the index of
the equation stack, and thus no code is required.
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Next we manage the translated LL0 instructions for rule procedures. A rule procedure in LL0 such as
“rule Alpha Beta” is encoded as a function that is named asAlpha Beta, takes two pointers*a1 and
*a2 to two elements of the equation, and creates nets according to interaction rules. The special variables
L andR in the rule procedures are denoted as*a1 and*a2, and thusL[1],L[2], . . . ,R[1],R[2], . . . are
expressed as:a1->port[0],a1->port[1], . . . ,a2->port[0],a2->port[1], . . .. As an example the
rule procedures forAdd andZ and forAdd andS are encoded as follows:

1. void Add_Z(Agent *a1, Agent *a2) {
2. pushActive(a1->port[0],a1->port[1]);

3. freeAgent(a1);

4. freeAgent(a2);

5. }

1. void Add_S(Agent *a1, Agent *a2) {
2. Agent *aS=mkAgent(ID_S);

3. Agent *aAdd=mkAgent(ID_Add);

4. Agent *w=mkName();

5. aAdd->port[0]=a1->port[0];

6. aAdd->port[1]=w;

7. pushActive(aAdd, a2->port[0]);

8. aS->port[0]=w;

9. pushActive(a1->port[1], aS);

10. freeAgent(a1);

11. freeAgent(a2);

12. }

To manage these functions, we define a rule tableR, which stores pointers to those functions. Here,
for simplicity, we use the following simple matrix:

typedef void (*RuleFun)(Agent *a1, Agent *a2);

RuleFun R[MAX_AGENTID+1][MAX_AGENTID+1];

For instance, the above function is stored as:R[ID Add][ID Z]=&Add Z;. The run-time functioneval
is written as follows:

1. void eval() {
2. Agent *a1, *a2;

3. while (popActive(&a1, &a2)) {
4. if (a2->id != ID_NAME) {
5. if (a1->id != ID_NAME) { //Interact

6. R[a1->id][a2->id](a1, a2);

7. } else if (a1->port[0] != NULL) {
8. Agent *a1p0=a1->port[0]; //Ind1

9. freeAgent(a1);

10. pushActive(a1p0, a2);

11. } else a1->port[0]=a2; //Var1

12. } else if (a2->port[0] != NULL) {
13. Agent *a2p0=a2->port[0]; //Ind2

14. freeAgent(a2);

15. pushActive(a1, a2p0);

16. } else a2->port[0]=a1; //Var2

17. }
18. }

5 Discussion

To examine how data structures in INET,in2, amineLight (the fastest evaluator) and our implementation
affect execution speeds, we implemented a number of evaluators using the different encoding methods.
We fix the number of ports asMAX PORT that is obtained during compilation, and we pre-populate the
heap with these nodes. The fixed-size node representation has the disadvantage of using more space than
needed, but the advantage of being able to manage and reuse nodes in a simpler way [4]. INET andin2

are based on the graph calculus of interaction nets. Agent nodes are represented as C structures:
1. typedef struct Agent {
2. int id; struct Port *port[MAX_PORT];

3. } Agent;

4. typedef struct Port {
5. Agent *agent; int portNum;

6. } Port;

(a) INET

S

Z

(b) in2

S

Z
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In contrast with our method, the principal ports are assigned to port[0], and connections between
auxiliary ports are encoded as mutual links between ports ofagent nodes; in INET every connection is
linked mutually as shown in the above (a), whilein2 uses such mutual connections only for the connection
between auxiliary ports as shown in (b). Althoughin2 has been proposed before INET,in2 can be
regarded as a refined version of INET. We call the method to usemutual links for the connection between
auxiliary portsundirected encoding.

(c) Representation ofx= y in amineLight

EQ
NN

⇒

EQ
NN

amineLight is based on the Lightweight calculus,
and uses names to represent connections between
auxiliary ports, and every term is encoded by single
links at the start of the execution. Our method, called
directed encoding, uses single links for the connec-
tion between auxiliary ports. In the case of amineLight, an equation such asx= y becomes represented
by mutual links during execution as shown in the figure (c), while in our method, the equation preserves
the directed encoding, thus a single link (Figure 6). In undirected encoding method names do not occur,
and in directed encoding method substitution for each name is performed by removing the indirected
connection via the name locally. Thus, the implementation needs no environments for substitutions. We
do not garbage collect, taking account of an optimisation mentioned subsequently in this section.

The table below shows execution times in seconds for computing Fibonacci (Fn), Ackermann (A)
and Church numerals [8]. We see from the table that our execution times are almost similar to those of
amineLight and thus in terms of the cost, the undirected encoding method ofin2 is the best.

Undirected(INET) Undirected(in2) Directed(Light) Directed(Simpler)

F32 1.58 1.37 1.52 1.49
F33 2.62 2.29 2.52 2.49
F34 4.37 3.80 4.21 4.15

A(3,10) 1.77 1.42 1.59 1.58
A(3,11) 7.12 5.73 6.44 6.39
A(3,12) 29.47 24.01 26.39 26.14

2 7 6 I I 0.73 0.71 1.26 1.28
2 7 7 I I 2.12 2.13 3.58 3.68

In comparison to amineLight, our implementation computes Fibonacci numbers and Ackermann
function a little faster. On the other hand, amineLight performs better in the Application of Church
numerals. The reason is that Application of Church numeralsdemand a lot of computation for names,
especially for equations such asx = y, yet these operations require extra computational steps inour
implementation. To illustrate this point, let us look at thecomputation of the following sequence of
equations:α = x, y = β , x = y. The lightweight abstract machine in amineLight reduces itto β = α
in two steps:〈 | α = x, y= β , x= y〉 →com 〈 | α = y, y= β 〉 →com 〈 | α = β 〉, whereas our encoding
method takes four steps:( | α = x, y = β , x = y) −→ ( | α = $y, y = β ) −→ ( | α = y, y = β ) −→ ( |
α = $β )−→ ( | α = β ). This is because Lightweight calculus manages both sides ofan equation, while
Simpler one manages only a single side. To illustrate further, the table below shows ratios of name
operations (denoted as “N”) to interaction operations (as “I”).
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I
Light Simpler

N N/I N N/I

F32 74636718 51008017 0.68 65106325 0.87
F33 123315177 82532797 0.67 105344341 0.85
F34 203654818 133540964 0.66 170450820 0.84

A(3,10) 134103148 134094952 1.00 134094952 1.00
A(3,11) 536641652 536625264 1.00 536625264 1.00
A(3,12) 2147025020 2146992248 1.00 2146992248 1.00

2 7 6 I I 15676873 43111255 2.75 64538288 4.12
2 7 7 I I 46118916 126826871 2.75 190190039 4.12

With respect to the computation of Application of Church numerals, the ratio increases to 4.12 compared
to only 2.75 in the amineLight encoding method. Even though the cost of each operation for those names
is quite small, as shown in the computation of Fibonacci number that is faster where the ratio increases
by 0.18, the much accumulation of the cost induces the less efficiency. We anticipate that it is possible
to reduce the cost of operations for names by enhancing the data-structures.

EQ

Z

S Add

Z

ZAdd

N
The advantage of the directed encoding method

is locality of the rewriting in parallel execution. An
active pair must be reduced with the interface pre-
served, and thus reduction of two active pairs that are
connected via an auxiliary port(s) of an interacting
agent need to be managed differently because each
rewrite will update the same set of auxiliary ports.
As an example take the graph shown in the right side figure, which is a graph encoded inin2 of the net in
Figure 5. The two active pairs are connected to each other viathe auxiliary port of the interacting agent
Add andZ, and this connection information must be preserved when theactive pairs are reduced at once.
This checking process could be spread into other parts of thenet globally. In the case of the directed
encoding method, the connection is preserved by a name as shown in Figure 5, and thus reduction of the
two active pairs are performed in parallel as long as critical sections are used to manage names.

EQ

� N N �

The mutual links affect the locality and thus we have proposed the new
method of encoding so that a connection between names can be represented
by a single link. With respect to the encoding method in amineLight, though it
is the directed one, the connections between names are represented as mutual
links (Figure (c)) and we need to check for the lock and this can also spread
globally. Take the right side figure as an example. This showsa graph after
the first step computation ofα = x, y= β , x= y. The two elements of the stack should not be performed
at once because each rewriting affects another, so the checking process is also required.

In addition, our model is simpler than the model of amineLight in terms of dealing with equations,
thus only a single side of an equation is managed. This derives less critical sections that are caused only
by the computational rules Var1 (Figure 6 (a)) and Var2, since name nodes can be pointed-to by two
active pairs (that is, auxiliary ports of an active pair are connected). Moreover, those are performed by
connecting the ports of names to other principal ports of unlocked agent nodes, therefore these can be
locked with an atomic operation such as Compare-and-swapping as follows:

1. void eval() {
2. Agent *a1,*a2;

3. while (popActive(&a1,&a2)) {
4. loop:

...

12. } else if (!(__sync_bool_compa

re_and_swap(&(a1->port[0]),NULL,a2)))

13. goto loop; //retry
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We finish this section by outlining an important optimisation, but leave the implementation details
for future work. Once a net is compiled into an instruction list of LL0, operations such as producing,
disposing and connecting ports of agents is done at the levelof execution of those instructions. We
illustrate the optimisation by considering the rule between Add andS: Add(x1,x2) = S(y)⇒ Add(x1,w) =
y,x2 = S(w). The compilation result of this rule illustrated in Example13. In the right-hand side of this
rule, the active pair agentsAdd andS also occur. Thus, instead of producing new agents, it is possible
to reuse the active pair agents. By introducingStackL andStackR to refer the top elements of the
stackEQ, it is possible to obtain an alternative sequence of instructions where number of instructions,
especially for heap allocations, decreases and thus fasterexecution is expected:

1. rule Add S {
2. w=mkName()

3. x2=StackL[2]

4. tmpR=StackR

5. StackR=tmpR[1]

6. tmpR[1]=w

7. push(x2,tmpR)

8. }

6 Conclusion

In this paper we have designed a simple data-structure for representing interaction nets, and designed a
corresponding calculus that has a direct relationship withthe structure. As a consequence, we can use
the calculus to reason about the rewriting process, and alsoto study the cost of reduction. This led to
an investigation into optimising rules which we outlined inSection 5. We believe that this model can
provide the basis for further development implementation technology for interaction nets.
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