An Implementation Model for Interaction Nets

Abubakar Hassan lan Mackie Shinya Sato
Theory and Practice of Software Ltd LIX, Ecole Polytechnique University of Sussex
London, UK 91128 Palaiseau Cedex, France Brighton, UK

To study implementations and optimisations of interactiensystems we propose a calculus to allow
us to reason about nets, a concrete data-structure thatlgse correspondence with the calculus,
and a low-level language to create and manipulate this diatetsre. These work together so that
we can describe the compilation process for interactios, nelason about the behaviours of the
implementation, and study the efficiency and properties.

1 Introduction

Interaction nets [5] offer a visual aspect to rewriting. Aaggus to term rewriting systems, a specific
system is defined from a user-defined set of nodes (cf. terntslhauser-defined set of rewrite rules.
Nets are then graphs built from the set of nodes and rulesraph dgransformations. Interaction nets are
therefore a specific, in fact very constrained, form of gregariting.

Interaction nets have been used as a programming languamgeanediate language, and as a target
language for the compilation of other programming langsagde all these application areas, prototype
implementations have been built to support the work, but #re often not documented. The purpose of
this paper is to take a new look at the implementation of atigon nets. Specifically, we are interested
in documenting the implementation process, and in padicsthowing a compilation of nets to a low-
level language. We aim to build on the past experience anwledlge obtained from building other
implementations, and make a new contribution to this ingasbn. Specifically, we define: a calculus
that can represent and express results about interactienandata-structure with a low-level language
that corresponds exactly to the calculus; and a compilatidhe calculus to this low-level language.

In addition to defining the above, an important aspect ofwhisk is the compilation of interaction
rules: the ability to implement rules efficiently will impagreatly on an implementation. The low-level
language is close enough to machine code that we essegglitomic operations so that we can under-
stand the cost of an interaction. From a practical perspectie get reliable, efficient implementations
of interaction nets from this work. In this paper we proville foundations for this work, and point out
a number of directions that are currently being investigiate

A number of evaluators have been developed for interactas, mnd one of the first abstract ma-
chines was given by Sousa Pinto [9]. From another directographical interpretein® was proposed
by Lippi [7] and it showed an aspect of interaction nets assaaliprogramming tool. Some evaluators
have been proposed towards efficient computation, call&1[2] and amineLight[[3]. Our approach
is to build the simplest implementation model for interawtnets that we believe can be the most useful
as well as providing the basis for more efficient (includiragailel) implementations in the future. We
shall give some evidence to support this claim in the cumpapter.

The next section recalls some background material, andatid®€3 we describe the new calculus. In
Sectior 4 we give the data-structure that corresponds tcalselus together with a low-level language.
We include also some notes about the compilation of netstirgdow-level language. In Sectidh 5 we
evaluate the work, and give some directions for future wivk.conclude the paper in Sectian 6.

A. Middeldorp and F. van Raamsdonk (Eds.): 8th Internationa
Workshop on Computing with Terms and Graphs (TERMGRAPH 2014
EPTCS 183, 2015, pp. 665980, d0i:10.4204/EPTCS.183.5

This work is licensed under the
Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.183.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

A. Hassan, I. Mackie & S. Sato 67

2 Background

In the graphical rewriting system of interaction nets [5¢ have a seX of symbols
which are names of the nodes. Each symbol has anarityat determines the num-
ber of auxiliary portsthat the node has. Hr(a) =nfor a € Z, thena hasn+1
ports: nauxiliary ports and a distinguished one called phimcipal port Nodes are
drawn as shown in Figdrel. Aetbuilt on X is an undirected graph with nodes at the
vertices. The edges of the net connect nodes together abtteguch that there isFigure 1: Agents
only one edge at every port. A port which is not connected lisdt@free port Two

nodes(a, B) € x Z connected via their principal ports form aative pair, which is the interaction nets
analogue of a redex. A rulga,3) = N) replaces the paifa,3) by the netN. All the free ports are
preserved during reduction, and there is at most one rulegich pair of agents. The diagram in Figure 2
illustrates the idea, wheid is any net built fron=. The most powerful property of this graph rewriting
system is that it is one-step confluent—all reduction secee@are permutation equivalent.

There are many possible data-structures that "
can be used to represent interaction nets, for ex—H .] N S
ample single or double linked graphs. Agents e e : : :
have exactly one principal port, so we can use this: Ym e T Ym
to our advantage and represent nets as a collection
of trees, and use a simple, single linked structure. Figure 2: Interaction rules
Computationally the cost of evaluating a net is mostly duth&cost of the rewrite step: building the
right-hand side of the rule; connecting the new net to theoalk freeing up the left-hand side of the rule
(agentsa andp in the diagram in Figurgl 2).

The goal of this paper is to build an implementation modeajether with a calculus, that explains
this process and allows the study of the cost of computaSgecifically, we provide a framework where
we can focus on the compilation of rules where we can perfogabove steps in the fewest instructions.

Zry T

3 Calculus

It is possible to reason about the graphical representafiowts, but it is convenient to have a textual
calculus for compact representation. There are severalicat the literature, and here we review the
Lightweight calculug3], which is a refined version of [1].

Agents: Let 3 be a set of symbols, ranged over byg, ..., each with a giverarity ar : & — IN. An
occurrence of a symbol is called agent and the arity is the number of auxiliary ports.

Names: Let .4 be a set of hames, ranged over)jy,z, etc. N andX are assumed disjoint. Names
correspond to wires in the graph system.

Terms: A term is built onZ and.#" by the grammart ::= x| a(t,...,t,), wherexe .4, a € %,
ar(a) =nandty,...,t, are terms, with the restriction that each name can appeaostttmice. If
n = 0, then we omit the parentheses. If a name occurs twice ima tg@e say that it idoound
otherwise it isfree. We writes, t, u to range over terms, argf, 0 to range over sequences of terms.
A term of the forma (t3,...,ty) can be seen as a tree with the principal portadt the root, and
the termdy, ..., t, are the subtrees connected to the auxiliary ports.ofFhe term $represents an
indirection node which is created by reduction, and is notmadly part of an initial term.

68 An Implementation Model for Interaction Nets

Equations: If t, u are terms, then the unordered piait u is anequation A ranges over multisets of
equations.

Rules: Rules are pairs of terms written(Xa, ..., %)) =B(Y1,...,Ym) = A, where(a,) € Z x Zis the
active pair, and\ is the right-hand side of the rule. All names occur exactlicéan a rule, and
there is at most one rule for each pair of agents. We call gterfiamesy,..., X, Y1,...,Ym iN A
parametersand write it as\(Xy, ..., Xn, Y1, - - -, Ym). All other names are bound.

Configurations: A configurationis a pair(Z, (t | A)), whereZ is a set of rulest a sequence of terms,
and A a multiset of equations. Each variable occurs at most twica configuration, and we
extend the nomenclature of free and bound names from terims.rdles setZ contains at most
one rule between any pair of agents, and it is closed undemsyry, thus ifa(X) = B(Y) € Z
thenB(Y) = a(X) € Z. We useC,C’ to range over configurations. We célihe headandA the
bodyof a configuration.

Definition 1 (Names in terms) The setName(t) of names of a term t is defined in the following way,
which extends to sequences of terms, equations, sequdrempsations, and rules in the obvious way.
Name(x) = {x}, Name(a(ty,...,tn)) = Name(ty)U---UName(t,), Name($t) = Name(t).

The notationt[u/x] denotes a substitution that replaces the free occurrengdythe termu in t.
This extends to equations and configurations in the obviais w

Definition 2 (Instance of arule) If ris arule a(xa,..., %) =B(Y1,...,Ym) = 4, thenA denotes a new
genericinstanceof r, that is, a copy ofA where we introduce a new set of bound names so that those
new names do not overlap with others already exists, butlta® free names (parameters) unchanged.
Example: ifAis a(x,x) = B(a), thenA is a(y,y) = B(a), where y is a fresh name.

The configurationZ, (t | A)) represents a net that we evaluate usiigA gives the set of active
pairs and the renamings of the net. We weiteéA) without % when there is no ambiguity. The roots of
the terms in the head of the configuration and the free nanresspond to ports in the interface of the
net. We work modular-equivalence for bound names. The computation rules aneatklfielow, and we
use— instead of—com, —sub, —col, —rint When there is no ambiguity.

Communication: (U] AX=t,X=5) —com{U | At=5s).
Substitution: (U | A,B{) =u,x=5s) —sup (U] A,B(T)[s/x] =u) wherep € £ andx occurs int.

Collect: (U | A,x=s) —¢o (U[s/X] | A) wherex occurs ind.

Interaction: (U | A,a(ty,...,tn) =B(S1,.--,Sm)) —int (U | A,Er[tl/xl,...,tn/xn,sl/yl,...7sn/ym])
wherea (x1,...,%n) = B(Y1,..-,Yn) = A € Z.

Example 3 Rules in Figuré B can be represented as follows:
Add(X1,X2) = S(Y) = Add(X1,W) =Y, X2 = S(W), Add(X1,X2) = Z = X1 = Xo.
The net in FiguréB is represented &s| Add(Z,r) = S(Z)), and it is performed:
(r]Add(z,r)=5(2)) —int (r]Add(Z,W)=2Z,r=8(W)) —co (S(W) | Add(Z,W)=2)
—int (S(W) [Z=W) —col (S(Z) |).

We defineC; |} C, by C; —* C, whereC; is in normal form. The following theorem shows that all
Interaction rules can be performed without using Subsituand Collect([3]:

Theorem 3.1 If Cy |} Cy, then there is a configuration C such that &* C —7 ;=& C2 and G is

col
reduced to C by applying on@ommunicatiorrule andinteractionrule. [

A. Hassan, I. Mackie & S. Sato 69

Rules
) (=) 7 (ad () ()7
Y
] Y1 1

1 ° Y1 x To xy T2

Zo
Example of rewritings

A

r

Figure 3: An example of rules and rewritings of interacti@isn

We defineC, }ic C; by C; —* C, whereC; is a{—int, —com}—normal form. Because all critical pairs
that are generated by, and—¢om are confluent, the determinacy property holds [3]:

Theorem 3.2 (Determinacy) Let G, |} C,. When there are configurations,C” such that G |ic C' and
C1 Jlic C”, then C is equivalent to €. (J

3.1 Simpler calculus

In Lightweight calculus, equations are defined as unordpeds and configurations use multisets of
equations. Here, in order to facilitate the corresponddreteseen the calculus and an implementation
model that has a code stack and an environment such as SECI@ 6], we introduce another refined
calculus of Lightweight one, calleégimpler calculusby changing the definition of equations into ordered
pairs and in configurations multisets of equations into sagas of ones.

Terms: Atermis built onZ and.#" by the grammart ::= x| a(ty,...,t,) | $. Intuitively, & corresponds
to a variable bounded with(or a state such that an environment capttyes

Equations: If t andu are terms, then the ordered piit u is anequation © will be used to range over
sequences of equations.

Rules: Rules are pairs of terms writte(xs, ..., Xn) =B(V1,...,Ym) = ©.

Configurations: A configurationis a pair(Z, (t| ©)), where® is a sequence of equations. The rules
setZ contains at most one rule between any pair of agents, andlased under symmetry. We
useS, S to range over configurations.

Definition 4 (Computation Rules) The operational behaviour of the system is given by theviatig:
Varl: (U] O,x=t) — (U] ©)[$t/x] where t£ $s. Var2: (U|O,t=x) — (U] ©)[$t/x] where t£ $s.

Indirectionl: (U|O,$t=s) — (U] O,t=s). Indirection2: (U] ©,t=%$s) — (U|O,t=s).

Interaction: a(xy,...,Xn) = B(Y1,-..,Ym) = Or € Z, then
(U|eaa(tla"'7tn) :B(Sla73’n)) — (U| eaer[tl/xla---7tn/XnaS‘l/Yla---7Srn/ym])-

70 An Implementation Model for Interaction Nets

To remove indirection terms, we introduce an operatinind (it is extended to sequences of terms

and configurations in the obvious way):

remInd(X) d:efx, remind($t) dZEfremInd(t), remind(a(ty,...,tn)) d:efor(remlnd(tl), ...,remlInd(tn)).

Example 5 We show the computation of the configuratior} Add(r,Z) = S(Z)) in Figure[3:
(r|Add(z,r) =8(2)) — (r | Add(Z,X) = Z,r = S(X)) — ($S(X) | Add(Z,X) = Z)
— ($3(X) | Z=x) — ($5(%2) |).
remind($s($Z) |) = (S(2) |).

These rules correspond directly to the graphical datatsiret and operations given in the next sec-
tion. Indirection is introduced so that the data-structor@nipulations can be kept simple. However,
there is an overhead of dealing with indirection nodes. Qaatnally the interaction rule is the most
expensive: the other rules will turn out to be implementethwismall number of instructions or will be
equivalences in the data-structure.

3.2 Expressive power

We compare the expressive power of Simpler and Lightweiglouti. We define a translation of configu-
rations from Simpler calculus into the Lightweight one &st.ight((t|©)) d:ef<remlnd(f) | remInd(©)).
Lemma 6 LetS and S be configurations such thai S— S. When it is by Indirectionl or Indirection2
rules, ToLight(S;) = ToLight(S;). Otherwise,ToLight(S;) — ToLight(S).

Proof. Inthe case of VarlS, = (U] ©,x=t) — (U] ©)[$/X] = S. When we assumeéoLight(S) =
(U | @ ,x=t), thenToLight(S) = (U | ©)[t’ /X, and thusToLight(S1) —com ToLight(S;) or ToLight(Sy)
—sup ToLight(S). O

Every equation is reduced by a rule in Simpler calculus, dflewWing holds:

Lemma 7 When $ (U] ©), then® is empty.]

We define a translation of configuratiomsSimple from Lightweight calculus into Simpler ones:
ToSimple((T'| A)) def (T| ©) where® is a sequence that is the result of fixing an order of the natifis
Theorem 3.3 Let C be a configuration in Lightweight calculus. When theraiconfiguration S in

Simpler one such thatoSimple(C) |} S, then C} ToLight(S).

Proof. AssumeS= (U] ©), and then® is empty by Lemma&]7. SincéoLight(U |) is a normal form,
C || ToLight(t|) by Lemmd®6.]

Theorem 3.4 Let G, and G be configurations in Lightweight calculus such that{Ge C,. Then there is
a configuration S in Simpler one such th&aiSimple(Cy) || S and G || ToLight(S).

Proof. If ToSimple(C;) has no normal form, corresponding to an infinite reductiogueace from
ToSimple(C;) we can construct an infinite reduction sequence starting @by Lemmd 6 since each
reduction produces at most one equation suctt assprt = $s. This contradicts the assumption of this
theorem. There is, thus, a configurati®auch thafToSimple(C;) |} S By Theoreni 3L, |} ToLight(S),
and thus there is a configurati@ such thatC; |i C3 andCs |} ToLight(S) by Theoreni3]1. By the
assumptiorC; |ic C; and the determinacy (Theorém 3.2},= C,. O

We define a configuration of our abstract machine state byoltening 3-tuple(E || ©), where

e E is an environment, which is a subset.¢f x .7 (.4 is a set of names7 is the set of terms),

A. Hassan, I. Mackie & S. Sato 71

¢ Tis an interface, which is a sequence of terms,
e Qs a sequence of equations to operate.

In contrast to the SECD machin€ [6], the st&Kkhe environmenE and the controC in the machine
correspond to the term sequericeghe map E, and the equation seque@cé this abstract machine
respectively. There is no element corresponding to the ddbnmp SECD machine because, during an
execution of a rule, other rules are not called. To managernkigonment, we define the following.

Definition 8 (Operations for pairs) LetP be a set of pairs.

¢ We define a map as a set of pairsP(n) % m if (n,m) € P, L otherwise.
e \We use the following notations to operate maps:
— P(n):=1 asaset (P—{(n,m)})foranym,
— P(n):=m asaset (Pn:=_L)u{(n,m)}).
We give the semantics of the machine as a set of the followangsitional rules of the forniE | U |
©) = (E'|U| @) by applying in the order from A to C2:

A: (Elul@.af)=p(s) = (E|U]©,01) where(|a(f)=p(S))— (|01)
Bl: (E(x)=Ll]Uu]O,x=t) = (E(X):=t|U]|0O)

B2: (E(x)=L1]U]6,t=x) = (E(X):=t|U]|0O)

Cl: (E(x)=s|U|O,x=t) = (EX):=L1|U|0O,s=t)

C2: (E(x)=s|U|6,t=x) = (E(X):=L1|U|OB,t=5s)

Intuitively, the rule ‘A’ corresponds Interaction rule, 1Band ‘B2’ correspond Varl and Var2, and
‘C1’ and ‘C2’ correspond Indirectionl and Indirection2. fiwce captured terms in the environment to
be replaced when the execution is finished, we ddfipéate operation:

_ Update(E[s/x] | U[s/X] | ©[s/X]) (whenx occurs in El or ©)
Update(EU{(x5)} |U]®) = { Update(E|U|O,x=15s) (otherwise)
Update(0| U] ©) = (U]O)

Example 9 A configuration(r | Add(Z,r) = S(Z)) which represents the net in Figure 3 is performed:
(0|r|Add(z,r)=8(2)) = (O]r| Add(z x) =Z,r=8(x)) = ({(r,s(x))} | r | Add(Z,x) =Z)

{(nsO)} [1]Z=x) = ({(r8(x)),(x2)} ||).
Update({(r,S(x)),(x,2)} [[—) = Update({(r,S(2))} | r | =) = Update(0 | $(Z) | —) = (8(2) |).

4 Data-structures and language

Here we give a low-level language, called LLO, which de- F EQ
fines a set of instructions to build and reduce a net to normal \ ~1;
form. The concrete representation of a configuration can be 7

summarised by the diagram shown on the right, whenep-
resents the negQ a stack of equations, arldan interface.
For a net, we need two kinds of graph element: agents
and names nodes. Each of these is allocated memory in the Aeaglement, such as an agent, may
contain pointers to other elements (representing auxiparts). An agent can be coded in C as follows:

typedef struct Agent {
int id; struct Agent *portl[];
} Agent;

72 An Implementation Model for Interaction Nets

Instruction Description

#agent a1:pP1,---,0n: Pn Declareay,-- -, an as symbols of agents whose arity gre- - - , pn.

I=mkInterface(n) Create a fixedh-size interface and assign its pointer to the varidble

Xx=mkAgent (id) Allocate (unused) memory for an agent node whose id &nd assign it to the
variablex.

X=mkName () Allocate (unused) memory for a name node, and assign it teahablex.

free(X) Dispose of just an assigned allocatioaf a graph element (not recursively).

x[pl=y Assign a graph elemegtto a portp > 0 of an agent node

x[0]=a Change the id of an agent nodéto a.

push(X,y) Create an equation of two graph elemetin the stack of equations.

stackFree() Dispose of the top element of the equation stack.

Figure 4: Instructions of LLO

In this Agent structure, each symbaly, ..., ay for agents is distinguished by a unigié. The length
of port corresponds to the number of auxiliary ports of an agent. sthek of equationgq is initially
empty. Intuitively, an element of this stack can be writtsing the following code fragment in C:

typedef struct Equation {
Agent *al; Agent *a2;
} Equation;

The interfacel is a node arrays of fixed sizeas the size of the observable interface of a net can be
pre-determined (and it is preserved during execution). 8yaiLL0, we encode Simpler calculus.

Building nets. Graph elements, the stack of equati@asand the interfac& are managed by instruc-
tions as shown in Figui€ 4. The port numbers start from 1, gnasing the instructiorx[p] =y, we can
assign a graph nodeinto a portp > 0 of a graph node. We also use the port O to refer to the id of an
element. For instance[0]=a changes the id of an agent nadato a.

Here, we build terms in Simpler calculus. To assign an aoitgrt agent, we use the
following declaration:#agent o : ps1,---,0n : pPn, Wherep; is the arity for an agentm
symbola; such thatar(a;) = p;. After this declaration, a symbal; can be represented
by a unique number and an agent’s afitycan be referred to byrity(ai) = pi. We draw an agent node
a of arity 3 as shown the right above figure.

Name nodes are graph elements whigés denoted by the symbdaland the arity
is 0. We also use indirection nodes $yand the arity is 1. We assume thaand$ are
selected from a set that does not overlap with the set of ayenibols. To allocate an
agent node whose idid to a variablex, we use the following instructiork=mkAgent (id) . A name node
is allocated by=mkName (). An assigned allocatioa of a graph element is disposed of (not recursively,
just one node) by usingree (a).

A connection between a principal port and an auxiliary pepremcoded by an assignment. In this
language, to assign a pointer of an existing graph eleimémta portp of another graph elemenf we
use the following instructiona[p] =b. We note that the index of these ports start from 1. For itstaa
termAdd(Z,r) is encoded as shown below, together with the graphical septation.

1. #agent Z:0, Add:2 5. r=mkName ()
2. aAdd=mkAgent (Add) 6. aAdd[2]=r
3. aZ=mkAgent (Z)

4. aAdd[1]=aZ

A. Hassan, I. Mackie & S. Sato 73

Generally, when agent nodes are connected together, thdaseas that we represent in th
following way, where the free ports are at the top of the tree.

The stack of equatior& is initially created empty. An equation node can point to
two graph elements. To create an equation of two graph elsraga, in the stackeq, ‘\ EQ /‘
we use the instructiornpush (a;,a2). To pop an equation from the top of the stattk
we use the instructionstackFree (). We represent a connection between principal
ports by creating an equation between the two agent nodethatstack.

Interfaces are created with the instructidsmkInterface (n). /- -
Elements inI can be accessed using the usual array notation

I[1],---,I[n] and can point to one graph element. As an eXs | S‘d &xzf/; Lz
I *—

ample, a conf|gurat|o(1r | Add(Z,r) = S(w), Add(Z,w) =S(Z))
is encoded using the instructions below. Fidgure 5 givesdee
sponding data-structure. For a connection between twdianyxi
ports, we assign one name node to two ports. Figure 5: Representation of(r |
Add(Z,r) = S(w), Add(Z,w) = S(Z))

1. #agent 7:0,5:1,Add:2 11. bS=mkAgent(S) 21. /*S(Z2)*/

2. /xinterfacex*/ 12. w=mkName () 22. bS=mkAgent (S)

3. I=mkInterface(1) 13. bS[1]l=w 23. bZ=mkAgent (Z)

4. /*Add(Z,r)*/ 14. /*Add(Z,r)=S(w)*/ 24. bS[1]=bZ

5. aAdd=mkAgent (Add) 15. push(aAdd,bS) 25. /*Add(Z,w)=S(Z)*/
6. aZ=mkAgent (Z) 16. /*Add(Z,w)*/ 26. push(aAdd,bS)

7. aAdd[1]=aZ 17. aAdd=mkAgent (Add) 27. /*interfacex/

8. r=mkName () 18. aZ=mkAgent(Z) 28. I[1]l=r

9. aAdd[2]=r 19. aAdd[1]=aZ

10. /*S(w)*/ 20. aAdd[2]=w

Defining interaction rules. We introducerule proceduredo perform interaction rules. For an interac-
tion rule betweernr (X) and3(y) we define a rule procedure using the syntaxte a 8 {...} and we
write instructions between the brackétand} (rule block). In execution, the procedures provide special
variablesL,R that are pointers to the left and the right-hand side agdnteactive pair equation. Vari-
ables used in the instructions are only visible within tHe procedure. Generally, these rule procedures
are represented as transformations on the data-stru€tarénstance, the rule betweand andz given

by Add(xq,%2) = Z = X1 = Xp IS represented using the following procedure:

1. rule Add Z { 3. push(L[1],L[2]) 5. free(R)
2. stackFree() 4. free(l) 6. }

The following illustrates transformations that will be eﬁpp by the rule procedure given above.

W L[1] L[2] ! V stackFree() ! L[1] L[2] ,V push(L[l] L[2D)

kL ‘

74 An Implementation Model for Interaction Nets

(@) x=t,u=s— u[$t/x =s wherexe .4 (u b)y=s—t=s

- 7o ¥
] Ry \

Figure 6: Computation rules for name and indirection nodes

vy

Add’
free(L),
\ , free(R) \

L[l] L[2]

!
D e B ﬂk/‘

§
.
N

|

In order to manage equations in the Simpler calculus, we neschanisms that perform rules Varl,
Indirection1 and so on. Figuké 6 (a) and (b) are instancesadf ®nd Indirection1 rules to illustrate this.

Compilation of Simpler calculus into LLO. Here we introduce a translation of Simpler calculus into
LLO. We use a set of pairs and operations for the pairs defim&efinition[8. We also use a notation for
strings. We write “ and ” as a pair of delimiters to represestrang explicitly. We use the notatiofx}

in a string as the result of replacing the occurreficpwith its actual value. For instance,f=“abc”
andy = 89 then ‘1{x}2{y}"” ="“1abc289". We use+ as an infix binary operation to concatenate strings.

Definition 10 (Compilation of terms and nets) Here we defined our compilation schemes that will gen-
erate LLO for a given interaction net system.

e We use a subsét of .4 x Str (.4 is a set of names) so that a name x4 can correspond to a
string of a variable name in a code sequence and those cameignces can be looked up from
compilation functions. We also use two operatidhx) := L and N(x) := str for str € Str as
defined in Definitionl8. We define a functierake/N to make such a sé&t and a code sequence for
those names by a given name et ..., x,}. The functionfreshStr() returns a fresh name.

makeN({xq,....x}) &

makeN'({x1,...,%n},N)

makeN'({Xq,...,%n},0);

let No =0;

aj = freshStr(); ¢y ="{as}=mkName()”; Ni=(No(x1):=ay), -
an = freshStr(); Cn="{an}=mkName)”; Np= (Nn_1(Xn) :=an);
in (Ci+---+cn,Nn) end;

def

o We define a translatio@ompiles from a symbol seX into a code string as follows:

Compiles(D) def w

| Compile({ay,...,an}) def #agent " +"{a1}:{ar(ar)}” +---+",{an}:{ar(an)}";

A. Hassan, I. Mackie & S. Sato 75

e A translation Compile, from a term into a code string is defined as follows:
Compile(x,N) %' (" N(x))

| Compile,(a(ts,....tn),N) %" let a= freshStr(); c=*{a}=mkAgent{a})";
(c1,a1) = Compilg (t1,N); c=ci+“{a}[1]1={ay}";
(Cn, an) = Compile (tn,N); ch=cn+"“{a} [nNl={an}";
in (c+ci+---+¢Cn @) end,

A translation Compile; from an interface y, ..., u, into a code sequence is defined as follows:

Compile,(—,N) %"

| Compile (Ug,...,un,N) 2" Jet (cy,a1) = Compile (uy,N); ¢ =ci+*“I[11={ay}”;

(Cn, @&n) = Compile,(Un,N); ch=cph+"“I[nl={an}";
in “I=mkInterface[n]” +Ci+---+Ch end;
A translation Compile, from an equation into a code string is defined as follows:

Compileg(t = s,N) % et (c1,a1) = Compilg (t,N); (Cz,a2) = Compile(s,N);

in ci+c+“push({a1},{ax})” end,
A translation Compile,s from an equation sequence into a code string is defined asfsl|

Compileg(€s, ...,en,N) &' Compileg(e1,N) + - - -+ Compileg(en, N);
We define a translatiofompile, from a configuration(d | ©) with a symbol sek into a code
string ¢ as follows:
Compile,(Z, (U] ©)) %" let co= Compile(Z); (c1,N) = makeN(Name(U|©));
C; = Compilee(®,N); c3 = Compile (U,N);
in Cy+Ci+Cr+C3 end,
o We write justCompile when there is no ambiguity.

Example 11 Let us take a configuratiofr | Add(Z,r) = S(Z)) with a symbol sefz,S,Add} as an exam-
ple. The compilatiorfCompile.({Z,S,Add}, (r | Add(Z,r) =S(Z))) generates the following instructions:

1. #agent 7:0,5:1,Add:2 5. al[1]=a2 9. b1[1]=b2

2. r=mkName () 6. al[2]=r 10. push(al,bl)

3. al=mkAgent (Add) 7. bl=mkAgent(S) 11. I=mkInterfacel[1]
4. a2=mkAgent(Z) 8. b2=mkAgent (Z) 12. I[1]=r

Definition 12 (Compilation of rules) We define a translatioompile, from a rule into a sequence of
code strings as follows:

Compile, (a(X) = B(y) = ©) &' Compilew (X4, %), LR, N) &'

let let
N = Compile;n (X, L,0); Ny = Compile,(Y,R,N)); No=N;
(c1,N) = makeN'(Name(©) — {X.¥},Ny); N1 = (No(x1) := {LR} [1]1);
C2 = Compilee(©,N); .

" rule {a} {B} {" ~ Nn = (Nn-1(%) := {LR} [n]);
+“ stackFree()” n N
+C1+Cp 'n
+“free(L)” +“free(R)” +"}" end;

end;

Example 13 The results ofCompile, (Add(X1,%2) = Z = X1 = X2) and Compile, (Add(X1,X%2) = S(y) =
Add(x1,W) =Y, X2 = S(w)) are as follows:

76

An Implementation Model for Interaction Nets

1. rule Add Z { 1. rule Add S { 8. bl=mkAgent(S)
2 stackFree () 2 stackFree () 9. b1[1]l=w
3 push(L[1],L[2]) 3. w=mkName() 10. push(L[2],bl)
4. free(L) 4. al=mkAgent (Add) 11. free(L)
5. free(R) 5 al[1]=L[1] 12. free(R)
6. } 6. ail2]l=w 13. }

7 push(al,R[1])

Back-end of the compilation. Here we show how these translated codes are evaluated daridas-
ised implementation model in the C language, showing theespondence of codes in LLO with the C
language.

#agent 01 : P1,...,0n: Po. FOr each sort of agent, we assign a unique number that isegrea
than 1. We also assign 0 to the id for name nodes. The dedarati agent symbols corresponds
as follows:

#define ID_NAME O
#define ID_0O7 1

#define ID_ap N
#define MAX_AGENTID n

In addition, to manage symbols and arities, we define twyafwanbols andArities as follows:

char Symbols[MAX AGENTID+1] = {"", "ai",...,"On"};
int Arities[MAX AGENTID+1] = {1,p1,...,Pn};

I=mkInterface(n). This makes a global-size array for the interface and corresponds to:

#define SIZE_INTERFACE n
Agent *I[SIZE_INTERFACE];

x=mkAgent (id). This makes a variabbewhose type idigent and assigns an agent node whose
idisid. This instruction corresponds tagent *x=mkAgent (id) ;

x=mkName (). This makes a variabbewhose type isigent and assigns an agent node whoges
ID_NAME. Then it assign®ULL to port [0] of thex in order to be distinguished from indirection
nodes:Agent *x=mkAgent (ID_NAME); X->port[0]=NULL;

free(X). This disposes of a graph node assigned (oot recursively, just an assigned node):
freeAgent (X);

x[pl=y. This assigns a graph elemento a portp of an agent node. The portp in LLO
corresponds to the popi— 1 in the standardised implementation method, and thusrikigliction
corresponds to the following code[p — 1]=y;

x[0]=a. This changes the id of an agextinto a. This corresponds to the following code:
X->id=q;

push(X,y). This pushes two agents onto the equation stack. This pames to the following
code:pushActive(X,Y);

stackFree (). This disposes of the top element of the equation stack.dirénslation result, it
occurs in rule procedures. In this implementation, the fionopActive manages the index of
the equation stack, and thus no code is required.

A. Hassan, I. Mackie & S. Sato 77

Next we manage the translated LLO instructions for rule @doces. A rule procedure in LLO such as
“rule Alpha Beta”is encoded as a function that is namediagha Beta, takes two pointersal and
*a2 to two elements of the equation, and creates nets accomlintgtaction rules. The special variables
L andR in the rule procedures are denotedkas and*a2, and thus.[1],L[2],...,R[1],R[2],... are
expressed asal->port[0],al1->port[1],...,a2->port [0],a2->port[1],.... As an example the
rule procedures fokdd andZ and forAdd ands are encoded as follows:

1. void Add_Z(Agent *al, Agent *a2) {

2 pushActive (al->port[0] ,al->port[1]);
3. freeAgent(al);

4. freeAgent(a2);

5.}

Agent *w=mkName () ;

aAdd->port [0]=al->port [0];
aAdd->port[1]=w;
pushActive(aAdd, a2->port[0]);
aS->port [0]=w;

9. pushActive(al->port[1], aS);

0 ~N O O

1. void Add_S(Agent *al, Agent *a2) { 10. freeAgent(al);
2. Agent *aS=mkAgent (ID_S); 11. freeAgent(a2);
3. Agent *aAdd=mkAgent (ID_Add); 12. }

To manage these functions, we define a rule tablehich stores pointers to those functions. Here,
for simplicity, we use the following simple matrix:

typedef void (*RuleFun) (Agent *al, Agent *a2);
RuleFun R[MAX_AGENTID+1] [MAX_AGENTID+1];

For instance, the above function is storedREID_Add] [ID_Z]=&Add_Z;. The run-time functioreval
is written as follows:

1. void eval() { 10. pushActive(alp0, a2);

2. Agent *al, *a2; 11. } else al->port[0]=a2; //Varl

3. while (popActive(&al, &a2)) { 12. } else if (a2->port[0] != NULL) {
4. if (a2->id '= ID_NAME) { 13. Agent *a2p0=a2->port[0]; //Ind2
5. if (al->id != ID_NAME) { //Interact 14. freeAgent (a2) ;

6. R[al->id] [a2->id] (al, a2); 15. pushActive(al, a2p0);

7. } else if (al->port[0] != NULL) { 16. } else a2->port[0]=al; //Var2

8. Agent *alpO=al->port[0]; //Indl 7.}

9. freeAgent(al); 18. }

5 Discussion

To examine how data structures in INEAZ, amineLight (the fastest evaluator) and our implementatio
affect execution speeds, we implemented a number of eeatuasing the different encoding methods.
We fix the number of ports asAX PORT that is obtained during compilation, and we pre-populate th
heap with these nodes. The fixed-size node representatsaihddisadvantage of using more space than
needed, but the advantage of being able to manage and reise ina simpler way [4]. INET ania?

are based on the graph calculus of interaction nets. Agaetdsare represented as C structures:

1. typedef struct Agent { () INET (b) in?
2 int id; struct Port *port[MAX_PORT];
3. } Agent;

4. typedef struct Port {

5

6

2| [4

Agent *agent; int portNum;
. } Port;

78 An Implementation Model for Interaction Nets

In contrast with our method, the principal ports are assigiweport[0], and connections between
auxiliary ports are encoded as mutual links between porggyent nodes; in INET every connection is
linked mutually as shown in the above (a), whilé uses such mutual connections only for the connection
between auxiliary ports as shown in (b). Althouglt has been proposed before INE#? can be
regarded as a refined version of INET. We call the method torugeal links for the connection between
auxiliary portsundirected encoding

amineLight is based on the Lightweight calculugc) Representation of =y in amineLight
and uses names to represent connections between s
auxiliary ports, and every term is encoded by single N| | N| | N4 (N4
links at the start of the execution. Our method, called = =
directed encodinguses single links for the connec-
tion between auxiliary ports. In the case of amineLight, gnation such ag = y becomes represented
by mutual links during execution as shown in the figure (c)ilevim our method, the equation preserves
the directed encoding, thus a single link (Figure 6). In teated encoding method names do not occur,
and in directed encoding method substitution for each nanpeiformed by removing the indirected
connection via the name locally. Thus, the implementatie@ds no environments for substitutions. We
do not garbage collect, taking account of an optimisationtioeed subsequently in this section.

e | o —

The table below shows execution times in seconds for comguibonacci), Ackermann A)
and Church numeral§[[8]. We see from the table that our eixgctimes are almost similar to those of
amineLight and thus in terms of the cost, the undirected dingomethod ofn? is the best.

| Undirected(INET)| Undirectedip?®) | Directed(Light) | Directed(Simpler)|

Fa2 1.58 1.37 1.52 1.49

Fs3 2.62 2.29 2.52 2.49

Faa 4.37 3.80 421 4.15
A(3,10) 1.77 1.42 1.59 1.58
A(3,11) 7.12 5.73 6.44 6.39
A(3,12) 29.47 24.01 26.39 26.14
27611 0.73 0.71 1.26 1.28
27711 2.12 2.13 3.58 3.68

In comparison to amineLight, our implementation computdmiiacci humbers and Ackermann
function a little faster. On the other hand, amineLight parfs better in the Application of Church
numerals. The reason is that Application of Church numetafeand a lot of computation for names,
especially for equations such as=vy, yet these operations require extra computational steaiin
implementation. To illustrate this point, let us look at tt@mmputation of the following sequence of
equations:a = x,y = 3, x =Y. The lightweight abstract machine in amineLight reduces 8 = a
in two steps: (| a =xy=B,X=Y) =com (| 0 =Y,Y=B) —com (| @ =), whereas our encoding
method takes four stepg] a =x,y=8,x=y) — (|a=%,y=8) — (|la=y,y=8) — (|
a=9%B)— (|a=p). Thisis because Lightweight calculus manages both sidas efuation, while
Simpler one manages only a single side. To illustrate furttree table below shows ratios of name
operations (denoted as “N”) to interaction operations (gs “

A. Hassan, |. Mackie & S. Sato 79
| Light Simpler

N [N N [N
Fs2 74636718 51008017| 0.68 65106325| 0.87
Fa3 123315177 82532797| 0.67 105344341| 0.85
Fs4 | 203654818|| 133540964| 0.66 170450820| 0.84
A(3,10) 134103148|| 134094952 1.00 134094952 1.00
A(3,11) 536641652 536625264 1.00 536625264{ 1.00
A(3,12) | 2147025020 2146992248 1.00 || 2146992248 1.00
27611 15676873 43111255| 2.75 64538288| 4.12
27711 46118916|| 126826871 2.75 190190039 4.12

With respect to the computation of Application of Church rmuads, the ratio increases to 4.12 compared
to only 2.75 in the amineLight encoding method. Even tholnghcost of each operation for those names
is quite small, as shown in the computation of Fibonacci nemtbat is faster where the ratio increases
by 0.18, the much accumulation of the cost induces the Idigseaicy. We anticipate that it is possible
to reduce the cost of operations for names by enhancing taesttaictures.

The advantage of the directed encoding meth
is locality of the rewriting in parallel execution. An
active pair must be reduced with the interface presd |»| <]
served, and thus reduction of two active pairs that aré._
connected via an auxiliary port(s) of an interacting \ R ve
agent need to be managed differently because each 1T
rewrite will update the same set of auxiliary ports.
As an example take the graph shown in the right side figuregwiSia graph encoded in? of the net in
Figure[®. The two active pairs are connected to each othaheiauxiliary port of the interacting agent
Add andz, and this connection information must be preserved wheadtiee pairs are reduced at once.

2zl |

[v
(sL Ly) el [0 2]

This checking process could be spread into other parts afi¢hglobally. In the case of the directed
encoding method, the connection is preserved by a name as shéigurd b, and thus reduction of the
two active pairs are performed in parallel as long as ctigeations are used to manage names.

The mutual links affect the locality and thus we have prodabe new
method of encoding so that a connection between names caplesented “n
by a single link. With respect to the encoding method in afnigiat, though it -
is the directed one, the connections between names arseaped as mutual N
links (Figure (c)) and we need to check for the lock and this alao spread Ve
globally. Take the right side figure as an example. This shengsaph after
the first step computation af = x, y= 3, Xx=Yy. The two elements of the stack should not be performed
at once because each rewriting affects another, so theiolggmtocess is also required.

In addition, our model is simpler than the model of aminelLighterms of dealing with equations,
thus only a single side of an equation is managed. This del@as critical sections that are caused only
by the computational rules Varl (Figureé 6 (a)) and Var2, siname nodes can be pointed-to by two
active pairs (that is, auxiliary ports of an active pair avarmected). Moreover, those are performed by
connecting the ports of names to other principal ports obck#d agent nodes, therefore these can be
locked with an atomic operation such as Compare-and-swgs follows:

. void eval() {
Agent *al,*a2;

1
2
3. while (popActive(&al,&a2)) {
4. loop:

} else if (! (__sync_bool_compa
re_and_swap (&(al->port [0]) ,NULL,a2)))
goto loop; //retry

12.

13.

80 An Implementation Model for Interaction Nets

We finish this section by outlining an important optimisatidut leave the implementation details
for future work. Once a net is compiled into an instructicst bf LLO, operations such as producing,
disposing and connecting ports of agents is done at the tdvekecution of those instructions. We
illustrate the optimisation by considering the rule betw&éd andS: Add(x1,X2) = S(Y) = Add(X1,W) =
y,X2 = S(w). The compilation result of this rule illustrated in Examif& In the right-hand side of this
rule, the active pair agentsid and$S also occur. Thus, instead of producing new agents, it isilpless
to reuse the active pair agents. By introduciigckL and StackR to refer the top elements of the
stackEQ, it is possible to obtain an alternative sequence of instrms where number of instructions,
especially for heap allocations, decreases and thus feteution is expected:

1. rule Add S { 4. tmpR=StackR 7. push(x2,tmpR)
2. w=mkName () 5. StackR=tmpR[1] 8. }
3. x2=StackL[2] 6. tmpR[1]=w

6 Conclusion

In this paper we have designed a simple data-structure poesenting interaction nets, and designed a
corresponding calculus that has a direct relationship thighstructure. As a consequence, we can use
the calculus to reason about the rewriting process, andtalstudy the cost of reduction. This led to
an investigation into optimising rules which we outlinedSection 5. We believe that this model can
provide the basis for further development implementatemibology for interaction nets.

References

[1] M. Fernandez & |. Mackie (1999 Calculus for Interaction Netdn G. Nadathur, editorProceedings of the
International Conference on Principles and Practice ofddative Programming (PPDP’99)ecture Notes in
Computer Sciencg702, Springer-Verlag, pp. 170-187, dai: 1007/10704567 _10.

[2] A. Hassan, I. Mackie & S. Sato (2009¢ompilation of Interaction NetsElectr. Notes Theor. Comput. Sci.
253(4), pp. 73-90, dain.1016/j .entcs.2009.10.018.

[3] Abubakar Hassan, lan Mackie & Shinya Sato (201A)lightweight abstract machine for interaction nets
ECEASST29. Available atittp://journal.ub.tu-berlin.de/index.php/eceasst/article/view/
416.

[4] S.L. Peyton Jones (1987The Implementation of Functional Programming Languagesentice-Hall Inter-
national.

[5] Y. Lafont (1990):Interaction Nets In: Proceedings of the 17th ACM Symposium on Principles of Raogr
ming Languages (POPL90ACM Press, pp. 95-108, daD.1145/96709.96718.

[6] P. J. Landin (1964)The mechanical evaluation of expressior@omputer Journd, pp. 308—-320, doio.
1093/comjnl/6.4.308.

[7] S. Lippi (2002):in? : A Graphical Interpreter for Interaction NetsIn Sophie Tison, editorRTA, Lecture
Notes in Computer Scien@878, Springer, pp. 380-386, duti:.. 1007/3-540-45610-4_29.

[8] I. Mackie (1998):YALE: Yet Another Lambda Evaluator Based on Interactios.NBt Proceedings of the 3rd
ACM SIGPLAN International Conference on Functional Pragnaing (ICFP’98) ACM Press, pp. 117-128,
doii10.1145/291251.289434.

[9] J. Sousa Pinto (20008equential and Concurrent Abstract Machines for Inte@tiNets In Jerzy Tiuryn,
editor: Proceedings of Foundations of Software Science and Comiput&tructures (FOSSACS)ecture
Notes in Computer Sciend&d 84, Springer-Verlag, pp. 267-282, d@: 1007/3-540-46432-8_18.

http://dx.doi.org/10.1007/10704567_10
http://dx.doi.org/10.1016/j.entcs.2009.10.018
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/416
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/416
http://dx.doi.org/10.1145/96709.96718
http://dx.doi.org/10.1093/comjnl/6.4.308
http://dx.doi.org/10.1093/comjnl/6.4.308
http://dx.doi.org/10.1007/3-540-45610-4_29
http://dx.doi.org/10.1145/291251.289434
http://dx.doi.org/10.1007/3-540-46432-8_18

	1 Introduction
	2 Background
	3 Calculus
	3.1 Simpler calculus
	3.2 Expressive power

	4 Data-structures and language
	5 Discussion
	6 Conclusion

