
R. Verbrugge (Ed.): Theoretical Aspects of
Rationality and Knowledge 2023 (TARK 2023)
EPTCS 379, 2023, pp. 407–420, doi:10.4204/EPTCS.379.32

© D. Miedema, M. Gattinger
This work is licensed under the
Creative Commons Attribution License.

Exploiting Asymmetry in Logic Puzzles: Using ZDDs for
Symbolic Model Checking Dynamic Epistemic Logic

Daniel Miedema
Bernoulli Institute

University of Groningen
The Netherlands

daniel2Miedema@gmail.com

Malvin Gattinger
ILLC

University of Amsterdam
The Netherlands
malvin@w4eg.eu

Binary decision diagrams (BDDs) are widely used to mitigate the state-explosion problem in model
checking. A variation of BDDs are Zero-suppressed Decision Diagrams (ZDDs) which omit variables
that must be false, instead of omitting variables that do not matter.

We use ZDDs to symbolically encode Kripke models used in Dynamic Epistemic Logic, a
framework to reason about knowledge and information dynamics in multi-agent systems. We compare
the memory usage of different ZDD variants for three well-known examples from the literature: the
Muddy Children, the Sum and Product puzzle and the Dining Cryptographers. Our implementation is
based on the existing model checker SMCDEL and the CUDD library.

Our results show that replacing BDDs with the right variant of ZDDs can significantly reduce
memory usage. This suggests that ZDDs are a useful tool for model checking multi-agent systems.

1 Introduction

There are several formal frameworks for reasoning about knowledge in multi-agent systems, and many are
implemented in the form of epistemic model checkers. Here we are concerned with the data structures
used in automated epistemic reasoning. This is a non-issue in theoretical work, where Kripke models
are an elegant mathematical tools. But they are not very efficient: models where agents know little tend
to be the largest. More efficient representations are often based on Binary Decision Diagrams (BDDs),
which use the idea that a representation of a function not depending on p can simply ignore that variable
p. This fits nicely to the models encountered in epistemic scenarios, such as the famous example of the
Muddy Children: If child 2 does not observe whether it is muddy, i.e. whether p2 is true or false, then we
can save memory by omitting p2 in the encoding of the knowledge of child 2. However, which variables
matter may change, and in many examples the claim that “many variables do not matter” only holds in
the initial model. This motivates us to look at Zero-suppressed Decision Diagrams (ZDDs) which use an
asymmetric reduction rule to omit variables that must be false, instead of the symmetric reduction rule
targeting variables that do not matter.

Our informal research question is thus: Is it more memory efficient to have a default assumption
that “anything we do not mention does not matter” or, for example “anything we do not mention must be
false”? Obviously, the answer will depend on many aspects. Here we make the question precise for the
case of Dynamic Epistemic Logic, and consider three well-known examples from the literature.

The article is structured as follows. We discuss related work in the rest of this section, then we provide
the relevant background in Sections 2 and 3. Section 4 describes our experiment design and the formal
models used. We present our results in Section 5 and conclude in Section 6.

http://dx.doi.org/10.4204/EPTCS.379.32
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

408 Exploiting Asymmetry in Logic Puzzles: ZDDs for Symbolic Model Checking DEL

Related work Model checking aims to verify properties of formally specified systems. Standard model
checking methods search through a whole state transition graph and thus suffer from the state explosion
problem: the number of states grows exponentially with the number of components or agents. To tackle
this problem symbolic methods were developed [4]. These reduce the amount of resources needed, by
reasoning about sets instead of individual states. Starting with SMV from [16], most approaches use
Binary Decision Diagrams (BDDs) [2] to encode Boolean functions. Zero-suppressed Decision Diagrams
(ZDDs) are an adaption of BDDs, introduced by Minato [18]. ZDDs naturally fit combinatorial problems
and many comparisons between BDDs and ZDDs have been done. For both an elegant introduction into
the topic of BDDs and many more references we refer to [13]. Symbolic model checking using ZDDs has
not been studied much, partly due to underdeveloped construction methods [19].

Most existing symbolic model checkers use temporal logics such as LTL or CTL. Yet problems
come in many forms and for examples typically described using epistemic operators (e.g. in multi-agent
systems), Dynamic Epistemic Logic (DEL) is an established framework [8]. Also DEL model checking
can be done symbolically [1], by encoding Kripke models as so-called knowledge structures. This lead
to its implementation, SMCDEL, which is extended in this work. Another encoding, sometimes also
called “symbolic models”, is based on mental programs [6]. In concrete applications such as “Hintikka’s
World” these also get encoded as BDDs [5]. To our knowledge no previous work used ZDDs or other
BDD variants for DEL model checking, with the exception of [12] where Algebraic Decision Diagrams
(ADDs) are used for probabilistic DEL.

Here our main research questions is: Can ZDDs be more compact than BDDs when encoding the
Kripke models for classical logic puzzles? We answer this question by adding ZDD functionality to
SMCDEL and then comparing the sizes for three well-known examples from the literature.

2 Theory: Decision Diagrams

Symbolic model checkers, including SMCDEL, rely on efficient representations of Boolean functions.
The most widely used data structure for this are Binary Decision Diagrams (BDDs). In this section
we recall their definition and explain the difference between standard BDDs and ZDDs. How Boolean
functions are then used for model checking DEL will be explained in the next section. Before we get to
decision diagrams we define Boolean formulas and functions.

Definition 1. The Boolean formulas over a set of variables P (also called vocabulary) are given by ϕ ::=
⊤ | p | ¬ϕ | ϕ ∧ϕ where p ∈ P. We define ⊥ := ¬⊤, ϕ ∨ψ := ¬(¬ϕ ∧¬ψ) and ϕ → ψ := ¬(ϕ ∧¬ψ).

We write ⊨ for the usual Boolean semantics using assignments of type P →{0,1}. When P is given
we identify an assignment (also called state) with the set of variables it maps to 1. A Boolean function is
any f : P(P)→{0,1}. For any ϕ we define the Boolean function fϕ(s) := {if s ⊨ ϕ then 1 else 0}.

For example, if our vocabulary is P = {p,q,r} and s(p) = 0, s(q) = 1 and s(r) = 0 then we identify s
with {q} and we have s ⊨ (¬p∧q)∨ r. In the following we will also just write ϕ for fϕ . Notably, two
different formulas can correspond to the same Boolean function, but not vice versa.

Definition 2. For any ϕ , ψ , and p, let ϕ(p
ψ
) be the result of replacing every occurrence of p in ϕ by ψ .

For any A = {p1, . . . , pn}, let ϕ(A
ψ
) := ψ(p1

ψ
)(p2

ψ
) . . .(pn

ψ
). We use ∀pϕ to denote ϕ

(p
⊤
)
∧ϕ

(p
⊥
)
. For any

A = {p1, . . . , pn}, let ∀Aϕ := ∀p1∀p2 . . .∀pnϕ .

Decision Diagrams A decision diagram is a rooted directed acyclic graph, used to encode a Boolean
function. Any terminal node (i.e. leaf) is labelled with 0 or 1, corresponding to the result of the function.

D. Miedema, M. Gattinger 409

Any internal node n is labelled with a variable and has two outgoing edges to successors denoted by
THEN(n) and ELSE(n) — each representing a possible value for the variable. A path from the root to a
leaf in a decision diagram corresponds to an evaluation of the encoded function. A decision diagram is
called ordered if the variables are encountered in the same order on all its paths.

Example 3. The first (left-most) decision diagram in Figure 1 is a full decision tree for q∧¬r. To evaluate
it at state {p,q} we start at the root and then go along the solid THEN-edge because p is true, then again
along a THEN-edge as q is true and then along the dashed ELSE-edge as r is false. We get 1 as a result,
reflecting the fact that {p,q} ⊨ q∧¬r. Similarly we can use the second and third diagram.

p

q q

r r r r

0 1 0 0 0 1 0 0

p

q

r r

01

BDD(f)

q

r

01

ZDDT 0(f)

p

q

01

ZDDT 1(f)

p

q

r r

01

ZDDE0(f)

p

r

01

ZDDE1(f)

p

q

r

0

Figure 1: Seven decision diagrams for f := q∧¬r, assuming vocabulary {p,q,r}.

Binary Decision Diagrams (BDDs) were introduced by [2] and are particularly compact decision
diagrams, obtained using two reduction rules. The first rule identifies isomorphic subgraphs, i.e. we merge
nodes that have the same label and the same children. In Figure 1 we get from the first to the second
diagram. The second rule eliminates redundant nodes. A node is considered redundant if both its THEN-
and ELSE-edge go to the same child. In Figure 1 this gets us from the second to the third diagram.

Zero-suppressed Decision Diagrams (ZDDs) were introduced by [18] and use a different second
rule than BDDs. While in BDDs a node n is eliminated when THEN(n) = ELSE(n), in ZDDs a node is
eliminated when THEN(n) = 0. In Figure 1 this rule gets us from the second to the fourth diagram called
ZDDT 0(f). The idea is to not ignore the variables that “do not matter” (as p in q∧¬r), but to remove the
nodes of variables that must be false (as r in q∧¬r). To evaluate ZDDT 0(f) at state {p,q} we again start
at the root and twice follow a solid edge because p and q are true, but then we notice that the solid edge
goes from q to 1, without asking for the remaining variable r. When evaluating a ZDDT 0 such a transition
demands that the variable we “jump over” must be false — hence the name “zero-suppressed”. Indeed r
is false in our state, so we do reach 1. If r would have been true, the result would have been 0.

Generalizing Elimination Rules The elimination rule “remove nodes that have a THEN-edge leading
to 0” can be modified in two obvious ways: instead of THEN- we could consider ELSE-edges, and instead
of 0 we could consider 1. This leads us to three additional elimination rules.

Definition 4. We denote five different node elimination rules as follows. A node n with pairs of children
(THEN(n),ELSE(n)) is eliminated if it matches the left side of the rule, and any edges leading to n are
diverted to the successor s on the right side of the rule.

EQ : (s,s)⇒ s T 0 : (0,s)⇒ s E0 : (s,0)⇒ s
T 1 : (1,s)⇒ s E1 : (s,1)⇒ s

410 Exploiting Asymmetry in Logic Puzzles: ZDDs for Symbolic Model Checking DEL

Here EQ is the rule for BDDs, while T 0 (for “Then 0”) is the traditional ZDD rule. The remaining
three are variations. For example, E0 says that any node with an ELSE-edge to 0 is removed, and any
edge that led to the removed node should be diverted to where the THEN-edge of the removed node led.

In Figure 1 the E0 rule gets us from the second to the sixth diagram ZDDE0(f). Note that we used
the rule twice: After deleting an r node the q node has an ELSE-branch to 0, so it is also eliminated. All
diagrams encode the same function f , but when evaluating them we must interpret “jumps” differently.

A crucial feature of BDDs and ZDDs is that they are canonical representations: given a fixed variable
order there is a unique BDD and a unique ZDD for each variant. It also becomes clear that for different
Boolean functions a different kind of diagram can be more or less compact.

Definition 5. For any Boolean function f , recall that ¬ f denotes its complement. Let ¬ f denote the result
of complementing all atomic propositions inside f . (For example, ¬(q∧¬r) = ¬q∧ r.) For any decision
diagram d, let flipLeaf(d) be the result of changing the labels of all leaves from 0 to 1 and vice versa;
and let flipEdge(d) be the result of changing the labels of all edges from THEN to ELSE and vice versa.

There is a correspondence between ¬ and flipLeaf, and between ¬ and flipEdge. Moreover, we can
use these operations to relate the four different variants of ZDDs as follows.

Fact 6. For any Boolean function f we have:

DDT 1(f) = flipLeaf DDT 0(¬ f)
DDE0(f) = flipEdgeDDT 0(

¬ f)
DDE1(f) = flipEdgeflipLeaf DDT 0(¬¬ f)

Example 7. We illustrate Fact 6 using our running example f := q∧¬r with vocabulary {p,q,r}. Figure 2
shows the T 0 decision diagrams mentioned in Fact 6. We see that for example DDT 1(f) shown in Figure 1
is the same graph as DDT 0(¬ f) with only the labels of the leaf nodes exchanged. Similarly, DDE1(f) in
Figure 1 is the same graph as DDT 0(¬¬ f) with flipped edges and leaves.

ZDDT 0(¬ f)

p

q

r r

10

ZDDT 0(
¬ f)

p

r

01

ZDDT 0(¬¬ f)

p

q

r

1

Figure 2: ZDDs with the same shape as the variants for f := p∧¬q.

Fact 6 is crucial for our implementation, because the CUDD library we use does not support T 1, E0
and E1 explicitly. Hence instead we always work with T 0 diagrams of the negated or flipped functions.

3 Theory: Symbolic Model Checking DEL

Kripke Models We recap the standard syntax and semantics of Public Announcement Logic (PAL), the
most basic version of Dynamic Epistemic Logic (DEL).

D. Miedema, M. Gattinger 411

Definition 8. Fix a vocabulary V and a finite set of agents I. The DEL language L (V) is given by
ϕ ::= p | ¬ϕ | ϕ ∧ϕ | Kiϕ | [ϕ]ϕ where p ∈V , i ∈ I.

As usual, Kiϕ is read as “agent i knows that ϕ”. The formula [ψ]ϕ says that after a public announce-
ment of ψ , ϕ holds. The standard semantics for L (V) on Kripke models are as follows.

Definition 9. A Kripke model for a set of agents I = {1, . . . ,n} is a tuple M = (W,π,K1, . . . ,Kn), where
W is a set of worlds, π associates with each world a state π(w), and K1, . . . ,Kn are equivalence relations
on W. A pointed Kripke model is a pair (M ,w) consisting of a model and a world w ∈W.

Definition 10. Semantics for L (V) on pointed Kripke models are given inductively as follows.

• (M ,w) ⊨ p iff πM(w)(p) =⊤.

• (M ,w) ⊨ ¬ϕ iff not (M ,w) ⊨ ϕ

• (M ,w) ⊨ ϕ ∧ψ iff (M ,w) ⊨ ϕ and (M ,w) ⊨ ψ

• (M ,w) ⊨ Kiϕ iff for all w′ ∈W, if wK M
i w′, then (M ,w′) ⊨ ϕ .

• (M ,w) ⊨ [ψ]ϕ iff (M ,w) ⊨ ψ implies (M ψ ,w) ⊨ ϕ where M ψ is a new model based on the set
WM ψ

:= {w ∈WM | (M ,w) ⊨ ψ} and appropriate restrictions of Ki and π to WM ψ

.

More expressive versions of DEL also include common knowledge and complex epistemic or ontic
actions such as private communication, interception, spying and factual change. Moreover, DEL can
work both with S5 models and with arbitrary Kripke models. All of this is compatible with the symbolic
semantics we recall in the next section, but for our purposes in this article the restricted language above is
sufficient, and we only consider S5 models.

Knowledge Structures While the semantics described above is standard, it has the disadvantage that
models are represented explicitly, i.e. the number of worlds also determines the amount of memory
needed to represent a model. To combat this well-known state-explosion problem we can replace Kripke
models with symbolic knowledge structures. Their main advantage is that knowledge and results of
announcements can be computed via purely Boolean operations, as shown in [1].

Definition 11. Suppose we have n agents. A knowledge structure is a tuple F = (V,θ ,O1, . . . ,On) where
V is a finite set of atomic variables, θ is a Boolean formula over V and for each agent i, Oi ⊆V . The set
V is the vocabulary and the formula θ is the state law of F . The Oi are called observational variables. An
assignment over V that satisfies θ is a state of F . A scene is a pair (F ,s) where s is a state of F .

Example 12. Consider the knowledge structure F := (V = {p,q},θ = p → q,O1 = {p},O2 = {q}).
The states of F are the three assignments ∅, {q} and {p,q}. Moreover, F has two agents who each
observe one of the propositions: agent 1 knows whether p is true and agent 2 knows whether q is true.

We now give semantics for L (V) on knowledge structures.

Definition 13. Semantics for L (V) on scenes are defined as follows.

• (F ,s) ⊨ p iff s ⊨ p.

• (F ,s) ⊨ ¬ϕ iff not (F ,s) ⊨ ϕ

• (F ,s) ⊨ ϕ ∧ψ iff (F ,s) ⊨ ϕ and (F ,s) ⊨ ψ

• (F ,s) ⊨ Kiϕ iff for all t of F , if s∩Oi = t ∩Oi, then (F , t) ⊨ ϕ .

• (F ,s) ⊨ [ψ]ϕ iff (F ,s) ⊨ ψ implies (F ψ ,s) ⊨ ϕ where F ψ := (V,θ ∧∥ψ∥F ,O1, . . . ,On).

412 Exploiting Asymmetry in Logic Puzzles: ZDDs for Symbolic Model Checking DEL

where ∥ · ∥F is defined in parallel in the following definition.

Definition 14. For any knowledge structure F = (V,θ ,O1, . . . ,On) and any formula ϕ we define its local
Boolean translation ∥ϕ∥F as follows.

∥p∥F := p ∥Kiψ∥F := ∀(V \Oi)(θ →∥ψ∥F)
∥¬ψ∥F := ¬∥ψ∥F ∥[ψ]ξ∥F := ∥ψ∥F →∥ξ∥F ψ

∥ψ1 ∧ψ2∥F := ∥ψ1∥F ∧∥ψ2∥F

where the case for Kiψ quantifies over the variables not observed by agent i, using Boolean quantification
as defined in Definition 2 above.

A main result from [1] based on [21] is that for any finite Kripke model there is an equivalent
knowledge structure and vice versa. This means we can see knowledge structures as just another,
hopefully more memory-efficient, data structure to store a Kripke model. An additional twist is that we
usually store the state law θ not as a formula but only the corresponding Boolean function — which can
be represented using a decision diagram as discussed in Section 2.

4 Methods: Logic Puzzles as Benchmarks

Our leading question is whether ZDDs provide a more compact encoding than BDDs for models encoun-
tered in epistemic model checking. To answer it we will work with three logic puzzles from the literature.
All examples start with an initial model which we encode as a knowledge structure with the state law as a
decision diagram. Then we make updates in the form of public announcements, changing the state law.
We record the size of the decision diagrams for each update step.

As a basis for our implementation and experiments we use SMCDEL, the symbolic model checker for
DEL from [1]. SMCDEL normally uses the BDD library CacBDD [15] which does not support ZDDs.
Hence we also use the library CUDD [20] which does support ZDDs. However, also CUDD does not
support the generalized elimination rules from Definition 4. Therefore we use Fact 6 to simulate the T 1,
E0 and E1 variants. Our new code — now merged into SMCDEL — provides easy ways to create and
update knowledge structures where the state law is represented using any of the four ZDD variants.

An additional detail is that CUDD always uses so-called complement edges to optimize BDDs, but
not for ZDDs. To compare the sizes of ZDDs to BDDs without complement edges we still use CacBDD.
Altogether in our data set we thus record the sizes of six decision diagrams for each state law: the EQ rule
with and without complement edges (called BDD and BDDc) and the four ZDD variants from Definition 4.
We stress that by size of a diagram we mean the node count and not memory in bytes, because the former
is independent of what libraries are used, whereas the latter depends on additional optimisations.

It now remains to choose examples. We picked three well-known logic puzzles from the literature
with different kinds of state laws, such that we also expect the advantage of ZDDs to vary between them.

Muddy Children The Muddy Children are probably the best-known example in epistemic reasoning,
hence we skip the explanation here and refer to the literature starting with [14]. A formalisation of the
puzzle can be found in [8, Section 4.10] and the symbolic encoding in [1, Section 4].

Dining Cryptographers This problem and the protocol to solve it was first presented by [7]:

D. Miedema, M. Gattinger 413

“Three cryptographers gather around a table for dinner. The waiter informs them that the
meal has been paid for by someone, who could be one of the cryptographers or the National
Security Agency (NSA). The cryptographers respect each other’s right to make an anonymous
payment, but want to find out whether the NSA paid.”

The solution uses random coin flips under the table, each observed by two neighbouring cryptogra-
phers but not visible to the third one. A formalisation and solution using Kripke models can be
found in [11]. To encode the problem in a knowledge structure we let p0 mean that the NSA paid,
pi for i ∈ {1,2,3} that i paid. Moreover, pk for k ∈ {4,5,6} represents a coin. The initial scenario is
then (V = {p0, . . . , p6},θ =⊗1{p0, p1, p2, p3},O1 = {p1, p4, p5},O2 = {p2, p4, p6},O3 = {p3, p5, p6})
where the state law θ says that exactly one cryptographer or the NSA must have paid. In the solution
then each cryptographer announces the XOR (⊗) of all bits they observe, with the exception that the
payer should invert their publicly announced bit. Formally, we get a sequence of three public announce-
ments [?!(⊗p1, p4, p5)][?!(⊗p2, p4, p6)][?!(⊗p3, p5, p6)] where [?!ψ]ϕ := [!ψ]ϕ ∧ [¬!ψ]ϕ abbreviates
announcing whether. The protocol can be generalised to any odd number n instead of three participants.

Sum and Product The following puzzle was originally introduced in 1969 by H. Freudenthal. The
translation is from [9] where the puzzle is also formalised in DEL:

A says to S and P: I have chosen two integers x,y such that 1 < x < y and x+ y ≤ 100. In
a moment, I will inform S only of s = x+ y, and P only of p = xy. These announcements
remain private. You are required to determine the pair (x,y). He acts as said. The following
conversation now takes place: P says: “I do not know it.” — S says: “I knew you didn’t.” —
P says: “I now know it.” — S says: “I now also know it.” — Determine the pair (x, y).

Solving the puzzle using explicit model checking is discussed in [10]. To represent the four variables
and their values in propositional logic we need a binary encoding, using ⌈log2 N⌉ propositions for each
variable that take values up to N. For example, to represent x ≤ 100 we use p1, . . . , p7 and encode the
statement x = 5 as p1 ∧ p2 ∧ p3 ∧ p4 ∧¬p5 ∧ p6 ∧¬p7, corresponding to the bit-string 0000101 for 5.

The initial state law for Sum and Product is a big disjunction over all possible pairs of x and y with the
given restrictions, and the observational variables ensure that agents S and P know the values of s and p
respectively. For a detailed definition of the knowledge structure, see [1, Section 5].

The announcements in the dialogue are formalised as follows, combining the first two into one:
First S says KS¬

∨
i+ j≤100 KP(x = i∧ y = j), then P says

∨
i+ j≤100 KP(x = i∧ y = j) and finally S says∨

i+ j≤100 KS(x = i∧ y = j). Solutions to the puzzle are states where these three formulas can be truthfully
announced after each other. A common variation on the problem is to change the upper bound for x+ y.
We use this to turn obtain a scalable benchmark, starting with 65 to ensure there exists at least one answer.

It is well known that ZDDs perform better on sparse sets [3]. In our case, sparsity is the number of
states in the model divided by the total number of possible states for the given vocabulary. Our three
examples vary a lot in their sparsity: Muddy Children’s sparsity is 0.5 on average (going from 0.875 to
0.125, for 3 agents), Dining Cryptographers is fairly sparse from start to finish (0.25 to 0.0625, for 3
agents), and Sum and Product is extremely sparse (e.g. starting with < 1.369 ·10−7 for x+ y ≤ 100).

5 Results

For each example we present a selection of results we deem most interesting, showing differences between
BDD and ZDD sizes. The full data set for two examples can be found in the appendix where we also

414 Exploiting Asymmetry in Logic Puzzles: ZDDs for Symbolic Model Checking DEL

include instructions how all of the results can be reproduced.

Muddy children We vary the number of children n from 5 to 40, in steps of 5. We can also vary the
number of muddy children m ≤ n, but mostly report results here where m = n. Given any number of
children, we record the size of the decision diagrams of the state law after the kth announcement, where k
ranges from 0 (no announcements made yet) to m−1 (after which all children know their own state).

As an example, let us fix n = m = 20. Figure 3a shows the size of the decision diagrams after each
announcement. The lines all follow a similar curve, with the largest relative differences in the initial and
final states. Initially the most compact variant is T1 whereas at the end E0 is the most compact. This
matches the asymmetry in the Muddy Children story: at the start the state law is p1 ∨ . . .∨ pn, hence all
THEN edges lead to 1 and T 1 removes all nodes. In contrast, at the end the state law is p1 ∧ . . .∧ pn which
means that all ELSE edges lead to 0 and thus E0 eliminates all nodes.

Hence at different stages different variants are more compact. But we want a representation that is
compact throughout the whole process. We thus consider the average size over all announcements, varying
n from 5 to 40. Figure 3b shows the relative size differences, with standard BDDs as 100%. The T 0/E1
and the BDDc/E0/T 1 lines overlap. We see that T 1 and E0 are more compact for small models, but not
better than BDDs with complement edges and this advantage shrinks with a larger number of agents.

We also computed sizes for m < n, i.e. not all children being muddy. In this case the sizes for each
update step stay the same but there are fewer update steps because the last truthful announcement is in
round m−1. As expected this is in favour of the T 1 variant.

0 5 10 15 20

0

50

100

announcements

nu
m

be
ro

fn
od

es

BDD BDDc
T0 T1
E0 E1

(a) Absolute sizes per announcement, for n = 20.

10 20 30 40

−10

0

10

20

30

number of agents n

re
la

tiv
e

di
ff

er
en

ce
(%

)

(b) Relative average sizes.

Figure 3: Results for Muddy Children.

Dining cryptographers For 13 agents we show the sizes after each announcement in Figure 4a. It
becomes clear that there is little difference between the variants, which can be explained by the sparsity
of the model throughout the whole story. Still, the T 0/E0 variants slightly outperform the BDD(c) and
the T 1/E1 variants. This makes sense as most variables saying that agent i paid will be false. For lower
numbers of agents the difference is larger, as visible in Figure 4b where we vary the number of agents
from 3 to 13. Note that T 1 and E1 overlap here, and T 0 provides the best advantage.

D. Miedema, M. Gattinger 415

0 2 4 6 8 10 12

0

20,000

40,000

announcements

nu
m

be
ro

fn
od

es
BDD BDDc

T0 T1
E0 E1

(a) Absolute sizes per announcement, for n = 13.

5 10

−20

0

20

number of agents n

re
la

tiv
e

di
ff

er
en

ce
(%

)

(b) Relative average sizes.

Figure 4: Results for Dining Cryptographers.

Sum and Product In this last example we can vary the upper bound of x+ y from 50 to 350, but not
the number of agents and announcements. Figure 5a shows the sizes averaged over all four stages. We
note that the BDD(c), T 1 and E1 lines all overlap (with insignificant differences), and that T0 and E0
perform the best here. In contrast to the first two examples, this advantage does not disappear for larger
instances of the puzzle, as can be seen in Figure 5b where we show the relative differences. Interestingly,
we see that T 0 and E0 meet up and diverge again wherever the bound for x+ y is a power of 2 (i.e. 64,
128 or 256) which we mark by vertical dashed lines. This is due to the bit-wise encoding where just above
powers of two an additional bit is needed, but it must be false for almost all values.

100 200 300

0

20,000

40,000

60,000

80,000

100,000

maximum x+ y

nu
m

be
ro

fn
od

es

BDD BDDc
T0 T1
E0 E1

(a) Average sizes per maximum x+ y.

50 100 150 200 250 300 350

−40

−20

0

maximum x+ y

re
la

tiv
e

di
ff

er
en

ce
(%

)

(b) Relative sizes per maximum x+ y.

Figure 5: Results for Sum and Product.

416 Exploiting Asymmetry in Logic Puzzles: ZDDs for Symbolic Model Checking DEL

6 Conclusion

In all experiments we find a ZDD elimination rule that can reduce the number of nodes compared to BDDs,
with the exception that in the Muddy Children example complement edges provide the same advantage.
This leads us to conclude that ZDDs are a promising tool for DEL model checking. Specifically, if domain
knowledge about the particular model allows one to predict which ZDD variant will be more compact,
ZDDs can outcompete BDDs.

The BDD elimination rule treats true and false atomic propositions symmetrically, whereas ZDD rules
are asymmetric. This means their success depends on asymmetry in the model.

When translating an example from natural language to a formal models we usually try to avoid
redundant variables, which already reduces the number of BDD-eliminable nodes. This is likely the
reason why using ZDDs provides an advantage or, for examples with a sparsity around 0.5 like the Muddy
Children, at least the same performance as BDDs with complement edges.

Specifically for logic puzzles, usually all variables are needed, and models become asymmetric and
sparse as information is revealed and possible answers are ruled out. Our results confirm that sparsity and
the kind of asymmetry prevalent in the model can predict which ZDD variant is most beneficial.

In this article we only considered S5. SMCDEL also provides modules for K and in further experiments
we compared the sizes of ZDDs and BDDs of the state law of belief structures. As an example we used
the famous Sally-Anne false belief task. The results were similar to those here and can be found in [17].

Future work An obvious limitation is that we only compared memory and not computation time. The
size of a decision diagram correlates with the computation time needed to build it. But the step-wise
construction techniques in SMCDEL are slower for ZDDs than for BDDs. For example, to compute
the Sum and Product result we rather convert each state law BDD to ZDDs instead of computing ZDDs
directly. Before a meaningful comparison of computation time can be done, the construction methods for
ZDDs need to be further optimized.

We found some indicators which elimination rule is most compact in which case, but a more general
approach to formalise domain knowledge and use it to make a correct prediction would be a powerful tool.

Acknowledgements This work is based on the master thesis [17] by the first author, written at the
University of Groningen and co-supervised by Rineke Verbrugge and the second author.

We thank the TARK reviewers for their careful reading and helpful comments on this article.

References
[1] Johan van Benthem, Jan van Eijck, Malvin Gattinger & Kaile Su (2018): Symbolic Model Check-

ing for Dynamic Epistemic Logic — S5 and Beyond. Logic and Computation 28(2), pp. 367––402,
doi:10.1093/logcom/exx038.

[2] Randal E Bryant (1986): Graph-based algorithms for boolean function manipulation. IEEE Transactions on
Computers 100(8), pp. 677–691, doi:10.1109/TC.1986.1676819.

[3] Randal E. Bryant (2018): Binary Decision Diagrams. In Edmund M. Clarke, Thomas A. Henzinger, Helmut
Veith & Roderick Bloem, editors: Handbook of Model Checking, Springer, pp. 191–217, doi:10.1007/978-3-
319-10575-8_7.

[4] Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, David L Dill & Lain-Jinn Hwang (1992): Symbolic
model checking: 1020 states and beyond. Information and computation 98(2), pp. 142–170, doi:10.1016/0890-
5401(92)90017-a.

https://doi.org/10.1093/logcom/exx038
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/978-3-319-10575-8_7
https://doi.org/10.1007/978-3-319-10575-8_7
https://doi.org/10.1016/0890-5401(92)90017-a
https://doi.org/10.1016/0890-5401(92)90017-a

D. Miedema, M. Gattinger 417

[5] Tristan Charrier, Sébastien Gamblin, Alexandre Niveau & François Schwarzentruber (2019): Hintikka’s World:
Scalable Higher-order Knowledge. In: IJCAI 2019, pp. 6494–6496, doi:10.24963/ijcai.2019/934.

[6] Tristan Charrier, Sophie Pinchinat & François Schwarzentruber (2019): Symbolic model checking of public
announcement protocols. Logic and Computation 29(8), pp. 1211–1249, doi:10.1093/logcom/exz023.

[7] David Chaum (1988): The dining cryptographers problem: Unconditional sender and recipient untraceability.
Journal of cryptology 1(1), pp. 65–75, doi:10.1007/BF00206326.

[8] Hans van Ditmarsch, Wiebe van Der Hoek & Barteld Kooi (2007): Dynamic Epistemic Logic. Springer,
doi:10.1007/978-1-4020-5839-4.

[9] Hans van Ditmarsch, Jan van Eijck & Rineke Verbrugge (2009): Publieke werken—freudenthal’s som-
en-productraadsel. Nieuw Archief voor Wiskunde 10(2), pp. 126–131. Available at https://www.
nieuwarchief.nl/serie5/pdf/naw5-2009-10-2-126.pdf.

[10] Hans van Ditmarsch, Ji Ruan & Rineke Verbrugge (2007): Sum and Product in Dynamic Epistemic Logic.
Logic and Computation 18(4), pp. 563–588, doi:10.1093/logcom/exm081.

[11] Jan van Eijck & Simona Orzan (2007): Epistemic verification of anonymity. Electronic Notes in Theoretical
Computer Science 168, pp. 159–174, doi:10.1016/j.entcs.2006.08.026.

[12] Sébastien Gamblin, Alexandre Niveau & Maroua Bouzid (2022): A Symbolic Representation for Probabilistic
Dynamic Epistemic Logic. In: AAMAS 2022, pp. 445–453. Available at https://dl.acm.org/doi/abs/
10.5555/3535850.3535901.

[13] Donald E. Knuth (2011): The Art of Computer Programming, volume 4A: Combinatorial Algorithms, Part 1.
Addison-Wesley.

[14] John E Littlewood (1953): A Mathematician’s Miscellany. Methuen and Company Limited.

[15] Guanfeng Lv, Kaile Su & Yanyan Xu (2013): CacBDD: A BDD package with dynamic cache management. In:
Computer Aided Verification, Springer, pp. 229–234, doi:10.1007/978-3-642-39799-8_15.

[16] Kenneth L McMillan (1993): Symbolic model checking. Springer, doi:10.1007/978-1-4615-3190-6.

[17] Daniel Miedema (2022): Zero-suppression Decision Diagrams versus Binary Decision Diagrams on Dynamic
Epistemic Logic Model Checking. Master’s thesis, University of Groningen. Available at https://fse.
studenttheses.ub.rug.nl/27287/.

[18] Shin-ichi Minato (1993): Zero-suppressed BDDs for set manipulation in combinatorial problems. In: Proceed-
ings of the 30th international Design Automation Conference, pp. 272–277, doi:10.1145/157485.164890.

[19] Shin-ichi Minato (2001): Zero-suppressed BDDs and their applications. International Journal on Software
Tools for Technology Transfer 3(2), pp. 156–170, doi:10.1007/s100090100038.

[20] Fabio Somenzi (2012): CUDD: CU decision diagram package. Available at http://vlsi.colorado.edu/
~fabio/CUDD/. Version 2.5.0.

[21] K. Su, A. Sattar, G. Lv & Y. Zhang (2009): Variable Forgetting in Reasoning about Knowledge. Journal of
Artificial Intelligence Research 35, pp. 677–716, doi:10.1613/jair.2750.

Appendix

The ZDD encoding of knowledge structures has been integrated into SMCDEL itself. All our results can
be reproduced using the Haskell Tool Stack from https://haskellstack.org as follows.

git clone https://github.com/jrclogic/SMCDEL
cd SMCDEL
git checkout zdd-experiments
stack bench --no-run-benchmarks # build but do not run yet
stack bench smcdel:bench:sizes-muddychildren

https://doi.org/10.24963/ijcai.2019/934
https://doi.org/10.1093/logcom/exz023
https://doi.org/10.1007/BF00206326
https://doi.org/10.1007/978-1-4020-5839-4
https://www.nieuwarchief.nl/serie5/pdf/naw5-2009-10-2-126.pdf
https://www.nieuwarchief.nl/serie5/pdf/naw5-2009-10-2-126.pdf
https://doi.org/10.1093/logcom/exm081
https://doi.org/10.1016/j.entcs.2006.08.026
https://dl.acm.org/doi/abs/10.5555/3535850.3535901
https://dl.acm.org/doi/abs/10.5555/3535850.3535901
https://doi.org/10.1007/978-3-642-39799-8_15
https://doi.org/10.1007/978-1-4615-3190-6
https://fse.studenttheses.ub.rug.nl/27287/
https://fse.studenttheses.ub.rug.nl/27287/
https://doi.org/10.1145/157485.164890
https://doi.org/10.1007/s100090100038
http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
https://doi.org/10.1613/jair.2750
https://haskellstack.org

418 Exploiting Asymmetry in Logic Puzzles: ZDDs for Symbolic Model Checking DEL

stack bench smcdel:bench:sizes-diningcryptographers
stack bench smcdel:bench:sizes-sumandproduct

The last three commands will create .dat files containing the results. On a system with a 4.8 GHz
CPU the last three commands above take approximately 10 seconds, one minute and three hours.

We include the results for Dining Crytographers and Sum and Product here, but omit the (several
pages long) results for the Muddy Children.

Results for Dining Cryptographers
Note: round -1 indicates the average.
n m round BDD BDDc T0 T1 E0 E1
3 1 0 9 7 9 13 11 13
3 1 1 15 12 10 19 14 19
3 1 2 21 19 12 25 17 25
3 1 -1 11.25 9.5 7.75 14.25 10.5 14.25
5 1 0 13 11 18 26 22 26
5 1 1 25 20 21 38 29 38
5 1 2 41 37 29 54 40 54
5 1 3 64 61 44 77 57 77
5 1 4 98 96 68 111 82 111
5 1 -1 60.25 56.25 45.0 76.5 57.5 76.5
7 1 0 17 15 31 43 37 43
7 1 1 35 28 36 61 48 61
7 1 2 61 55 50 87 67 87
7 1 3 102 97 79 128 100 128
7 1 4 170 166 133 196 157 196
7 1 5 285 282 228 311 254 311
7 1 6 479 477 388 505 415 505
7 1 -1 287.25 280.0 236.25 332.75 269.5 332.75
9 1 0 21 19 48 64 56 64
9 1 1 45 36 55 88 71 88
9 1 2 81 73 75 124 98 124
9 1 3 140 133 118 183 147 183
9 1 4 242 236 202 285 236 285
9 1 5 423 418 359 466 397 466
9 1 6 747 743 645 790 686 790
9 1 7 1326 1323 1156 1369 1199 1369
9 1 8 2352 2350 2052 2395 2096 2395
9 1 -1 1344.25 1332.75 1177.5 1441.0 1246.5 1441.0
11 1 0 25 23 69 89 79 89
11 1 1 55 44 78 119 98 119
11 1 2 101 91 104 165 133 165
11 1 3 178 169 161 242 198 242
11 1 4 314 306 275 378 319 378
11 1 5 561 554 494 625 544 625
11 1 6 1015 1009 906 1079 961 1079
11 1 7 1852 1847 1671 1916 1730 1916
11 1 8 3392 3388 3077 3456 3139 3456
11 1 9 6211 6208 5636 6275 5700 6275
11 1 10 11333 11331 10244 11397 10309 11397
11 1 -1 6259.25 6242.5 5678.75 6435.25 5802.5 6435.25
13 1 0 29 27 94 118 106 118
13 1 1 65 52 105 154 129 154
13 1 2 121 109 137 210 172 210
13 1 3 216 205 208 305 253 305
13 1 4 386 376 352 475 406 475
13 1 5 699 690 633 788 695 788
13 1 6 1283 1275 1171 1372 1240 1372
13 1 7 2378 2371 2190 2467 2265 2467
13 1 8 4432 4426 4106 4521 4186 4521
13 1 9 8277 8272 7687 8366 7771 8366
13 1 10 15449 15445 14341 15538 14428 15538

D. Miedema, M. Gattinger 419

13 1 11 28764 28761 26628 28853 26717 28853
13 1 12 53342 53340 49156 53431 49246 53431
13 1 -1 28860.25 28837.25 26702.0 29149.5 26903.5 29149.5

Results for Sum and Product
Note: round -1 indicates the average.
n round BDD BDDc T0 T1 E0 E1
50 0 5032 5030 3082 5060 2505 5060
50 1 697 696 458 726 288 724
50 2 547 546 361 576 221 574
50 3 1 1 0 31 0 31
50 -1 1569.25 1568.25 975.25 1598.25 753.5 1597.25
64 0 7916 7914 4247 7944 4602 7944
64 1 930 929 614 959 381 957
64 2 760 759 501 789 308 787
64 3 1 1 0 31 0 31
64 -1 2401.75 2400.75 1340.5 2430.75 1322.75 2429.75
75 0 12534 12532 7847 12566 5986 12566
75 1 1274 1273 900 1307 456 1305
75 2 939 938 658 972 335 970
75 3 35 34 27 68 12 66
75 -1 3695.5 3694.25 2358.0 3728.25 1697.25 3726.75
100 0 22438 22436 13514 22471 11279 22471
100 1 2289 2288 1567 2323 870 2321
100 2 1594 1593 1087 1628 596 1626
100 3 36 35 28 70 12 68
100 -1 6589.25 6588.0 4049.0 6623.0 3189.25 6621.5
125 0 33826 33824 18476 33859 19074 33859
125 1 3149 3148 2095 3183 1262 3181
125 2 2101 2100 1383 2135 835 2133
125 3 36 35 28 70 12 68
125 -1 9778.0 9776.75 5495.5 9811.75 5295.75 9810.25
128 0 35315 35313 18823 35348 20401 35348
128 1 3149 3148 2095 3183 1262 3181
128 2 2101 2100 1383 2135 835 2133
128 3 36 35 28 70 12 68
128 -1 10150.25 10149.0 5582.25 10184.0 5627.5 10182.5
150 0 55028 55026 33874 55065 26559 55065
150 1 5147 5146 3526 5185 1938 5183
150 2 3354 3353 2261 3392 1267 3390
150 3 40 39 32 78 12 76
150 -1 15892.25 15891.0 9923.25 15930.0 7444.0 15928.5
175 0 73233 73231 43763 73270 36869 73270
175 1 6753 6752 4635 6791 2549 6789
175 2 4265 4264 2893 4303 1599 4301
175 3 40 39 32 78 12 76
175 -1 21072.75 21071.5 12830.75 21110.5 10257.25 21109.0
200 0 98044 98042 58134 98082 49615 98082
200 1 8498 8497 5929 8537 3096 8535
200 2 5275 5274 3666 5314 1877 5312
200 3 41 40 33 80 12 78
200 -1 27964.5 27963.25 16940.5 28003.25 13650.0 28001.75
225 0 121863 121861 69555 121901 64632 121901
225 1 10103 10102 6910 10142 3827 10140
225 2 6284 6283 4289 6323 2317 6321
225 3 41 40 33 80 12 78
225 -1 34572.75 34571.5 20196.75 34611.5 17697.0 34610.0
250 0 148149 148147 80231 148187 83173 148187
250 1 14131 14130 8991 14170 6071 14168
250 2 8664 8663 5470 8703 3659 8701
250 3 41 40 33 80 12 78
250 -1 42746.25 42745.0 23681.25 42785.0 23228.75 42783.5
256 0 154815 154813 81895 154853 88925 154853

420 Exploiting Asymmetry in Logic Puzzles: ZDDs for Symbolic Model Checking DEL

256 1 14992 14991 9616 15031 6371 15029
256 2 9084 9083 5787 9123 3786 9121
256 3 41 40 33 80 12 78
256 -1 44733.0 44731.75 24332.75 44771.75 24773.5 44770.25
275 0 203227 203225 123011 203269 98715 203269
275 1 18794 18793 12876 18837 7046 18835
275 2 11435 11434 7808 11478 4189 11476
275 3 45 44 37 88 12 86
275 -1 58375.25 58374.0 35933.0 58418.0 27490.5 58416.5
300 0 238864 238862 144850 238906 116069 238906
300 1 21339 21338 14568 21382 8066 21380
300 2 12671 12670 8634 12714 4662 12712
300 3 45 44 37 88 12 86
300 -1 68229.75 68228.5 42022.25 68272.5 32202.25 68271.0
325 0 277256 277254 165770 277298 137410 277298
325 1 24822 24821 16902 24865 9451 24863
325 2 14341 14340 9749 14384 5305 14382
325 3 45 44 37 88 12 86
325 -1 79116.0 79114.75 48114.5 79158.75 38044.5 79157.25
350 0 318340 318338 187632 318382 160813 318382
350 1 29838 29837 19932 29881 11776 29879
350 2 17313 17312 11500 17356 6686 17354
350 3 45 44 37 88 12 86
350 -1 91384.0 91382.75 54775.25 91426.75 44821.75 91425.25

	Introduction
	Theory: Decision Diagrams
	Theory: Symbolic Model Checking DEL
	Methods: Logic Puzzles as Benchmarks
	Results
	Conclusion

