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Multi-agent influence diagrams (MAIDs) are a popular game-theoretic model based on Bayesian

networks. In some settings, MAIDs offer significant advantages over extensive-form game represen-

tations. Previous work on MAIDs has assumed that agents employ behavioural policies, which set

independent conditional probability distributions over actions for each of their decisions. In settings

with imperfect recall, however, a Nash equilibrium in behavioural policies may not exist. We over-

come this by showing how to solve MAIDs with forgetful and absent-minded agents using mixed

policies and two types of correlated equilibrium. We also analyse the computational complexity of

key decision problems in MAIDs, and explore tractable cases. Finally, we describe applications of

MAIDs to Markov games and team situations, where imperfect recall is often unavoidable.

1 Introduction

Multi-agent influence diagrams (MAIDs) are a graphical representation for dynamic non-cooperative

games, which can be more compact and expressive than extensive-form games (EFGs) [25]. Like

Bayesian networks (BNs), MAIDs use a directed acyclic graph (DAG) to represent conditional prob-

abilistic dependencies between random variables, but they also specify decision and utility variables for

each agent. Each agent selects a behavioural policy – independent conditional probability distributions

(CPDs) over actions for each of their decision variables – to maximise their expected utility. A MAID’s

mechanised graph extends this DAG by explicitly representing each variable’s distribution and showing

which other variables’ distributions matter to an agent optimising a particular decision rule [18, 25, 10].

MAIDs, and their causal variants [18], have been used in the design of safe and fair AI systems

[14, 1, 15, 16, 7], to explore reasoning patterns and deception [40, 48], and to identify agents from

data [22]. However, to date, agents in MAIDs are usually assumed to have perfect (or, at least, ‘suffi-

cient’) recall [25]. This assumption is often unreasonable. For example, MAIDs must allow imperfect

recall to handle bounded rationality, teams with imperfect communication [13], or memoryless poli-

cies in Markov games. However, forgetfulness (of previous observations) or absent-mindedness (about

whether previous decisions have even been made) can prevent the existence of a Nash Equilibrium (NE)

in behavioural policies. To overcome this, one can consider other solution concepts, such as mixed or

correlated equilibria.

In this work, we focus on imperfect recall in MAIDs. Imperfect recall has already been extensively

studied in EFGs [41, 26, 49], but a MAID’s mechanised graph makes graphically explicit the semantic

difference between behavioural and mixed policies (hidden in EFGs) and readily identifies forgetful

or absent-minded agents (or teams). Our insights inspire two definitions of correlated equilibrium in

MAIDs. The first follows from the normal-form game definition [2]. The second, based on von Stengel
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and Forges’ extensive-form correlated equilibrium [47], is more natural for dynamic settings, can yield

greater social welfare, and is easier to compute. Again, mechanised graphs clearly depict the assumptions

made in both. Next, we examine MAIDs from a computational complexity perspective by studying the

decision problems of finding a best response, checking whether a policy profile is an NE, and checking

whether each type of NE exists. These provide an insight into what makes particular instances hard, when

computations can be made tractable, and rigorously identify which problems are suitable for analysis as

MAIDs. Our results also apply to refinements of MAIDs, such as causal games [18]. We assume

familiarity with EFGs [31], BNs [24], and the complexity classes P, NP, and PP [38]. Proof sketches are

provided, but details are deferred to the appendices.

Related Work. There is a rich literature on influence diagrams [23] and imperfect recall has been

studied in single-agent influence diagrams [33, 34, 29, 6, 35] as well as in EFGs [3, 21, 26, 41, 49].

However, to our knowledge, we are the first to focus on imperfect recall in influence diagrams with

multiple agents.

A full policy profile in a MAID induces a BN, so many of our results inherit from that setting, where

the decision problem variant of marginal inference is, in general, PP-complete [30]. However, we care

about the cases we encounter in practice, not just the worst case. Marginal inference in a BN can be

performed in time exponential in the treewidth of the underlying graph [24], which entails a poly-time

algorithm when the treewidth is small. Similarly, we will see that tractable results for computations in

MAIDs can be found when problems are restricted to certain settings. We also sometimes reduce from

partial order games [50], which can be interpreted as MAIDs without chance nodes, with deterministic

decision rules, and where each agent has a single utility node as a child of all the decision nodes.

2 The Model

We use capital letters V for random variables, lowercase letters v for their instantiations, and bold letters

VVV and vvv, respectively, for sets of variables and their instantiations. We let dom(V ) denote the (finite,

non-singleton) domain of V (for ease, we take this to be binary unless stated otherwise) and dom(VVV ) :=

×V∈VVV dom(V ). Parents and children of V in a graph are denoted by PaV and ChV , respectively (with paV

and chV their instantiations) and ∆(X) denotes the set of all probability distributions over a set X .

Example 1. An autonomous taxi decides whether to offer Alice a discount (T ) depending on whether

its journey count exceeds a quota (Q). Alice decides whether to accept a journey (A) depending on the

price. The taxi wants to maximise profit, but if its journey count is less than the quota and Alice rejects it,

the taxi pays a penalty (the municipality uses this mechanism to prevent a proliferation of unnecessary

taxis). Alice’s utility is a function of her decision and the price offered by the taxi.

Figure 1a shows a MAID for this example. Chance variables (moves by nature), decision variables,

and utility variables are represented by white circles, squares, and diamonds, respectively. Full edges

leading into chance and utility nodes represent probabilistic dependence, as in a BN. Dotted edges lead-

ing into decision nodes identify information available to the agent when a decision D is made, so paD,

the values of PaD, represents the decision context for D. In EFGs, imperfect information is represented

using explicitly labelled information sets. In MAIDs, we can infer that Alice is unaware of the value of

Q when making her decision by the lack of edge Q→ A. A parameterisation defines the CPDs for the

chance and utility variables, whereas CPDs of decision nodes are chosen by the agents playing the game.

Definition 1 ([25]). A multi-agent influence diagram (MAID) is a structure M = (G ,θθθ ). G = (N,VVV ,E)
specifies a set of agents N = {1, . . . ,n} and a DAG (VVV ,E), where VVV is partitioned into chance variables
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UT UA

Bernoulli(0.5)

UT = T ·A−J(1−A)
UA = A · (3−T )
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Figure 1: A MAID (a) and its mechanised graph (b) for Example 1, which is a perfect recall and imper-

fect, but sufficient, information game.

XXX, decision variables DDD =
⋃

i∈N DDDi, and utility variables UUU =
⋃

i∈N UUU i. The parameters θθθ = {θV}V∈VVV\DDD

define the CPDs Pr(V | PaV ) for each non-decision variable such that for any setting of the decision

variables’ CPDs, the resulting joint distribution over VVV is Markov compatible with the DAG, i.e., Pr(vvv) =

∏V∈VVV Pr(v | paV ).

Given a MAID, a decision rule πD for D∈DDD is a CPD πD(D | PaD). A partial (behavioural) policy

profile πDDD′ is a set of decision rules for each D∈DDD′⊆DDD, whereas π−DDD′ is the set of decision rules for each

D∈DDD\DDD′. A (behavioural) policy πππ i refers to πππDDDiii , and a (full) policy profile πππ =(πππ1, . . . ,πππn) is a tuple

of policies, where πππ−i := (πππ1, . . . ,πππ i−1,πππ i+1, . . . ,πππn). A decision rule is pure if πD(d | paD) ∈ {0,1},
which holds for a policy (profile) if it holds for all decision rules in the policy (profile). For clarity, we

use an overhead dot to mark this determinism, e.g., π̇D, π̇ππ
i, or π̇ππ .

By combining πππ with the partial distribution Pr over the chance and utility variables, we obtain a

joint distribution:

Prπππ(xxx,ddd,uuu) := ∏V∈VVV\DDD Pr(v | paV ) ·∏D∈DDD πD(d | paD)

A full policy profile πππ therefore induces a BN with DAG given by the MAID’s graph. Agent i’s expected

utility EU i(πππ) for a given policy profile πππ is defined as the expected sum of their utility variables:

EU i(πππ) := ∑U∈UUU i ∑u∈dom(U) Prπππ(U = u) ·u

Utility variables have deterministic CPDs, so can be interpreted as functions U : dom(PaU)→ R to

show their functional dependence on their parents (e.g., Figure 1a). An NE is defined in the usual way.

Definition 2 ([25]). A (behavioural) policy profile πππ is a Nash equilibrium (NE) (in behavioural poli-

cies) if for every agent i∈N and every alternative (behavioural) policy ϖϖϖ i: EU i(πππ−i,πππ i)≥EU i(πππ−i,ϖϖϖ i)

Collectively, the decision rules of decision variables and the CPDs of chance or utility nodes are

known as mechanisms. A mechanism MV for V is strategically relevant to a decision rule for D if the

choice of the CPD at MV can affect the optimal choice of this decision rule. Koller and Milch [25] define

an associated sound and complete graphical criterion for strategic relevance, sss-reachability, based on

d-separation which can be checked in O(|VVV |+ |E|) time [43] (see Appendix A for formal definitions).

A MAID’s regular graph G captures the probabilistic dependencies between object-level variables

in the game’s environment, but its mechanised graph mG is an enhanced representation which adds an

explicit representation of the strategically relevant dependencies between agents’ decision rules and the

game’s parameterisation (see [18] for details). Each object-level variable V ∈VVV has a mechanism parent

MV representing the distribution governing V : each decision D has a new decision rule parent ΠD =MD

and each non-decision V has a new parameter parent ΘV =MV , whose values parameterise the CPDs.

Agents select a decision rule πD (i.e., the value of a decision rule variable ΠD) based on both the

parameterisation of the game (i.e., the values of the parameter variables) and the selection of the other
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decision rules πππ−D – these dependencies are captured by the edges from other mechanisms into decision

rule nodes. s-reachability determines which of these edges are necessary, so MV →ΠD exists if and only

if ΠD strategically relies on MV . The mechanised graph for Example 1 (in Figure 1b) shows that ΠT

strategically relies on ΘUT and ΠA, whereas ΠA only strategically relies on ΘUA . In contrast to a MAID’s

regular graph G , which is a DAG, there may exist cycles between mechanisms (e.g., Figure 3a).

For convenience, we denote the set of agent i’s behavioural policies as PPPi := dom(ΠΠΠi), with sets of

pure policies denoted as ṖPP
i
and (pure) policy profiles denoted by PPP (ṖPP).

2.1 Concise Representations

A concise representation of MAIDs is needed for three reasons. First, real numbers may obscure the true

complexity of the problems [5], so we assume that all probability parameters are given by a fraction of

two integers, both expressed in finite binary notation. This is realistic since the probabilities are normally

either assessed by domain experts or estimated by a learning algorithm and means that all CPDs can be

read in poly-time. Second, even with binary variables, a joint distribution across VVV requires 2|VVV |− 1

parameters. A MAID or BN’s graphical Markov factorisation reduces this to ∑V∈VVV 2|PaV |, but this can

still be exponential in |VVV |. Therefore, it is standard [45, 42, 28, 24] to assume that the maximum in-

degree in the graph is much less than |VVV | (or constant), so that the size of the CPDs are polynomial in

|VVV |. This means that the total representation of our MAID (including all CPDs) is polynomial in our

chosen complexity parameter |VVV |. Finally, as in BNs, our complexity results are strongly affected by

the DAG’s treewidth. The treewidth of a DAG measures its resemblance to a tree and is given by the

number of vertices in the largest clique of the corresponding triangulated moral graph minus one [4].

3 Imperfect Recall in MAIDs

Agents may possess different degrees of information about the state of a game. A game has perfect

recall if each agent remembers all their past decisions and observations, and it has perfect information

if each agent is aware of every agent’s past decisions and observations.

Definition 3 ([25]). Agent i in a MAID M is said to have perfect recall if there exists a total ordering

D1 ≺ ·· · ≺Dm over DDDi such that (PaD j
∪D j)⊆ PaDk

for any 1≤ j < k≤m. M is a perfect recall game

if all agents in M have perfect recall. M is a perfect information game if there exists such an ordering

over DDD.

A MAID with perfect information (recall) can be transformed into an EFG with perfect information

(recall), and vice versa [17]. Hence, these information conditions also guarantee the existence of an NE

in pure (behavioural) policies in the MAID ([26] gives the equivalent results in EFGs). However, the

mechanised representation of a MAID enables weaker criteria to be defined – sufficient information

and sufficient recall. Later, in Proposition 3, we will see that these criteria preserve the NE existence

results of perfect information and perfect recall games, respectively.

Definition 4. Agent i in a MAID M has sufficient recall [36] if the subgraph of the mechanised graph

mG restricted to just agent i’s decision rule nodes ΠΠΠDDDi is acyclic. M is a sufficient recall game if all

agents in M have sufficient recall. M is a sufficient information game if the subgraph of mG restricted

to contain only and all decision rule nodes ΠΠΠDDD is acyclic.1

1Note that since previous work on influence diagrams has not modelled absent-mindedness (see our Definition 5 in Sec-

tion 3.1), this definition implicitly assumes each mechanism variable has a single child.
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Figure 2: The EFG (a) and the mechanised graphs for an absent-minded driver choosing behavioural (b)

or mixed (c) policies.

3.1 Forgetfulness and Absent-Mindedness

Previous work on MAIDs has assumed perfect or sufficient recall. We now begin the contributions of this

paper by distinguishing between two types of imperfect recall in MAIDs. Forgetfulness applies when

an agent forgets an observation or the outcome of one of their previous decisions. Absent-mindedness

applies when an agent cannot even remember whether they have previously made a decision. To make

this distinction, we leverage the following insight: mechanism nodes represent the CPDs governing

object-level variables. Every edge between a mechanism and object-level node represents an independent

draw from the mechanism’s distribution. We now provide formal definitions.

Definition 5. Agent i has imperfect recall in a MAID M if for every total ordering D1 ≺ ·· · ≺ Dm over

DDDi there exists some j < k such that (PaD j
∪D j) 6⊆ PaDk

(i.e., if agent i does not have perfect recall).

Agent i is forgetful if such a D j and Dk have distinct decision rules and is absent-minded if in M ’s

mechanised graph, a decision rule node has more than one outgoing edge to a decision node.

To motivate our definition of absent-mindedness in MAIDs, we revisit Piccione and Rubinstein’s

absent-minded driver game [41] (its EFG is in Figure 2a). A driver on a highway may take one of

two exits. Taking the first, second, or no exit yields a payoff of 0, 4, or 1, respectively. Adopting

Aumann [3]’s modified multi-selves approach (i.e., that the driver should only be able to control her

current action, not her future actions), the driver does not know which junction she is facing, so she

must have the same decision rule at both junctions. We make absent-mindedness explicit with a shared

decision rule node ΠD for D1 and D2 in the mechanised graph (Figure 2b) (note this is consistent with

our mechanised graph definition). ΠD’s two outgoing edges now represent two independent draws from

the same distribution. For Di and D j to share a decision rule, it is necessary that dom(Di) = dom(D j)
and dom(PaDi

) = dom(PaD j
). Note that perfect recall implies that for any two decisions belonging to the

same agent, one’s set of parents is a strict superset of the other’s, so their decision rules have a different

type signature, which rules out absent-mindedness.

In the following examples, used just to explain this paper’s concepts, Alice and Bob play variations

of matching pennies with the usual payoffs given according to the final state of their two coins (where

a/b and ā/b̄ represent heads and tails, respectively). Example 2 illustrates a consequence of Bob being

forgetful – meaning he cannot remember the outcome of his previous decision. In Example 3, Bob is

absent-minded – he cannot remember whether he has made a decision at all.

Example 2 (Figures 3a-3c). Bob is told he must submit a move in advance (B1) and then confirm it on

game day (B2). If his moves agree, payoffs correspond with normal matching pennies, but if his moves

disagree, he must forfeit and always loses (these payoffs are shown in Figure 3c). Bob is forgetful, so on

game day he cannot remember his advance choice (i.e., the edge B1→ B2 is missing in Figure 3a).
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a ā

b1b2 −1,1 1,−1
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b −1,1 1,−1

b̄ 1,−1 −1,1
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Figure 3: The mechanised graphs for forgetful Bob (Example 2) using (a) behavioural or (b) mixed

policies, with normal-form in (c). (d) The mechanised graph for absent-minded Bob (Example 3) using

a behavioural policy, with EFG and normal-form representations in (e) and (f).

Example 3 (Figures 3d-3f). In a new game, the pennies start heads up, and Bob decides whether or not

to turn the coin over (B1). He is absent-minded, so when he sees heads he cannot remember whether he

has already made his move, and he decides again (B2). If he turns the coin having previously chosen to

keep heads, Bob gets a −2 penalty and Alice a +2 bonus. In all other cases, the payoffs correspond with

normal matching pennies (payoffs are shown at the leaves of the EFG in Figure 3e).

Observe that the MAID’s regular graph (just the object-level variables) is identical for both Figures 3a

and 3d with the missing B1→ B2 edge implying imperfect recall. The difference between forgetfulness

and absent-mindedness is only revealed by the mechanised graph. Forgetful Bob has two independent

decision rules ΠB1
and ΠB2

for B1 and B2. Absent-minded Bob only has one shared decision rule ΠB.

Examples 2 and 3 demonstrate that both types of imperfect recall can mean an NE in behavioural

policies may not exist, even in zero-sum two agent MAIDs with binary decisions. The normal-form

games (in Figures 3c and 3f) show that neither contains an NE in pure policies. It is also easy to prove

non-existence in behavioural policies (see Appendix B). This arises due to the grand best response func-

tion being non-convex valued, which violates a condition of Kakutani’s fixed point theorem.

Proposition 1. Both forgetfulness and absent-mindedness can prevent the existence of an NE in be-

havioural policies.

4 Solution Concepts for MAIDs under Imperfect Recall

To overcome the fact that a behavioural policy NE may not exist in imperfect recall MAIDs, one can

use mixed or correlated policies. These ensure that the grand best response function always satisfies the
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conditions of Kakutani’s fixed point theorem, so an equilibrium always exists. We show how the as-

sumptions behind mixed policies, behavioural mixtures, and correlated equilibria (well-studied in EFGs

[21, 47], but unexplored in MAIDs) are made graphically explicit in mechanised graphs.

4.1 Mixed Policies and Behavioural Mixtures

Behavioural policies allow agents to randomise independently at every decision node. By contrast, a

mixed policy µ i ∈ ∆(ṖPP
i
) is a distribution over pure policies. It allows an agent to coordinate their choice

of decision rules at different decisions by randomising once at the game’s outset and then committing

to the assigned pure policy. More generally, behavioural mixtures in ∆(PPPi) are distributions over all

behavioural policies. They allow agents to randomise both at the outset of the game and before each

decision. The outcome of the first randomisation determines the distributions for the others.

A behavioural mixture changes the specification of the game because it can require correlation be-

tween different decision rules. At the object-level, a behavioural mixture for agent i requires a new (cor-

relation) decision variable Ci with PaCi = ∅, ChCi = DDDi, and dom(Ci) = PPPi (the set of all behavioural

policies). The decision rules for each Di become conditional on Ci, so each value of Ci determines a

behavioural policy. This explains why Ci and still every D ∈ DDDi are decision nodes – the agent chooses

the CPDs for both. Even in the mixed policy case, where each Di depends deterministically on Ci, the

agent chooses the dependence independently from choosing the distribution over Ci. In the mechanised

graph (see Figure 2c), Ci gets an associated mechanism variable ΠCi for the distribution Ci is drawing

from (its mechanism parents are again determined by s-reachability).

In EFGs, the mechanism by which agents decide on their decision rules is not explicitly shown.

Mechanised graphs, however, show clearly when an agent chooses to randomise. Behavioural and mixed

policies are the limiting cases of behavioural mixtures: the former where the distribution over PPPi is deter-

ministic; the latter where the decision rules ΠΠΠDDDi are deterministic. The difference between forgetful Bob

in Example 2 using a behavioural or mixed policy is shown in Figures 3a and 3b. For Bob’s behavioural

policy, CB and ΠCB are omitted as the decision rules ΠB1
and ΠB2

are independent. This leaves a normal

mechanised graph. Whereas, if Bob uses a mixed policy, he only randomises once from ΠCB at the start

of the game to select a pure policy at CB. This fixes deterministic decision rules at Π̇B1
and Π̇B2

.

Proposition 2. Given a MAID M with any partial profile πππ−i for agents −i, then if agent i is not absent-

minded, for any behavioural policy πππ i there exists a pure policy π̇ππ i which yields a payoff at least as

high against πππ−i. On the other hand, if agent i is absent-minded in M across a pair of decisions with

descendants in UUU i, then there exists a parameterisation of M and a behavioural policy πππ i which yields

a payoff strictly higher than any payoff achievable by a pure policy.

Proposition 2 says that a non-absent-minded agent cannot achieve more expected utility by using a

behavioural rather than a pure (or mixed) policy, but an absent-minded agent often can. Consider Figure

2c, where dom(CD) = ṖPP
D

, the set of all the driver’s pure policies. ΠCD represents the distribution over

dom(CD), so D1 and D2 must both be e or both be c. Therefore, EUD ≤ 1 under any mixed policy.

Whereas, under the behavioural policy π1
D(e) =

1
3
, EUD = 4

3
. This highlights an important difference

between absent-mindedness and forgetfulness. Under perfect recall, every mixed policy has an equivalent

behavioural policy, in the sense of inducing the same distribution over outcomes against every opposing

policy profile [18]. Under forgetfulness, whilst a mixed policy might not have an equivalent behavioural

policy, a behavioural policy always has an equivalent mixed policy [26], so there must exist a pure policy

which performs just as well. On the other hand, under absent-mindedness, neither mixed nor behavioural

policies are guaranteed to have an equivalent of the other type, so there can be a behavioural policy which

outperforms every mixed policy against a given policy profile.
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We introduce mixed policies (and behavioural mixtures) to MAIDs to allow more generality in mod-

elling when agents randomise and to guarantee an NE. However, a mixed policy can require exponen-

tially more parameters O(22|VVV |) than a behavioural policy O(2|VVV |) to define. Moreover, single agents

are often more naturally modelled as randomising once they meet decision points [26] (this changes for

team situations described in Section 6). It is therefore important to know when existence of each type of

NE is guaranteed. The sufficient recall result was proved by [18], which we adapt to get the sufficient

information result (in Appendix B). The mixed policies result follows directly from Nash’s theorem [37].

Proposition 3. A MAID with sufficient information always has an NE in pure policies, a MAID with

sufficient recall always has an NE in behavioural policies, and every MAID has an NE in mixed policies.

Since both sufficient recall and sufficient information (Definition 4) can be checked in poly-time2,

they expand the class of games that have simple NEs beyond those identifiable using an EFG. For exam-

ple, we can check in poly-time that the MAID in Figure 1a is an imperfect, but sufficient, information

game, and hence know that there must exist an NE in pure policies.

4.2 Correlated Equilibria

We have just shown how mechanised graphs can explicitly represent the assumption behind mixed poli-

cies: a single agent uses a source of randomness to correlate their decision rules. We now do the same

for when multiple agents can use the same source of randomness, so the choice of pure policy made by

each agent may be correlated. An equilibrium in such a game is called a correlated equilibrium (CE) [2],

which is a distribution κ over the set of all pure policy profiles, i.e., κ ∈ ∆(ṖPP). A mediator samples π̇ππ
according to κ , then recommends to each agent i the pure policy π̇ππ i. The distribution κ is a CE if no

agent, given their information, has an incentive to unilaterally deviate from their recommended policy π̇ππ i.

Definition 6. In a MAID, κ ∈ ∆(ṖPP) is a correlated equilibrium (CE) if and only if ∀i, ∀π̇ππ i, ϖ̇ϖϖ
i
∈ ṖPP

i
:

∑
π̇ππ−i∈ṖPP

−i

κ(π̇ππ i, π̇ππ−i)EU i(π̇ππ i, π̇ππ−i)≥ ∑
π̇ππ−i∈ṖPP

−i

κ(π̇ππ i, π̇ππ−i)EU i(π̇ππ−i, ϖ̇ϖϖ
i
)

We illustrate how MAIDs and their mechanised graphs make explicit the assumptions used for a CE

using a costless-signal variation of Spence’s job market game [46].

Example 4. Alice is hardworking or lazy (X) with equal probability. She applies for a job with Bob by

deciding which costless signal (A) to send. Bob can distinguish between the signals, but does not know

Alice’s true temperament. He decides whether to offer the job (B) to Alice. The utility functions for Alice

and Bob are UA = (6−2X) ·B and UB = 6+(10X −6) ·B, respectively.

The mechanised graph for the original game’s MAID is shown in Figure 4c. The cycle between ΠA

and ΠB reveals that each agent’s decision rule strategically relies on the other agent’s decision rule.3

Therefore, the MAID has insufficient information and no proper subgames, making it difficult to solve.

To find the CE of this game, a trusted mediator is added using a correlation variable C with PaC =∅,

ChC = DDD, and dom(C) = ṖPP. In the mechanised graph, C’s associated mechanism variable KC represents

the distribution κ ∈ ∆(ṖPP) that the mediator draws a pure policy profile according to. This time, since

2The mechanised graph is constructed using s-reachability, which uses the poly-time graphical criterion d-separation [43].
3That Bob strategically relies on Alice’s decision rule might be less obvious than the fact that Alice strategically relies on

Bob’s decision rule. The dependency occurs because since Bob can observe A, this unblocks an active path ΠA→ A← X→UB

in the independent mechanised graph, so ΠA is s-reachable from ΠB.
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babā bab̄ā b̄abā b̄ab̄ā

axax̄ 5,5 5,5 0,6 0,6

axāx̄ 5,5 2,8 3,3 0,6

āxax̄ 5,5 3,3 2,8 0,6

āxāx̄ 5,5 0,6 5,5 0,6

(a)

babā bab̄ā b̄abā b̄ab̄ā

axax̄ α1 α2 α3 α4

axāx̄ β1 β2 β3 β4

āxax̄ γ1 γ2 γ3 γ4

āxāx̄ δ1 δ2 δ3 δ4

(b)

X A B

ΠA ΠBΘX

UA UBΘUA ΘUB

(c)

X A B

C

KC

ΠA ΠB

ΘX

UA UBΘUA ΘUB

(d)

X A B

C

KC

ΠA ΠB

ΘX

UA UB

CA CB

Θ̇CA Θ̇CB

ΘUA ΘUB

(e)

Figure 4: The sub-figures (a) and (b) give the expected payoff for each agent under each pure policy pro-

file and the parameterisation of the distribution κ , respectively. The mechanised graph for Example 4’s

original MAID is shown in (c), and the mechanised graphs for when a trusted mediator gives public or

private recommendations to find a CE are shown in (d) and (e), respectively. The blue edges are added

to the graph in (e) for a MAID-CE’s staggered recommendations.

KC is fixed as κ at the game outset instead of being chosen by any agent, C acts as a chance variable (in

contrast to the correlation decision variable introduced for mixed policies and behavioural mixtures).

There is a well-known difference between public and private recommendations. If public, every pay-

off in the convex hull of the set of NE payoffs can be attained by a CE; however, if the recommendations

are private, then the payoffs to each agent in a CE can lie outside this convex hull (e.g., Aumann’s game

of chicken [2]). This distinction is made explicit in the MAID’s graph. If the recommendations are

public, then the full outcome of C (the pure policy profile chosen by the mediator) is known by every

agent (shown by the dotted edges between C and both A and B in Figure 4d). If the recommendations

are private, then each agent only observes their decision rules (action recommendations) in C’s outcome,

i.e., all recommendations given to other players are hidden (at CA and CB in Figure 4e). In this latter

case, the agent infers, using Bayes’ rule, a posterior over the pure policy profile that was chosen (and

also which action was recommended to the other agent(s)). If κ is a CE, then each agent picks for their

decision D’s decision rule the mediator’s recommendation, i.e., π̇D where c = π̇ππ . The set of variables DDD

remain as decisions because agents are free to deviate from their recommendation and pick any CPDs as

decision rules for their decisions.

This mediator’s distribution κ ∈ ∆(ṖPP) can be parameterised according to that in Figure 4b. Note that

bab̄ā denotes the pure policy profile where Bob offers the job (b) to Alice if she selects a and Bob does

not offer the job (b̄) if Alice selects ā. Using the expected payoff for Alice and Bob under each pure
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policy profile (Figure 4a), Definition 6’s incentive constraints define 24 inequalities that must be satisfied

by the CE distribution. After some algebra, we find that α1 =α2 =α3 = β1 = β2 = β3 = γ1 = γ2 = γ3 = 0;

α4,β4,γ4,δ4 ≥ 0; α4−2β4+3γ4 ≥ 0, and 3β4−2γ4 +δ4 ≥ 0. Any CE, therefore, has Bob never offering

a job to Alice because they play the pure policy b̄ab̄ā with probability 1, i.e., Bob’s decision rule has

πB(B = b̄ | A = a) = πB(B = b̄ | A = ā) = 1. The remaining constraints require Alice not to give any

incentive for Bob to offer her a job by making the conditional probability of Alice being hardworking too

high relative to the conditional probability of her being lazy when he receives the signal a or ā. These

constraints find that every CE will result in EUA = 0 and EUB = 6. This is unsurprising because, in

a signaling game with costless signals, every CE will be a ‘pooling equilibrium’ [8] (an equilibrium in

which Alice chooses the same action regardless of their temperament).

Whilst the CE is among the best-known solution concepts for normal-form games, and is efficiently

computable in that setting (e.g., via linear programming [19]), there can be an exponential number of

pure policies (so an exponential number of incentive constraints) in EFGs and even in bounded treewidth

MAIDs. It is therefore currently unknown if a CE can be found in an EFG or MAID in poly-time.

Motivated by these tractability concerns, Von Stengel and Forges proposed an extensive-form correlated

equilibrium (EFCE) [47]. Along similar lines, we define a MAID correlated equilibrium.

Instead of revealing the entire recommendation π̇ππ i to each agent i immediately, we let the mediator

stagger their recommendations. This is made visible in the mechanised graph by adding the blue edges

in Figure 4e. Importantly, if an agent deviates from any recommendation, then the mediator will cease

giving further recommendations to that agent (but will still give recommendations to all other agents).

Thus, the incentive constraints are now tied to the threat of the mediator withholding future information.

Definition 7. Given a distribution κ ∈ ∆(ṖPP), consider the MAID with an additional correlation variable

C with PaC =∅, ChC = {CD}D∈DDD, and ChCD
= {D} for each D. Let a pure policy profile π̇ππ be selected

at C according to κ . Then, when each decision context paD is reached, agent i receives a recommended

move d ∈ dom(D) specified by π̇ππD ∈ π̇ππ (CD hides all other recommendations π̇ππ−D ∈ π̇ππ). A MAID corre-

lated equilibrium (MAID-CE) is an NE of this game in which no agent has an incentive to deviate from

their recommendations.

The localised recommendations in a MAID-CE pose weaker incentive constraints compared to a

CE, so the set of MAID-CE outcomes is larger. As such, MAID-CEs can lead to Pareto-improvements

over the CEs (and NEs) in a game. We now give one such MAID-CE. The mediator chooses a signal

s with equal probability for type X = x, i.e., Pr(cA = a | X = x) = Pr(cA = ā | X = x) = 0.5. Bob is

recommended to offer Alice a job (b) when Alice’s action matches s and to reject otherwise (b̄). If X = x̄,

then the recommendation to Alice is arbitrary and is independent of the signal s, which is only shown

to hardworking Alice. Because the mediator only gives Alice her recommendation once her decision

context PaA is set, lazy Alice cannot know s. Therefore, in any situation, lazy Alice’s action will match

s with probability 1
2
. Consequently, when Bob is called to play (i.e., the decision context PaB is set), and

Alice’s action matches s, Alice is twice as likely to be hardworking than lazy (so EUB = 20
3

for offering

Alice a job rather than EUB = 6 for rejecting her). If instead, Alice’s action does not match s, then he

knows with certainty that Alice is lazy, so his best response is to reject. Overall, Alice’s expected payoff

in this MAID-CE is 3.5, and Bob’s is 6.5 (higher than 0 and 6, respectively, for all CEs).

A MAID-CE can be computed in poly-time if the treewidth is bounded, via a reduction to a linear

program. We follow Huang et al [20]’s method because the information sets in an EFG are in bijection

with the decision contexts in a MAID, but relax beyond their conditions as MAIDs only require sufficient

(rather than perfect) recall [20]. Any distribution over pure policies induced by an NE can be represented

using a distribution κ , and hence any mixed NE (or equivalent behavioural NE) is also a CE and MAID-

CE. As every MAID has an NE in (mixed) policies, every MAID must also have a CE and a MAID-CE.
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Proposition 4. A MAID-CE in bounded treewidth MAIDs with sufficient recall can be found in poly-time.

5 Complexity Results in MAIDs

We now give some complexity results in MAIDs. Our first follows from the known result in normal-form

games [9]. Any normal-form game N can be reduced to a MAID where each agent has one utility node

(which copies the payoffs in N ) and one decision node. The domains of the decision variables are the

set of each agent’s pure strategies in N . Edges are added from every D ∈ DDD to every U ∈UUU .

Proposition 5. In a MAID, finding an NE in mixed policies is PPAD-hard.

Problem Input Question

IS-BEST-RESPONSE M , i, πππ−i, q ∈Q Is there some π̂ππ i
such that EU i(π̂ππ i,πππ−i)> q?

IS-NASH M , πππ Is πππ a (behavioural) NE of M ?

NON-EMPTINESS: M Does M have a (behavioural) NE?

Table 1: Three decision problems in MAIDs with behavioural policies.

In the following results, we focus on the complexity of the decision problems in Table 1.

Proposition 6. IS-BEST-RESPONSE is NPPP-complete, NP-complete when restricted to MAIDs with

graphs of bounded treewidth, and PP-complete if both |DDDi| and the in-degrees of DDDi are bounded.

Proof sketch. IS-BEST-RESPONSE is in NPPP because given π̂ππ i
, we can verify that EU i(π̂ππ i,πππ−i)> q in

poly-time using a PP oracle for inference in a BN [30]. With bounded treewidth, verification can be done

in poly-time. The final setting is in PP by analogy with Kwisthout’s PARAMETER TUNING [27]. For

the general case’s hardness, we can reduce from E-MAJSAT as in [39], where MAP-nodes are replaced

by agent i’s decision nodes; for bounded treewidth, we can reduce from MAXSAT as in [12]; and for

the final case, IS-BEST-RESPONSE with |DDDi|= 0 is the same as inference in a BN.

Proposition 6 suggests IS-BEST-RESPONSE is, in general, only tractable if inference is easy and |DDDi|
is bounded by a constant. Proposition 7 then explains the decision problem’s name.

Proposition 7. If the in-degrees of DDDi are bounded and IS-BEST-RESPONSE can be solved in poly-time,

then a best response policy for agent i to a partial profile πππ−i can be found in polynomial time.

Proposition 8. IS-NASH is coNPPP-complete, and coNP-complete when restricted to MAIDs with graphs

of bounded treewidth. The general problem remains coNPPP-hard in sufficient information MAIDs. In

MAIDs without chance variables, the problem remains coNP-hard.

Proof sketch. For membership, we can check that πππ is not an NE by guessing an agent i and check-

ing if πππ iii ∈ πππ is a best response in poly-time using a PP-oracle (this is unnecessary if the graph has

bounded treewidth). Hardness comes from the single-agent setting where it is the complement of IS-

BEST-RESPONSE. In MAIDs without chance variables, we reduce from partial order games [50].

Proposition 3 shows when NON-EMPTINESS is vacuous. However, in an insufficient recall MAID,

NON-EMPTINESS is, in general, intractable even without chance variables.

Proposition 9. NON-EMPTINESS is NEXPTIME-hard and becomes NEXPTIME-complete if we restrict

to MAIDs without chance variables.
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1 A2
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(a)
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Figure 5: Mechanised graphs for a CE with (a) public and (b) private recommendations, where the blue

edges are added for a MAID-CE; (c) a Markov game;(d) a team setting with imperfect communication.

Proof sketch. For hardness, we can reduce from partial order games. Without chance variables, we can

determine NON-EMPTINESS using a similar algorithm to that in [50]. It exploits the setting’s determin-

ism: payoffs are poly-time computable and the number of policy profiles is reduced to O(2|VVV |).

Proposition 10. In a MAID with sufficient information, if the in-degrees of DDD are bounded and IS-BEST-

RESPONSE can be solved in poly-time, then a pure NE can be found in poly-time.

This result suggests an NE can be found efficiently in certain MAIDs, but even in games without

sufficient information, NEs can be found more efficiently in a MAID than in an EFG. The mechanised

graph dependencies reveal more ‘subgames’ – parts of the MAID that can be solved independently from

the rest – to which dynamic programming can be applied [25, 17]. As finding an NE in both EFGs and

MAIDs depends significantly on the game’s size, this can empirically lead to large compute savings [25].

6 Applications and Conclusion

We introduced forgetfulness and absent-mindedness as properties of individual agents (due to imper-

fect memory). However, imperfect recall also commonly arises in team situations; each team consists

of several agents targeting a common goal with imperfect communication. Forgetfulness or absent-

mindedness occurs when an agent does not know their teammates’ actions (or observations) or whether

they have acted at all. Mechanised graphs represent these situations where teams often employ a mix

of randomisation strategies (e.g., Figure 5b). For mixed policies, the random seed is chosen at the start,

before the agents set out following their distinct policies. For behavioural policies, agents pick a new

random seed at every decision point. Behavioural mixtures correspond to randomising at both stages.

Another application of imperfect recall in MAIDs is to Markov (or ‘stochastic’) games [44], in

which the agents move between different states over time (e.g., Figure 5a). At each time step t, each

agent i selects an action Ai
t , and the game probabilistically transitions to a new state St+1, depending on

the previous state St and the actions selected, and each agent receives a payoff Ri
t . Each St+1 and Ri

t

has parents {St ,A
1
t , . . . ,A

n
t } and must be identically distributed for all t, again represented using shared

mechanism variables. Often, the agent must learn a memoryless, stationary policy π i : S→ ∆(Ai), where

S is the set of states and ∆(Ai) the set of probability distributions over agent i’s actions. Hence, the agents

are absent-minded (every decision Ai
t+1 of agent i shares the same decision rule) and use behavioural

policies (since the action selected in each state is independently stochastic). In light of Proposition 1,
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it is therefore natural to ask whether a Markov game may not have an NE in memoryless stationary

policies. It is known that infinite-horizon Markov games might not (for a counterexample see [11]).

Although infinite games lie outside of the scope of this paper, it is nonetheless insightful to note that this

possible non-existence is due to absent-mindedness: if agents can choose a different decision rule at each

time step, a behavioural NE is guaranteed [32].

We have shown how to handle imperfect recall in MAIDs by overcoming the potential lack of NEs

in behavioural policies using mixed and correlated equilibria. EFGs leave many assumptions about how

agents play games hidden, but mechanised graphs make explicit the assumptions behind imperfect recall

(both forgetfulness and absent-mindedness), mixed policies, and two types of correlated equilibria. Our

complexity results highlight the importance of restricting the use of MAIDs to those with a limited

number of decision variables and bounded treewidth. Finally, our applications to Markov games and

team situations show that imperfect recall broadens the scope of what can be modelled using MAIDs.
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A Strategic Relevance and Subgames

Koller and Milch define strategic relevance to infer whether the choice of a decision rule can affect the

optimality of another decision rule [25]. Hammond et al. extend strategic relevance to also consider

whether the parameterisation of non-decision nodes can affect the decision rule’s optimality [18]. Intu-

itively, a mechanism MV is strategically relevant to the decision rule ΠD of D ∈ DDDi if the choice of CPD

at MV can affect agent i’s utility nodes that are downstream of D (i.e., those in UUU i∩DescD). Formally:

Definition 8 ([25, 18]). Recall that dom(ΠD) gives the set of possible decision rules at ΠD for decision

node D. Given a MAID with D ∈ DDDi and V 6= D ∈ DDD, the mechanism MV for V is strategically relevant

to ΠD if there exist two joint distributions over VVV parameterised by mechanisms m and m
′ respectively

such that:

• πD ∈ argmaxϖD∈dom(ΠD) EU i((ϖD,πππ−D) |m)

• m differs from m
′ only at MV ,

• πD /∈ argmaxϖD∈dom(ΠD) EU i((ϖD,πππ−D) | m
′), and neither does any decision rule ϖD that agrees

with πD on all paD such that Pr(paD |m
′)> 0.
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The first two conditions say: if the decision rule πD is optimal for the MAID parameterisation (i.e.,

the setting of all mechanism variables) m, and ΠD does not strategically rely on MV , then πD must also be

optimal for any other parameterisation m
′ that differs from m only at MV . The third condition deals with

sub-optimal decision rules in response to zero-probability decision contexts (i.e., non-credible threats).

Koller and Milch [25] also derive a graphical criterion for strategic relevance, called s-reachability,

which is sound (if MV is strategically-relevant to ΠD, then MV is s-reachable from ΠD) and complete (if

MV is s-reachable from ΠD, then there is some parameterisation m of the MAID and some policy profile

π such that MV is strategically-relevant to ΠD). This uses the independent mechanised graph m⊥G ,

which contains a separate mechanism parent for each variable in the original MAID graph, but no edges

between the mechanism variables.

Definition 9 ([25]). MV is s-reachable from ΠD if MV 6⊥m⊥G UUU i∩DescD | D,PaD.

s-reachability determines which inter-mechanism edges are present in the MAID’s mechanised graph;

MV →ΠD exists in the mechanised graph if and only if ΠD strategically relies on MV .
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Figure 6: (a) shows the four subdiagrams (three of which are ‘proper’) of the MAID in Figure 1a and (b)

shows the corresponding EFG in which none of the MAID’s proper subgames can be recognised.

We now briefly introduce subgames (see [18]) for more details) because they simplify the presen-

tation of some of our proofs in Appendix B. Subgames in EFGs represent parts of the game that can

be solved independently from the rest. In MAIDs, they fulfil the same purpose: they identify parts of

the game that can be solved independently (and allow a subgame-perfect equilibrium refinement to be

defined). Subgames in MAIDs are found by exploiting s-reachability to find the graphs underlying the

subgames, called sub-diagrams. To then find the subgames for each subdiagram, the parameterisation of

the remaining variables is updated to be consistent with the original game and graph structure.

Importantly, because MAIDs explicitly represent conditional independencies between variables, we

can often find more subgames in a MAID than in a corresponding EFG. This is the case for Example 1’s

MAID (shown in Figure 1a) with the four subdiagrams (three proper) in Figure 6a. Each subdiagram has

a set of associated subgames, one for each instantiation of the variables outside of the subdiagram. None

of the proper MAID subgames can be recognised as subgames in the corresponding EFG (in Figure 6b).

Definition 10. Given a MAID M = (G ,θθθ ), with G = (N,VVV ,E), the subgraph (VVV ′,E ′) of G , along with

the set of agents N ′ ⊆ N possessing decision variables in that subgraph, is known as a subdiagram

G ′ = (N ′,VVV ′,E ′) if:

• VVV ′ contains every variable Z such that MZ is s-reachable from some ΠD with D ∈VVV ′,

• VVV ′ contains, for all X ,Y ∈VVV ′, every variable that lies on a directed path X 99K Y in G .
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A subgame of M is a new MAID M ′ = (G ′,θθθ ′) where G ′ is a subdiagram of G and θθθ ′ is defined by

Pr′(vvv′;θθθ ′) := Pr(vvv′ | zzz;θθθ ), where zzz is some instantiation of the variables ZZZ =VVV \VVV ′′′. A subgame is feasible

if there exists a policy profile πππ where Prπππ(zzz)> 0.

The first condition on VVV ′ ensures that for any decision variable D in the subdiagram, any variable

whose mechanism may impact the optimal decision rule for D is also included in the graph. The second

condition says that additional variables may also be included in the subdiagram as long as mediators are

included too. This ensures that the CPDs for all the variables in the subgame remain consistent.

B Proofs

Proposition 1. Both forgetfulness and absent-mindedness can prevent the existence of an NE in be-

havioural policies.

Proof. Example 2 (Figures 3a-3c) and Example 3 (Figures 3d-3f) are counterexamples for each case.

Proof for Example 2 (forgetfulness): The normal-form game showing the payoffs for each agent is

shown in Figure 3c. First, observe that there are no NE in pure policies. Now, suppose that there does

exist an NE in behavioural policies. If Alice always plays a or always ā – i.e., πA(a) = 1 or πA(a) = 0 –

then Bob’s best response is always b̄1b̄2 or always b1b2, respectively. However, this does not form an NE.

So, Alice must select a stochastic decision rule πA and be indifferent (by the principle of indifference)

between a and ā.

Letting ΠB1
and ΠB2

be parameterised by p,q ∈ [0,1] where πB1
(b1) = p and πB2

(b2) = q, we obtain

two constraints on p and q. On the one hand, by virtue of Alice’s indifference, Bob’s behavioural policy

πππB must result in πB(¬b1,¬b2) = πB(b1,b2), and so: (1− p)(1−q) = pq =⇒ p+q = 1. On the other

hand, Bob receives utility −1 if his policy πππB results in any outcome with B1 = ¬b1 and B2 = b2, or B1 =
b1 and B2 = ¬b2, whatever the choice of πππA. Therefore, we must have that πB(¬b1,b2)+πB(b1,¬b2)<
πB(b1,b2)+π2(¬b1,¬b2) and thus, by substituting in the result that p+ q = 1: (1− p)q+ p(1− q) <
pq+(1− p)(1− q) =⇒ (2p− 1)2 < 0.. This contradiction implies that the MAID for Example 2 has

no NE in behavioural policies.

To further understand this example, let us again write Bob’s policy as a tuple (p,q), and suppose

πA(a) = 0.5. Then, either pure policy (1,1) and (0,0) is a best response for Bob with EUB = 0. But,

consider the convex combination of these best responses 0.5 · (1,1)+0.5 · (0,0) = (0.5,0.5). Under this

policy, each of the eight outcomes in the payoff matrix is equally likely and so Bob’s expected payoff

drops to (−1−1−1+1+1−1−1−1)/8 =−0.5. Since a convex combination of best responses is no

longer a best response, Bob’s best response function is not convex-valued, and so nor is the grand best

response function. The conditions of Kakutani’s fixed point theorem are not satisfied, which explains

why a Nash equilibrium need not exist.

Proof for Example 3 (absent-mindedness): First, observe from the normal-form game in Figure 3f

that there is no NE in pure policies in this game. Next, suppose there exists a NE in behavioural policies

and let ΠB be parameterised by p ∈ [0,1], where πB(b) = p for p ∈ [0,1]. Alice’s payoff only depends

on her policy πA when Bob plays bb or b̄b̄, for which Alice has pure best responses. This implies that,

at an NE, p2 = (1− p)2 =⇒ p = 0.5. Therefore, Alice’s policy is irrelevant and EUB =−1 (EUB = 0)

if he does (doesn’t) forfeit, which happens with probability 0.5. Therefore, Bob’s policy is dominated

by his pure policies, with worst-case payoff EUB = −1. This contradicts the assumption of an NE in

behavioural policies.
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Explanation: If πA(a) = 0.5, then p = 0 and p′ = 1 are both best responses for Bob with EUB = 0.

However, the convex combination 0.5p + 0.5p′ gives expected payoff to Bob EUB = 0.25 · 1+ 0.25 ·
(−1)+0.5 · (−10) =−5 and is therefore not a best response. Again this is due to the fact that under be-

havioural policies, in situations of imperfect recall, a convex combination of pure policies can introduce

outcomes that could not occur under either pure policy. Under a mixed combination of pure policies,

Alice will always follow one or the other, and so no new outcomes are introduced. However, under a

behavioural combination, two independent absent-minded draws from the same distribution over actions

can come out differently, introducing new potential outcomes—in this case forfeit.

Proposition 2. Given a MAID M with any partial profile πππ−i for agents −i, then if agent i is not absent-

minded, for any behavioural policy πππ i there exists a pure policy π̇ππ i which yields a payoff at least as

high against πππ−i. On the other hand, if agent i is absent-minded in M across a pair of decisions with

descendants in UUU i, then there exists a parameterisation of M and a behavioural policy πππ i which yields

a payoff strictly higher than any payoff achievable by a pure policy.

Proof. Let πππ i be a behavioural policy and begin with any decision node D ∈ DDDi with decision rule

πD ∈ πππ i. Now π i
D(d | paD) is the probability of choosing d ∈ dom(D) at D when PaD = paD according

to πππ i. Since agent i is not absent-minded, the expected payoff for agent i can be written EU i(πππ i,πππ−i) =

∑d∈dom(D) π i(d | paD)λd +ν , where each coefficent λd and ν are independent of π i
D(d | paD). Consider

the action d̂ ∈ dom(D) which achieves the highest λd (i.e., contributes most the expected utility) Setting

π i
D(d̂ | paD) = 1 therefore yields a payoff at least as high. The first claim therefore follows by repeating

this argument for every D ∈ DDDi.

For the converse claim, agent i is absent-minded, which means that at least two of agent i’s decision

nodes must draw from an identical distribution. Without loss of generality, call these Dl and Dm. Recall

that for this to be the case, dom(Dl) = dom(Dm) and dom(PaDl
) = dom(PaDm

). Now consider an out-

come of the game v̂vv ∈ dom(VVV ) where paDl
= paDm

, but dl 6= dm. Since Dl and Dm have descendants in

UUU i, Parameterise the MAID M such that EU i = 1 if and only if VVV = v̂vv. For all other game outcomes

vvv 6= v̂vv, let EU i = 0. The claim follows since the outcome v̂vv cannot be instantiated by any pure policy for

agent i, but can be instantiated by any behavioural policy for agent i that has a (shared) decision rule for

Dl and Dm that assigns a positive probability to both actions dl and dm.

Proposition 3. A MAID with sufficient information always has an NE in pure policies, a MAID with

sufficient recall always has an NE in behavioural policies, and every MAID has an NE in mixed policies.

Proof. The mixed policies case follows from Nash’s theorem since all the finite number of random

variables in a MAID have finite domains [37]. Hammond et al. proved the case with sufficient recall [18].

We now consider the sufficient information case where we show that a NE in pure policies must exist.

Begin with an arbitrary policy profile across all decision nodes in the original MAID, M . Decision rules

associated with each D ∈ DDD can be optimised by iterating backwards through a subdiagram ordering

G1 ≺ ·· · ≺ Gm of M ’s subdiagrams such that G j ≺ Gk implies that G j is not a subdiagram of Gk. When

M is a sufficient information game, this means that Gm contains just one decision node for some agent

i ∈ N, and, for each subdiagram G j where 1 ≤ j < m, G j−1 contains at most one additional decision

variable. Several subdiagrams can have the same set of decisions, DDDk, so we choose a single subdiagram

Gk (one with the fewest nodes VVV ′) for each DDDk and discard the others. Each subdiagram in this ordering

has an associated subgame for each setting of the nodes which have a child in VVV ′.

When considering each subgame Mm− j for Gm− j, the decision rules for all decision nodes in proper

subgames of Mm− j will have already been optimised and fixed in previous iterations, so these are now
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chance nodes in Mm− j. In addition, the decision node Dm− j in Mm− j does not strategically rely on any

of the decision nodes outside of Mm− j. Therefore, this step is localised to computing only the optimal

decision rule for Dm− j. Since this is a single-agent single-decision optimisation, we know that there

must exist a pure decision rule best response. In the case of a tie, pick one arbitrarily. After repeating

this optimisation process for all subgames in the MAID, we know that every decision node must have a

pure decision rule, so we have found a NE in pure policies, as required.

Proposition 4. A MAID-CE in bounded treewidth MAIDs with sufficient recall can be found in poly-time.

Proof sketch. We follow Huang and von Stengel’s method for this result [20]. Our result comes from

the observation that if there is sufficient recall in a MAID, then: (i) the set of decision contexts of every

decision node in the MAID is in bijection with the set of all information sets in a corresponding EFG;

and (ii) sufficient recall is sufficient for the ordering of decision contexts analogous to Huang and von

Stengel’s ordering of information sets.

Lemma 1. If IS-BEST-RESPONSE can be solved in poly-time, then agent i’s expected utility under a

best response to a partial policy profile πππ−i in a MAID can be found in poly-time.

Proof. This follows immediately from using binary search over agent i’s policies and uses the fact that

we are restricting parameters in the MAID to be rational numbers.

Proposition 7. If the in-degrees of DDDi are bounded and IS-BEST-RESPONSE can be solved in poly-time,

then a best response policy for agent i to a partial policy profile πππ−i can be found in poly-time.

Proof. Begin by constructing the MAID M (πππ−i) by replacing decision nodes DDD\DDD−i as chance nodes

with CPDs given by πππ−i. Next, use Lemma 1 to compute agent i’s expected utility under a best response

policy in M (πππ−i) and use this value as q. Take each of agent i’s decision variables D ∈ DDDi and build

a new MAID M (πππ−i,πD) for every possible decision rule of D (i.e., replace D as a chance node with

CPD πD). The fact that the in-degrees of agent i’s decision nodes are bounded, bounds the number of

these MAIDs. For each induced MAID, we can then use a poly-time algorithm for IS-BEST-RESPONSE

to determine any decision rule πD that makes up the best response policy for agent i.

Proposition 10. In a MAID with sufficient information, if the in-degrees of DDD are bounded and IS-BEST-

RESPONSE can be solved in poly-time, then a pure NE can be found in poly-time.

Proof. First, note that we can check whether a MAID is a sufficient information game in poly-time

using s-reachability, a graphical criterion based on d-separation [43]. We can then follow the construc-

tive procedure given for the proof of Proposition 3. Given Proposition 7, each optimisation step must

take poly-time and since the in-degrees of all decision nodes are bounded by a constant, the number of

subgames is also bounded by a constant. Therefore, the entire procedure takes poly-time.
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