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We introduce a new semantics for a multi-agent epistemic operator of knowing how, based
on an indistinguishability relation between plans. Our proposal is, arguably, closer to the
standard presentation of knowing that modalities in classical epistemic logic. We study the
relationship between this semantics and previous approaches, showing that our setting is
general enough to capture them. We also define a sound and complete axiomatization, and
investigate the computational complexity of its model checking and satisfiability problems.

1 Introduction

Epistemic logic (EL; [19, 9]) is a logical formalism tailored for reasoning about the knowledge
of abstract autonomous entities, commonly called agents (e.g., a human being, a robot, a
vehicle). Most standard epistemic logics deal with an agent’s knowledge about the truth-value
of propositions (the notion of knowing that). Thus, they focus on the study of sentences like “the
agent knows that it is sunny in Paris” or “the robot knows that it is standing next to a wall”.

At the semantic level, EL formulas are typically interpreted over relational models [6,
5]: essentially, labeled directed graphs. The elements of the domain (called states or worlds)
represent different possible situations. Each agent has associated a relation (interpreted as
an epistemic indistinguishability relation), used to represent its uncertainty: related states are
considered indistinguishable for the agent. An agent is said to know that a proposition ϕ is
true at a given state s if and only if ϕ holds in all states she cannot distinguish from s. It is
typically assumed that the indistinguishability relation is an equivalence relation. In spite of its
simplicity, this indistinguishability-based representation of knowledge has several advantages.
First, it also represents the agent’s high-order knowledge (knowledge about her own knowledge
and that of other agents). Second, it allows a very natural representation of actions through
which knowledge changes (epistemic updates, see, e.g., [7, 4]).

In recent years, other patterns of knowledge besides knowing that have been investigated
(see the discussion in [31]). Some examples are knowing whether [16, 10], knowing why [1, 33] and
knowing the value [14, 2, 8]. Motivated by different scenarios in philosophy and AI, languages for
reasoning about knowing how assertions [11] are particularly interesting. Intuitively, an agent
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knows how to achieve ϕ given ψ if she has the ability to guarantee that ϕ will be the case
whenever she is in a situation in which ψ holds.

There is a large literature connecting knowing how with logics of knowledge and action
(see, e.g., [27, 28, 24, 20, 18]). However, these proposals for representing knowing how have
been the target of criticisms. The main issue is that a simple combination of standard operators
expressing knowing that and ability (see, e.g., [21]) does not seem to lead to a natural notion of
knowing how (see [22, 17] for a discussion).

Taking these considerations into account, [30, 31, 32] introduced a framework based on a
knowing how binary modality Kh(ψ,ϕ). At the semantic level, this language is also interpreted
over relational models — called in this context labeled transition systems (LTSs). But relations do
not represent indistinguishability anymore; they rather describe the actions an agent has at her
disposal (in some sense, her abilities). An edge labeled a going from state w to state u indicates
that the agent can execute action a to transform state w into u. In the proposed semantics,
Kh(ψ,ϕ) holds if and only if there is a “plan” (a sequence of actions satisfying a constraint called
strong executability) in the LTS that unerringly leads from every ψ-state only to ϕ-states. Other
variants of this knowing how operator follow a similar approach (see [25, 26, 12, 29]).

In these proposals, relations are interpreted as the agent’s available actions (as it is done in,
e.g., propositional dynamic logic [15]); and the knowing how of an agent is directly defined
by what these actions can achieve. This is in sharp contrast with EL, where relational models
have two kinds of information: ontic facts about a given situation (represented by the current
state in the model), and the particular perspective that agents have (represented by the possible
states available in the model, and their respective indistinguishability relation between them).1

If one would like to mirror the situation in EL, it seems natural that knowing how should be
defined in terms of some kind of indistinguishability over the information provided by an LTS.
Such an extended model would be able to capture both the abilities of an agent as given by
her available actions, together with the (in)abilities that arise when considering two different
actions/plans/executions indistinguishable.

This paper introduces a new semantics for Khi(ψ,ϕ), a multi-agent version of the knowing
how modality. The crucial idea is the inclusion of a notion of epistemic indistinguishability
over plans, in the spirit of the strategy indistinguishability of, e.g., [23, 3]. We interpret formulas
over an uncertainty-based LTS (LTSU) which is an LTS equipped with an indistinguishability
relation over plans. An agent may have different alternatives at her disposal to try to achieve
a goal, all “as good as any other” (and in that sense indistinguishable) as far as she can tell.
In this way, LTSUs aims to reintroduce the notion of epistemic indistinguishability, now at
the level of plans. Moreover, the use of LTSUs leads to a natural definition of operators that
represent dynamic aspects of knowing how (e.g., the concept of learning how can be modeled
by eliminating uncertainty between plans).

Our contributions. They can be summarized as follows: (1) We introduce a new semantics
for Khi(ψ,ϕ) (for i an agent) that reintroduces the notion of epistemic indistinguishability from
classical EL. (2) We show that the logic obtained is weaker (and this is an advantage, as we will
discuss) than the logic from [30, 31, 32]. Still, the new semantics is general enough to capture
previous proposals by imposing adequate conditions on the class of models. (3) We present a
sound and complete axiomatization for the logic over the class of all LTSUs. (4) We prove that

1Notice that in a multi-agent scenario, all agents share the same ontic information, and differ on their epistemic
interpretation of it. We will come back to this later.
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the satisfiability problem for the new logic is NP-complete, whereas model checking is in P.

Outline. Sec. 2 recalls the framework of [30, 31, 32], including its axiom system. Sec. 3
introduces uncertainty-based LTS, indicating how it can be used for interpreting a multi-agent
version of the knowing how language, and providing an axiom system in Sec. 3.1. Sec. 3.2
studies the correspondence between our semantics and the ones in the previous proposals.
Sec. 3.3 studies the computational complexity of model checking and the satisfiability problem
for our logic. Sec. 4 provides conclusions and future lines of research.

2 A logic of knowing how

This section recalls the basic knowing how framework from [30, 31, 32].

Syntax and semantics. Throughout the text, let Prop be a countable non-empty set of proposi-
tional symbols.

Definition 2.1 Formulas of the language LKh are given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ∨ϕ | Kh(ϕ,ϕ),

with p ∈ Prop. Other Boolean connectives are defined as usual. Formulas of the form Kh(ψ,ϕ)
are read as “when ψ holds, the agent knows how to make ϕ true”. ⊣

In [30, 31, 32] (and variations like [26, 25]), formulas of LKh are interpreted over labeled
transition systems: relational models in which the relations describe the state-transitions available
to the agent. Throughout the text, let Act be a denumerable set of (basic) action names.

Definition 2.2 (Actions and plans) Let Act∗ be the set of finite sequences over Act. Elements
of Act∗ are called plans, with ǫ being the empty plan. Given σ ∈ Act∗, let |σ | be the length of σ
(|ǫ | := 0). For 0 ≤ k ≤ |σ |, the plan σk is σ’s initial segment up to (and including) the kth position
(with σ0 := ǫ). For 0 < k ≤ |σ |, the action σ[k] is the one in σ’s kth position. ⊣

Definition 2.3 (Labeled transition systems) A labeled transition system (LTS) for Prop and Act

is a tuple S = 〈W,R,V〉 where W is a non-empty set of states (also denoted by DS), R = {Ra ⊆

W×W | a ∈Act} is a collection of binary relations on W, and V : W→ 2Prop is a labelling function.
Given an LTS S and w ∈DS, the pair (S,w) is a pointed LTS (parentheses are usually dropped).⊣

An LTS describes the abilities of the agent; thus, sometimes (e.g., [30, 31, 32]) it is also called
an ability map. Here are some useful definitions.

Definition 2.4 Let {Ra ⊆W×W | a ∈ Act} be a collection of binary relations. Define Rǫ := {(w,w) |
w ∈W} and, for ǫ , σ ∈Act∗ and a ∈ Act, Rσa := {(w,u) ∈W×W | ∃v ∈W s.t. (w,v) ∈ Rσ and (v,u) ∈
Ra}. Take a plan σ ∈ Act∗: for u ∈W define Rσ(u) := {v ∈W | (u,v) ∈ Rσ}, and for U ⊆W define
Rσ(U) :=

⋃

u∈U Rσ(u). ⊣

Intuitively, [30, 31, 32] defines that an agent knows how to achieve ϕ given ψ when she has
an appropriate plan that allows her to go from any situation in which ψ holds to only states in
which ϕ holds. A crucial part is, then, what “appropriate” is taken to be.

Definition 2.5 (Strong executability) Let {Ra ⊆W×W | a ∈ Act} be a collection of binary re-
lations. A plan σ ∈ Act∗ is strongly executable (SE) at u ∈W if and only if v ∈ Rσk

(u) implies
Rσ[k+1](v) , ∅ for every k ∈ [0 .. |σ | −1]. We define the set SE(σ) := {w ∈W | σ is SE at w}. ⊣
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Thus, strong executability asks for every partial execution of the plan (which might be ǫ)
to be completed. With this notion, formulas in LKh are interpreted over an LTS as follows (the
semantic clause for the Kh modality is equivalent to the one found in the original papers).

Definition 2.6 (LKh over LTSs) The relation |= between a pointed LTS S,w (with S = 〈W,R,V〉
an LTS over Act and Prop) and formulas in LKh (over Prop) is defined inductively as follows:

S,w |= p iff
def

w ∈ V(p),

S,w |= ¬ϕ iff
def
S,w 6|= ϕ,

S,w |= ϕ∨ψ iff
def
S,w |= ϕ or S,w |= ψ,

S,w |= Kh(ψ,ϕ) iff
def
∃σ ∈ Act∗ such that (Kh-1) ~ψ�S ⊆ SE(σ) and (Kh-2) Rσ(~ψ�S) ⊆ ~ϕ�S,

with ~ϕ�S := {w ∈W | S,w |= ϕ} (the elements of ~ϕ�S are sometimes called ϕ-states). ⊣

Kh(ψ,ϕ) holds when there is a plan σ such that, when it is executed at any ψ-state, it
will always complete every partial execution (condition (Kh-1)), ending unerringly in states
satisfying ϕ (condition (Kh-2)). Notice that Kh acts globally, i.e., ~Kh(ψ,ϕ)�S is either DS or ∅.

Axiomatization. The universal modality [13], interpreted as truth in every state of the model,
is definable in LKh as Aϕ := Kh(¬ϕ,⊥). This is justified by the following proposition, whose
proof relies on the fact that Act∗ is never empty (it always contains ǫ).

Proposition 2.1 ([30]) Let S,w be a pointed LTS. Then, S,w |= Kh(¬ϕ,⊥) iff ~ϕ�S =DS. ◭

Block L: TAUT ⊢ ϕ for ϕ a propositional tautology MP From ⊢ ϕ and ⊢ ϕ→ ψ infer ⊢ ψ

DISTA ⊢ A(ϕ→ ψ)→ (Aϕ→ Aψ) NECA From ⊢ ϕ infer ⊢ Aϕ

TA ⊢ Aϕ→ ϕ

4KhA ⊢ Kh(ψ,ϕ)→ AKh(ψ,ϕ) 5KhA ⊢ ¬Kh(ψ,ϕ)→ A¬Kh(ψ,ϕ)

Block LLTS: EMP ⊢ A(ψ→ ϕ)→ Kh(ψ,ϕ) COMPKh ⊢ (Kh(ψ,ϕ)∧Kh(ϕ,χ))→ Kh(ψ,χ)

Table 1: Axiom system LLTS
Kh

, for LKh w.r.t. LTSs.

The axiom systemLLTS
Kh

in Tab. 1 shows that A and Kh are strongly interconnected.

Theorem 1 ([30]) LLTS
Kh

is sound and strongly complete for LKh w.r.t. the class of all LTSs. ◭

Some axioms deserve comment. If A is taken as primitive, and Aϕ is interpreted as ϕ is true
at every state in an LTS, then EMP states that if ψ→ ϕ is a globally true implication, then given
ψ the agent has the ability to make ϕ true. In simpler words, global ontic information turns into
knowledge. One could argue that, more realistically, there are global truths in a model that are
still beyond the abilities of the agent. The case of COMPKh is similar (as it also implies a certain
level of omniscience) but perhaps less controvertial. It might well be that an agent knows how
to make ϕ true given ψ, and how to make χ true given ϕ, but still have not workout how to put
the two together to ensure that χ given ψ. As we will see in the next section, both these axioms
can be correlated with strong assumptions on the uncertainty relation between plans that an
agent might have.
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3 Uncertainty-based semantics

The LTS-based semantics provides a possible representation of an agent’s abilities: the agent
knows how to achieve ϕ given ψ if and only if there is a plan that, when run at any ψ-state, will
always complete every partial execution, ending unerringly in states satisfying ϕ. One could
argue that this representation involves a certain level of idealization.

Consider an agent lacking a certain ability. In the LTS-based semantics, this can only happen
when the environment does not provide the required (sequence of) action(s). But one can
think of scenarios where an adequate plan exists, and yet the agent lacks the ability for a
different reason. Indeed, she might fail to distinguish the adequate plan from a non-adequate
one, in the sense of not being able to tell that, in general, those plans produce a different
outcome. Consider, for example, an agent baking a cake. She might have the ability to do
the nine different mixing methods (beating, blending, creaming, cutting, folding, kneading,
sifting, stirring, whipping), and she might even recognize them as different actions. However,
she might not be able to perfectly distinguish one from the others in the sense of not recognizing
that sometimes they produce different results. In such cases, one would say that the agent does
not know how to make certain cake: sometimes she gets good outcomes (when she uses the
adequate mixing method) and sometimes she does not.

Indistinguishability among basic actions can account for the example above (with each
mixing method a basic action). Still, one can also think of situations in which a more general
indistinguishability among plans is involved. Consider the baking agent again. It is reasonable to
assume that she can tell the difference between “adding milk” and “adding flour”, but perhaps
she does not realize the effect that the order for mixing ingredients might have in the final result.
Here, the issue is not that she cannot distinguish between basic actions; rather, two plans are
indistinguishable because the order of their actions is being considered irrelevant. For a last
possibility, the agent might not know that, while opening the oven once to check whether the
baking goods are done is reasonable, this must not be done in excess. In this case, the problem is
not being able to tell the difference between the effect of executing an action once and executing
it multiple times. Thus, even plans of different length might be considered indistinguishable.

The previous examples suggest that one can devise a more general representation of an
agent’s abilities. This representation involves taking into account not only the plans she has
available (the LTS structure), but also her skills for telling two different plans apart (a form
of indistinguishability among plans). As we will see, the use of an indistinguishability relation
among plans will also let us define a natural model for a multi-agent scenario. In this setting,
agents share the same set of affordances (provided by the actual environment), but still have
different abilities depending on which of these affordances they have available, and how well
they can tell these affordances appart.

Definition 3.1 (Uncertainty-based LTS) Let Agt be a finite non-empty set of agents. A multi-
agent uncertainty-based LTS (LTSU) for Prop, Act and Agt is a tuple M = 〈W,R,∼,V〉 where
〈W,R,V〉 is an LTS and ∼ assigns, to each agent i ∈ Agt, an equivalence indistinguishability
relation over a non-empty set of plans Pi ⊆ Act∗. Given an LTSUM and w ∈DM, the pair (M,w)
(parenthesis usually dropped) is called a pointed LTSU. ⊣

Intuitively, Pi is the set of plans that agent i has at her disposal. Similarly as in classical
epistemic logic, ∼i ⊆ Pi×Pi describes agent i’s indistinguishability. But this time, this relation is
not defined over possible states of affairs, but rather over her available plans.

https://www.perfectlypastry.com/the-importance-of-the-mixing-method/
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Remark 3.1 The following change in notation will simplify some definitions later on, and will make the
comparison with the LTS-based semantics clearer. Let 〈W,R,∼,V〉 be an LTSU and take i ∈ Agt; for a
plan σ ∈ Pi, let [σ]i be its equivalence class in ∼i (i.e., [σ]i := {σ′ ∈ Pi | σ ∼i σ

′}).
There is a one-to-one correspondence between ∼i and its induced set of equivalence classes Si := {[σ]i |

σ ∈ Pi}. Hence, from now on an LTSU will be presented as a tuple 〈W,R,S,V〉, with S = {Si | i ∈ Agt}.
Notice the following properties: (1) π1 , π2 ∈ Si implies π1∩π2 = ∅, (2) Pi =

⋃

π∈Si
π and (3) ∅ < Si.◭

Given her uncertainty over Act∗, the abilities of an agent i depend not on what a single plan
can achieve, but rather on what a set of them can guarantee.

Definition 3.2 For π ⊆ Act∗ and U ∪ {u} ⊆W define Rπ :=
⋃

σ∈π Rσ, Rπ(u) :=
⋃

σ∈π Rσ(u), and
Rπ(U) :=

⋃

u∈U Rπ(u). ⊣

We can now define strong executability for sets of plans.

Definition 3.3 (Strong executability) A set of plans π ⊆ Act∗ is strongly executable at u ∈W if
and only if every plan σ ∈ π is strongly executable at u. Hence, SE(π) =

⋂

σ∈π SE(σ) is the set of the
states in W where π is strongly executable. ⊣

Definition 3.4 (Khi over LTSUs) The satisfiability relation |=between a pointed LTSUM,w (with
M = 〈W,R,S,V〉 an LTSU over Act, Prop and Agt) and formulas in the multi-agent version of LKh

(denoted by LKhi
, and obtained by replacing Kh with Khi, i ∈ Agt) is defined inductively. The

atomic and Boolean cases are as before. For knowing how formulas,

M,w |= Khi(ψ,ϕ) iff
def
∃π ∈ Si such that (Kh-1) ~ψ�M ⊆ SE(π) and (Kh-2) Rπ(~ψ�M) ⊆ ~ϕ�M,

with ~ϕ�M := {w ∈W | M,w |= ϕ}. ⊣

It is worth comparing Def. 2.6 and Def. 3.4. As before, Khi(ψ,ϕ) acts globally. Moreover,
we now require for agent i to have a set of plans satisfying strong executability in every ψ-state
(condition (Kh-1)). Still, the set of plans should work as the single plan did before: when
executed at ψ-states, it should end unerringly in states satisfying ϕ (condition (Kh-2)).

The rest of the section is devoted to explore the properties of the logic with our new
semantics. Moreover, we compare it to the well-known framework from [30, 31, 32].

3.1 Axiomatization

We start by establishing that the universal modality is again definable within LKhi
over LTSU (it

is crucial that Si , ∅ and ∅ < Si, see Remark 3.1).

Proposition 3.1 GivenM,w a pointed LTSU, then (∃i ∈ Agt,M,w |= Khi(¬ϕ,⊥)) iff ~ϕ�M =DM. ◭

Hence, by taking Aϕ :=
∨

i∈Agt Khi(¬ϕ,⊥) (recall that Agt is non-empty and finite) and Eϕ :=
¬A¬ϕ, it turns out that formulas in L (first part of Tab. 1) are still valid, generalizing Kh to Khi.
As discussed in the next section, some valid formulas in LLTS can be falsified over LTSUs. But
the weaker theorems of LLTS

Kh
shown in Tab. 2 (see Prop. 3.8) are still valid, and can be used to

define a complete axiomatic system.
KhA can be subjected to some of the criticism that apply to EMP and COMPKh but, in our

opinion, to a lesser extent. It implies certain level of idealization, as it entails that the knowing
how of an agent is, in a sense, closed under global entailment. KhE on the other hand, seems
plausible: if Khi(ψ,ϕ) is not trivial (given that Eψ holds), then Eϕ should be assured.



Areces, Fervari, Saravia & Velázquez-Quesada 29

Block LLTSU : KhE ⊢
(

Eψ∧Khi(ψ,ϕ)
)

→ Eϕ KhA ⊢
(

A(χ→ ψ)∧Khi(ψ,ϕ)∧A(ϕ→ θ)
)

→ Khi(χ,θ)

Table 2: Axioms LLTSU , for LKhi
w.r.t. LTSUs.

Let us define the systemLLTSU

Khi
:= L + LLTSU (Tab. 2). We will show that the system is sound

and strongly complete over LTSUs. The proof of soundness is rather straighforward, thus we
will focus on completeness. Following [30, 32], the strategy is to build, for anyLLTSU

Khi
-consistent

set of formulas, an LTSU satisfying them. Note:

Proposition 3.2 The following are theorems of LLTSU

Khi
:

SCOND: ⊢ A¬ψ→ Khi(ψ,ϕ); COND: ⊢ Khi(⊥,ϕ). ◭

We proceed with the definition of the canonical model.

Definition 3.5 (Canonical model) LetΦ be the set of all maximallyLLTSU

Khi
-consistent sets (MCS)

of formulas in LKhi
. For any ∆ ∈Φ, define

∆|Khi
:= {ξ ∈ ∆ | ξ is of the form Khi(ψ,ϕ)}, ∆|Kh :=

⋃

i∈Agt∆|Khi
.

Let Γ be a set in Φ. Define, for each agent i ∈ Agt, the set of basic actions ActΓi := {〈ψ,ϕ〉 |
Khi(ψ,ϕ) ∈ Γ}, and ActΓ :=

⋃

i∈Agt ActΓi . Notice that COND implies that Khi(⊥,⊥) ∈ Γ for every
i ∈ Agt; since there is at least one agent, this implies that ActΓ is non-empty, and thus it is an
adequate set of actions. It is worth noticing that the set ActΓ fixes a new signature. However,
since the operators of the language cannot see the names of the actions, we can define a mapping
from ActΓ to any particular Act, to preserve the original signature.
Then, the structureMΓ, defined over ActΓ, Agt and Prop, is the tuple 〈WΓ,RΓ, {SΓi }i∈Agt,VΓ〉where

• WΓ := {∆ ∈Φ | ∆|Kh = Γ|Kh},

• RΓ
〈ψ,ϕ〉 :=

⋃

i∈Agt RΓ
〈ψ,ϕ〉i

, with RΓ
〈ψ,ϕ〉i

:= {(∆1,∆2) ∈WΓ×WΓ | Khi(ψ,ϕ) ∈ Γ,ψ ∈ ∆1,ϕ ∈ ∆2},

• SΓi :=
{

{〈ψ,ϕ〉} | 〈ψ,ϕ〉 ∈ ActΓi

}

,

• VΓ(∆) := {p ∈ Prop | p ∈ ∆}. ⊣

If Γ ∈Φ, thenMΓ is a structure of the required type.

Proposition 3.3 The structureMΓ = 〈WΓ,RΓ, {SΓi }i∈Agt,VΓ〉 is an LTSU.

Proof. It is enough to show that each SΓi defines a partition over a non-empty subset of ℘(Act∗).
First, COND implies Khi(⊥,⊥) ∈ Γ, so 〈⊥,⊥〉 ∈ ActΓi and hence {〈⊥,⊥〉} ∈ SΓi ; thus,

⋃

π∈Si
π , ∅.

Then, Si indeed defines a partition over
⋃

π∈Si
π: its elements are mutually disjoint (they are

singletons with different elements), collective exhaustiveness is immediate and, finally,∅ < SΓi .�

Let Γ ∈Φ, the following properties ofMΓ are useful (proofs are similar to the ones in [32]).

Proposition 3.4 For any ∆1,∆2 ∈WΓ we have ∆1|Kh = ∆2|Kh. ◭

Proposition 3.5 Take ∆ ∈WΓ. If ∆ has a RΓ
〈ψ,ϕ〉-successor, then every ∆′ ∈WΓ with ϕ ∈ ∆′ can be

RΓ
〈ψ,ϕ〉-reached from ∆. ◭

Proposition 3.6 Let ϕ be an LKhi
-formula. If ϕ ∈∆ for every ∆ ∈WΓ, then Aϕ ∈∆ for every ∆ ∈WΓ.◭
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Proposition 3.7 Take ψ,ψ′,ϕ′ in LKhi
. Suppose that every ∆ ∈WΓ with ψ ∈∆ has a RΓ

〈ψ′,ϕ′〉-successor.

Then, A(ψ→ ψ′) ∈ ∆ for all ∆ ∈WΓ. ◭

With these properties at hand, we can prove the truth lemma forMΓ.

Lemma 3.1 (Truth lemma forMΓ) Given Γ ∈Φ, takeMΓ = 〈WΓ,RΓ, {SΓi }i∈Agt,VΓ〉. Then, for every

Θ ∈WΓ and every ϕ ∈ LKhi
,MΓ,Θ |= ϕ if and only if ϕ ∈Θ.

Proof. The proof is by induction on ϕ, with the atom and Boolean cases as usual. For the rest:

Case Khi(ψ,ϕ). (⇒) SupposeMΓ,Θ |= Khi(ψ,ϕ), then consider two cases.

• ~ψ�M
Γ

= ∅. Then, for each ∆ ∈WΓ we have ∆ < ~ψ�M
Γ

, so ψ < ∆ (by IH) and thus ¬ψ ∈ ∆
(by maximal consistency). Hence, by Prop. 3.6, A¬ψ ∈ ∆ for every ∆ ∈WΓ. In particular,
A¬ψ ∈Θ and thus, by SCOND and MP, Khi(ψ,ϕ) ∈Θ.

• ~ψ�M
Γ

, ∅. By hypothesis, there is {〈ψ′,ϕ′〉} ∈ SΓi with (Kh-1) ~ψ�M
Γ

⊆ SE({〈ψ′,ϕ′〉})
and (Kh-2) RΓ

{〈ψ′,ϕ′〉}(~ψ�
MΓ) ⊆ ~ϕ�M

Γ

. In other words, there is 〈ψ′,ϕ′〉 ∈ ActΓa such that

(Kh-1) for all ∆ ∈WΓ, if ∆ ∈ ~ψ�M
Γ

then ∆ ∈ SE({〈ψ′,ϕ′〉}), so ∆ ∈ SE(〈ψ′,ϕ′〉) and therefore
∆ has a RΓ

〈ψ′,ϕ′〉-successor.

(Kh-2) for all ∆′ ∈WΓ, if there is ∆ ∈ ~ψ�M
Γ

such that (∆,∆′) ∈ RΓ
〈ψ′,ϕ′〉, then ∆′ ∈ ~ϕ�M

Γ

.
This case requires three pieces.
(1) Take any ∆ ∈WΓ with ψ ∈ ∆. Then, by IH, ∆ ∈ ~ψ�M

Γ

and thus, by (Kh-1), ∆ has a
RΓ
〈ψ′,ϕ′〉-successor. Thus, every ∆ ∈WΓ with ψ ∈ ∆ has such successor; then (Prop. 3.7),

it follows that A(ψ→ ψ′) ∈ ∆ for every ∆ ∈WΓ. In particular, A(ψ→ ψ′) ∈Θ.
(2) From 〈ψ′,ϕ′〉 ∈ ActΓi it follows that Khi(ψ′,ϕ′) ∈ Γ. But Θ ∈WΓ, so Θ|Kh = Γ|Kh (by

definition of WΓ). Hence, Khi(ψ′,ϕ′) ∈Θ.
(3) Since ~ψ�M

Γ

, ∅, there is ∆ ∈ ~ψ�M
Γ

. By (Kh-1), ∆ should have at least one RΓ
〈ψ′,ϕ′〉-

successor. Then, by Prop. 3.5, every ∆′ ∈WΓ satisfying ϕ′ ∈ ∆′ can be RΓ
〈ψ′,ϕ′〉-reached

from∆; in other words, every∆′ ∈WΓ satisfyingϕ′ ∈∆′ is in RΓ
〈ψ′,ϕ′〉(∆). But∆ ∈ ~ψ�M

Γ

,

so every∆′ ∈WΓ satisfyingϕ′ ∈∆′ is in RΓ
〈ψ′,ϕ′〉(~ψ�

MΓ). Then, by (Kh-2), every∆′ ∈WΓ

satisfying ϕ′ ∈∆′ is in ~ϕ�M
Γ

. By IH on the latter part, every∆′ ∈WΓ satisfying ϕ′ ∈∆′

is such that ϕ ∈ ∆′. Thus, ϕ′ → ϕ ∈ ∆′ for every ∆′ ∈WΓ, and hence (Prop. 3.6)
A(ϕ′→ ϕ) ∈ ∆′ for every ∆′ ∈WΓ. In particular, A(ϕ′→ ϕ) ∈Θ.

Thus, {A(ψ→ ψ′),Khi(ψ′,ϕ′),A(ϕ′→ ϕ)} ⊂Θ. Therefore, by KhA and MP, Khi(ψ,ϕ) ∈Θ.
(⇐) Suppose Khi(ψ,ϕ) ∈Θ. Thus (Prop. 3.4), Khi(ψ,ϕ) ∈ Γ, so 〈ψ,ϕ〉 ∈ActΓi and therefore {〈ψ,ϕ〉} ∈
SΓi . The rest of the proof is split in two cases.

• Suppose there is no∆ψ ∈WΓ withψ ∈∆. Then, by IH, there is no∆ψ ∈WΓwith∆ψ ∈ ~ψ�M
Γ

,
that is, ~¬ψ�M

Γ

=DWΓ . SinceMΓ is in LTSU (Prop. 3.3), the latter yields (MΓ,∆) |=Khi(ψ,χ)
for any i ∈ Agt, χ ∈ LKhi

and ∆ ∈WΓ (cf. Prop. 3.1); hence, (MΓ,Θ) |= Khi(ψ,ϕ).
• Suppose there is ∆ψ ∈WΓ with ψ ∈ ∆ψ. It will be shown that the strategy {〈ψ,ϕ〉} ∈ SΓi

satisfies the requirements.
(Kh-1) Take any ∆ ∈ ~ψ�M

Γ

. By IH, ψ ∈ ∆. Moreover, from Khi(ψ,ϕ) ∈ Θ and Prop. 3.4 it
follows that Khi(ψ,ϕ) ∈ ∆. Then, from RΓ

〈ψ,ϕ〉i
’s definition, every ∆′ ∈WΓ with ϕ ∈ ∆′

is such that (∆,∆′) ∈ RΓ
〈ψ,ϕ〉i

, and therefore such that (∆,∆′) ∈ RΓ
〈ψ,ϕ〉. Now note how,
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since there is ∆ψ ∈WΓ with ψ ∈ ∆ψ, there should be ∆ϕ ∈WΓ with ϕ ∈ ∆ϕ (the proof
uses KhE and TA). This implies that (∆,∆ϕ) ∈ RΓ

〈ψ,ϕ〉 and thus, since 〈ψ,ϕ〉 is a basic

action, ∆ ∈ SE(〈ψ,ϕ〉) so ∆ ∈ SE({〈ψ,ϕ〉}). Since ∆ is an arbitrary state in ~ψ�M
Γ

, the
required ~ψ�M

Γ

⊆ SE({〈ψ,ϕ〉}) follows.
(Kh-2) Take any ∆′ ∈ RΓ

{〈ψ,ϕ〉}(~ψ�
MΓ ). Then, there is ∆ ∈ ~ψ�M

Γ

such that (∆,∆′) ∈ RΓ
〈ψ,ϕ〉. By

definition of RΓ, it follows that ϕ ∈ ∆′ so, by IH, ∆′ ∈ ~ϕ�M
Γ

. Since ∆′ is an arbitrary
state in RΓ

{〈ψ,ϕ〉}(~ψ�
MΓ), the required RΓ

{〈ψ,ϕ〉}(~ψ�
MΓ ) ⊆ ~ϕ�M

Γ

follows. �

Theorem 2 The axiom system LLTSU

Khi
:= L + LLTSU (Tab. 2) is sound and strongly complete for LKhi

w.r.t. the class of all LTSUs.

Proof. Take any LLTSU

Khi
-consistent set of formulas Γ′ ⊆ LKhi

. Since LKhi
is enumerable, Γ′ can be

extended into a maximallyLLTSU

Khi
-consistent set Γ⊇ Γ′ by a standard Lindenbaum’s construction

(see, e.g., [6, Chapter 4]). By Lemma 3.1, Γ′ is satisfiable inMΓ at Γ. The fact thatMΓ is in LTSU

(Prop. 3.3) completes the proof. �

3.2 Comparing LTS semantics and LTSU semantics

The provided axiom system can be used to compare the notion of knowing how under LTSs with
that under LTSUs. Here is a first observation.
Proposition 3.8 Axioms KhE and KhA are LLTS

Kh
-derivable (thus, LLTSU

Khi
is a subsystem of LLTS

Kh
). ◭

Hence, the knowing how operator under LTS is at least as strong as its LTSU-based counterpart:
every formula valid under LTSUs is also valid under LTSs. The following fact shows that the
converse is not the case.
Proposition 3.9 Within LTSU, axioms EMP and COMPKh are not valid.

Proof. Consider the LTSUM shown below, with the collection of sets of available plans for agent
i (i.e., the set Si) depicted on the right. Recall that Khi acts globally.

pw q r
a

c

b

Si =















{a}, {b}

{ab,c}















With respect to EMP, notice that A(p→ p) holds; yet, Khi(p,p) fails since there is no π ∈ Si leading
from p-states to p-states. More generally, EMP is valid over LTSs because the empty plan ǫ,
strongly executable everywhere, is always available. However, in a LTSU, the plan ǫ might not
be available to the agent (i.e., ǫ < Pi); and even if ǫ is avaibable, it might be indistinguishable
from other plans with different behaviour.

With respect to COMPKh, notice that Khi(p,q) and Khi(q,r) hold, witness {a} and {b}, resp.
However, there is no π ∈ Si containing only plans that, when starting on p-states, lead only to
r-states. This is due to the fact that, although ab acts as needed, it cannot be distinguished from
c, which behaves differently. Thus, Khi(p,r) fails. More generally, COMPKh is valid over LTS
because the sequential composition of the plans that make true the conjuncts in the antedecent
is a witness that makes true the consequent. However, in an LTSU, this composition might be
unavailable or else indistinguishable from other plans. �
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From these two observations it follows that Kh under LTSUs is strictly weaker than Kh under
LTSs: adding uncertainty about the effect of actions does change the logic. However, the LTSU

framework is general enough to capture the LTS semantics. To establish the connection, let us
work in a single-agent setting (i.e., with a single modality Kh and no subindexes for Pi and Si).

Given the discussion in Prop. 3.9, it should be clear that there is an obvious class of LTSUs in
which EMP and COMPKh are valid. This is the class of LTSUs in which the agent has every plan
available and can distinguish between any two of them (i.e., S = {{σ} | σ ∈ Act∗}). This is because,
in such models, ǫ is available and distinguishable from other plans (for EMP) and from {σ1} ∈ S
and {σ2} ∈ S it follows that {σ1σ2} ∈ S (for COMPKh). Clearly, other, more general, classes can be
defined, but the one introduced here serves as an example.

Proposition 3.10 Let S = 〈W,R,V〉 be an LTS over Act, define MS = 〈W,R,S,V〉, where S = {{σ} |
σ ∈ Act∗}. Let C := {MS | S is an LTS}. GivenM = 〈W,R,S,V〉 an LTSU in C, define SM = 〈W,R,V〉.
Then, for every ϕ ∈ LKh, ~ϕ�S = ~ϕ�MS and ~ϕ�M = ~ϕ�SM . ◭

Since we have a class of LTSUs in correspondence with the class of all LTSs, we get a direct
completeness result:

Theorem 3 The axiom system LLTS
Kh

(Tab. 1) is sound and strongly complete for LKh w.r.t. the class C.◭

3.3 Complexity

Here we investigate the computational complexity of the satisfiability problem of LKhi
under

the LTSU-based semantics. We will establish membership in NP by showing a polynomial size
model property.

Given a formula, we will show that it is possible to select just a piece of the canonical
model which is relevant for its evaluation. The selected model will preserve satisfiability, and
moreover, its size will be polymonial w.r.t. the size of the input formula.

Definition 3.6 (Selection function) LetMΓ = 〈WΓ,RΓ, {SΓi }i∈Agt,VΓ〉 be a canonical model for an
MCS Γ (see Def. 3.5); take an MCS w ∈WΓ and a formula ϕ ∈ LKhi

. Define Actϕ := {〈θ1,θ2〉 ∈

ActΓ | Khi(θ1,θ2) is a subformula of ϕ}. A canonical selection function sel
ϕ
w is a function that takes

MΓ, w and ϕ as input, returns a set W′ ⊆WΓ, and is s.t.:

(1) sel
ϕ
w(p) = {w}; sel

ϕ
w(¬ϕ1) = sel

ϕ
w(ϕ1); sel

ϕ
w(ϕ1∨ϕ2) = sel

ϕ
w(ϕ1)∪sel

ϕ
w(ϕ2);

(2) If ~Khi(ϕ1,ϕ2)�M
Γ

, ∅ and ~ϕ1�
MΓ = ∅: sel

ϕ
w(Khi(ϕ1,ϕ2)) = {w};

(3) If ~Khi(ϕ1,ϕ2)�M
Γ

, ∅ and ~ϕ1�
MΓ , ∅:

sel
ϕ
w(Khi(ϕ1,ϕ2)) = {w1,w2}∪sel

ϕ
w1

(ϕ1)∪sel
ϕ
w2

(ϕ2), where w1, w2 are s.t. (w1,w2) ∈ RΓ
〈ϕ1,ϕ2〉

;

(4) If ~Khi(ϕ1,ϕ2)�M
Γ

= ∅ (note that ~ϕ1�
MΓ , ∅):

For all set of plans π, either ~ϕ1�
MΓ * SE(π) or RΓ

π
(~ϕ1�

MΓ) * ~ϕ2�
MΓ . For each a ∈ Actϕ:

(a) if ~ϕ1�
MΓ * SE({a}): we add {w1}∪sel

ϕ
w1

(ϕ1) to sel
ϕ
w(Khi(ϕ1,ϕ2)), where w1 ∈ ~ϕ1�

MΓ

and w1 < SE({a});
(b) if RΓ

π
(~ϕ1�

MΓ) * ~ϕ2�
MΓ we add {w1,w2} ∪ sel

ϕ
w1

(ϕ1)∪ sel
ϕ
w2

(ϕ2) to sel
ϕ
w(Khi(ϕ1,ϕ2)),

where w1 ∈ ~ϕ1�
MΓ , w2 ∈ RΓa (w1) and w2 < ~ϕ2�

MΓ . ⊣

We can now select a small model which preserves the satisfiability of a given formula.
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Definition 3.7 (Selected model) LetMΓ be the canonical model for an MCS Γ, w a state inMΓ,
and ϕ an LKhi

-formula. Let sel
ϕ
w be a selection function, we define the model selected by sel

ϕ
w as

M
ϕ
w = 〈W

ϕ
w,R

ϕ
w, {(S

ϕ
w)i}i∈Agt,V

ϕ
w〉, where

• Wϕ
w := sel

ϕ
w(ϕ);

• (Rϕw)〈θ1 ,θ2〉 := RΓ
〈θ1 ,θ2〉

∩(Wϕ
w)2 for each 〈θ1,θ2〉 ∈ Actϕ;

• (Sϕw)i := {{a} | a ∈ Actϕ}∪ {{〈⊥,⊤〉}}, for i ∈ Agt (and (Rϕw)〈⊥,⊤〉 := ∅);

• Vϕ
w is the restriction of VΓ to Wϕ

w. ⊣

Note that, although Actϕ can be an empty set, each collection of sets of plans (Sϕw)i is not.
Therefore,Mϕ

w is an LTSU.

Proposition 3.11 LetMΓ be a canonical model, w a state inMΓ and ϕ an LKhi
-formula. LetM

ϕ
w be

the selected model by a selection function sel
ϕ
w. MΓ,w |= ϕ implies that for all ψ subformula of ϕ, and

for all v ∈Wϕ
w we have thatMΓ,v |= ψ iffM

ϕ
w,v |= ψ. Moreover,M

ϕ
w is polynomial on the size of ϕ. ◭

Proof. The proof proceeds by induction in the size of the formula. Boolean cases are simple, so
we will proceed with the case in which ψ = Khi(ψ1,ψ2).

Suppose thatMΓ,v |= Khi(ψ1,ψ2). Then, we have two cases:

• ~ψ1�
MΓ

, ∅: by MΓ,v |= Khi(ψ1,ψ2), there exists a π ∈ SΓi s.t. ~ψ1�
MΓ ⊆ SEM

Γ

(π) and
RΓ
π
(~ψ1�

MΓ)⊆ ~ψ2�
MΓ . By Truth Lemma, Khi(ψ1,ψ2) ∈ v, then Khi(ψ1,ψ2) ∈ Γ and 〈ψ1,ψ2〉 ∈

ActΓ. By the definition of RΓ
〈ψ1 ,ψ2〉

, we have that for all w ∈ ~ψ1�
MΓ , it holds that RΓ

〈ψ1 ,ψ2〉
(w),

∅ and RΓ
〈ψ1,ψ2〉

(w) ⊆ ~ψ2�
MΓ . Thus, ~ψ1�

MΓ ⊆ SEM
Γ

({〈ψ1,ψ2〉}) and RΓ
〈ψ1 ,ψ2〉

(~ψ1�
MΓ) ⊆

~ψ2�
MΓ . Since ~ψ1�

MΓ , ∅, there exist w1,w2 ∈WΓ s.t. (w1,w2) ∈ RΓ
〈ψ1,ψ2〉

.

Notice that by definition of Mϕ
w, we have that {〈ψ1,ψ2〉} ∈ (Sϕw)i and that (Rϕw)〈ψ1 ,ψ2〉 is

defined. Also, by the definition of sel
ϕ
w, Item (3), there exist w′1,w

′
2 ∈Wϕ

w s.t. (w′1,w
′
2) ∈

(Rϕw)〈ψ1 ,ψ2〉. Let v1 ∈ ~ψ1�
M

ϕ
w ⊆ ~ψ1�

MΓ (the inclusion holds by IH). Then, we have v1 ∈

SEM
Γ

({〈ψ1,ψ2〉}) and RΓ
〈ψ1 ,ψ2〉

(v1) ⊆ ~ψ2�
MΓ . Since for all v2 ∈ RΓ

〈ψ1 ,ψ2〉
(v1), we have v2 ∈

~ψ2�
MΓ , (in particular v2 = w′2), then w′2 ∈ (Rϕw)〈ψ1 ,ψ2〉(v1). Thus, v1 ∈ SEM

ϕ
w({〈ψ1,ψ2〉}).

Aiming for a contradiction, suppose now that (Rϕw)〈ψ1 ,ψ2〉(v1)=RΓ
〈ψ1 ,ψ2〉

(v1)∩Wϕ
w * ~ψ2�

M
ϕ
w ;

and let v2 ∈ (Rϕw)〈ψ1 ,ψ2〉(v1) s.t. v2 < ~ψ2�
M

ϕ
w . Then we have that (Rϕw)〈ψ1 ,ψ2〉(v1) ⊆ RΓ

〈ψ1,ψ2〉
(v1),

but also by IH v2 < ~ψ2�
MΓ . Thus, MΓ,v 6|= Khi(ψ1,ψ2), which is a contradiction. Then,

it must be the case that (Rϕw){〈ψ1 ,ψ2〉}(v1) ⊆ ~ψ2�
M

ϕ
w . Since we showed that ~ψ1�

M
ϕ
w ⊆

SEM
ϕ
w({〈ψ1,ψ2〉}) and (Rϕw){〈ψ1 ,ψ2〉}(~ψ1�

M
ϕ
w)⊆ ~ψ2�

M
ϕ
w , we can concludeMϕ

w,v |=Khi(ψ1,ψ2).

• ~ψ1�
MΓ

= ∅: this case is direct.

Suppose now thatMϕ
w,v |= Khi(ψ1,ψ2):

• ~ψ1�
M

ϕ

w , ∅: first, notice that by IH, ~ψ1�
MΓ , ∅. Also, by Mϕ

w,v |= Khi(ψ1,ψ2), we
get ~ψ1�

M
ϕ
w ⊆ SEM

ϕ
w(π′) and (Rϕw)π′ (~ψ1�

M
ϕ
w) ⊆ ~ψ2�

M
ϕ
w , for some π

′ ∈ (Sϕw)i. Aiming for
a contradiction, supposeMΓ,v 6|= Khi(ψ1,ψ2). This implies that for all π ∈ SΓi , ~ψ1�

MΓ *

SEM
Γ

(π) or RΓ
π
(~ψ1�

MΓ) * ~ψ2�
MΓ . Also, by definition of Actϕ we have that for all π =
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{a} ∈ (Sϕw)i, with a ∈ Actϕ, ~ψ1�
MΓ * SEM

Γ

(π) or RΓ
π
(~ψ1�

MΓ) * ~ψ2�
MΓ ; i.e., for all a ∈ Actϕ

~ψ1�
MΓ * SEM

Γ

({a}) or RΓ
{a}(~ψ1�

MΓ) * ~ψ2�
MΓ . Thus, there exists w1 ∈ ~ψ1�

MΓ s.t. w1 <

SEM
Γ

(a) or there exists w2 ∈ RΓa (w1) s.t. w2 < ~ψ2�
MΓ . By definition of sel

ϕ
w, Item (4), we

add witnesses for each a ∈ Actϕ. So, let π
′ ∈ (Sϕw)i. If π

′ = {〈⊥,⊤〉}, trivially we obtain

∅ , ~ψ1�
M

ϕ
w * SEM

ϕ
w(π′) = ∅. Then, take another π′ = {a} s.t. a ∈ Actϕ, and w′1 ∈ ~ψ1�

M
ϕ
w ⊆

~ψ1�
MΓ . If w′1 < SEM

Γ

({a}), RΓa (w′1)=∅ and thus (Rϕw)a(w′1)=∅ and therefore w′1 < SEM
ϕ
w({a}).

On the other hand, if there exists w2 ∈ RΓa (w′1) s.t. w2 < ~ψ2�
MΓ , then by sel

ϕ
w and IH,

there exists w′2 ∈Wϕ
w s.t. w′2 ∈ RΓa (w′1) and w′2 < ~ψ2�

M
ϕ
w , and consequently, there exists

w′2 ∈ (Rϕw)a(w′1) s.t. w′2 < ~ψ2�
M

ϕ
w . In any case, it leads toMϕ

w,v 6|=Khi(ψ1,ψ2), a contradiction.
Therefore,MΓ,v |= Khi(ψ1,ψ2).

• ~ψ1�
M

ϕ

w = ∅: similar to the previous case.

Thus, we proved the caseMΓ,v |= Khi(ψ1,ψ2) iffMϕ
w,v |= Khi(ψ1,ψ2). Therefore, we get that

for all ψ subformula of ϕ and v ∈Wϕ
w,MΓ,v |= ψ iffMϕ

w,v |= ψ. Notice that the selection funcion
adds worlds fromMΓ, only for each Khi-formula that appears as a subformula of ϕ. Clearly,
there is a polynomial number of such subformulas. Moreover, the number of worlds added at
each time is also polynomial in the size of ϕ. Hence, Wϕ

w is of polynomial size. Since (Sϕw)i is
also polynomial, we have that the size ofMϕ

w is polynomial in the size of ϕ.

In order to prove that the satisfiability problem of LKhi
is in NP, it remains to show that the

model checking problem is in P.
Proposition 3.12 The model checking problem for LKhi

is in P. ◭

Proof. Given a pointed LTSU M,w and a formula ϕ, we define a bottom-up labeling algorithm
running in polymonial time which checks whetherM,w |= ϕ. We follow the same ideas as for
the basic modal logic K (see e.g., [5]). Below we introduce the case for formulas of the shape
Khi(ψ,ϕ), over an LTSUM = 〈W,R,S,V〉:

Procedure ModelChecking((M,w), Khi(ψ,ϕ))
lab(Khi(ψ,ϕ))←∅;
for all π ∈ Si do

kh← True;
for all σ ∈ π do

for all v ∈ lab(ψ) do
kh← (kh & v ∈ SE(σ) & Rσ(v) ⊆ lab(ϕ));

end for
end for
if kh then

lab(Khi(ψ,ϕ))←W;
end if

end for

As Si and each π ∈ Si are not empy, the first two for loops are necessarily executed. If
lab(ψ) = ∅, then the formula Khi(ψ,ϕ) is trivally true. Otherwise, kh will remain true only if
the appropriate conditions for the satisfiability of Khi(ψ,ϕ)) hold. If no π succeeds, then the
initialization of lab(Khi(ψ,ϕ)) as ∅ will not be overwritten, as it should be. Both v ∈ SE(σ) and
Rσ can be verified in polynomial time. Hence, the model checking problem is in P. �

The intended result for satisfiability now follows.
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Theorem 4 The satisfiability problem for LKhi
over LTSUs is NP-complete.

Proof. Hardness follows from NP-completeness of propositional logic (a fragment of LKhi
). By

Prop. 3.11, each satisfiable formula ϕ has a model of polynomial size on ϕ. Thus, we can guess
a polymonial modelM,w, and verifyM,w |= ϕ (which can be done in polyonomial time, due
to Prop. 3.12). Thus, the satisfiability problem is in the class NP. �

4 Final Remarks

In this article, we introduce a new semantics for the knowing how modality from [30, 31, 32],
over multiple agents. It is defined in terms of uncertainty-based labeled transition systems (LTSU).
The novelty in our proposal is that LTSUs are equipped with an indistinguishability relation
among plans. In this way, the epistemic notion of uncertainty of an agent –which in turn defines
her epistemic state– is reintroduced, bringing the notion of knowing how closer to the notion of
knowing that from classical epistemic logics. We believe that the semantics based on LTSU can
represent properly the situation of a shared, objective description of the affordances of a given
situation, together with the different, subjective and personal abilities of a group of agents; this
seems difficult to achieve using a semantics based on LTSs alone.

We show that the logic of [30, 31, 32] can be obtained by imposing particular conditions over
LTSUs; thus, the new semantics is more general. In particular, it provides counter-examples
to EMP and COMP, which directly link Kh to properties of the universal modality.2 Indeed,
consider EMP: even though A(ψ→ ϕ) objectively holds in the underlying LTS of an LTSU, it
could be argued that an agent might not have actions or plans at her disposal to turn those
facts into knowledge, resulting in Kh(ψ,ϕ) failing on the model. Moreover, we have introduced
a sound and strongly complete axiom system for the new semantics over LTSUs. Finally, we
showed that the satisfiability problem for our multi-agent knowing how logic over the LTSU-
based semantics is NP-complete, via a selection argument (and model checking is polynomial).

Future work. There are several interesting lines of research to explore in the future. First,
our framework easily accommodates other notions of executability. For instance, one could
require only some of the plans in a set π to be strongly executable, weaken the condition of
strong executability, etc. We can also explore the effects of imposing different restrictions on
the construction of the indistinguishability relation between plans. It would be interesting to
investigate which logics we obtain in these cases, and their relations with the LTS semantics.

Second, to our knowledge, the exact complexity of the satisfiability problem for knowing
how over LTSs is open. It would be interesting to see whether an adaptation of our selection
procedure works over LTSs.

Third, the LTSU semantics, in the multi-agent setting, leads to natural definitions of concepts
such as global, distributed and common knowing how, which should be investigated in detail.

Finally, dynamic modalities capturing epistemic updates can be defined via operations that
modify the indistinguishability relation among plans (as is done with other dynamic epistemic
operators, see, e.g., [7]). This would allow to express different forms of communication, such
as public, private and semi-private announcements concerning (sets of) plans.

2The rest of the axioms and rules in LLTS
Kh

(those shown in block L) merely state properties of the universal
modality and the fact that Kh is global.



36 Uncertainty-Based Semantics for Multi-Agent Knowing How Logics

Acknowledgments. This work is partially supported by projects ANPCyT-PICT-2017-1130,
Stic-AmSud 20-STIC-03 ‘DyLo-MPC’, Secyt-UNC, GRFT Mincyt-Cba, and by the Laboratoire
International Associé SINFIN.

References

[1] S. Artemov (2008): The logic of justification. The Review of Symbolic Logic 1(04), pp. 477–513,
doi:10.1017/S1755020308090060.

[2] A. Baltag (2016): To Know is to Know the Value of a Variable. In: Advances in Modal Logic 11, pp.
135–155.

[3] F. Belardinelli (2014): Reasoning about Knowledge and Strategies: Epistemic Strategy Logic. In: Proceed-
ings of SR 2014, pp. 27–33, doi:10.4204/EPTCS.146.4.

[4] J. van Benthem (2011): Logical Dynamics of Information and Interaction. Cambridge University Press,
doi:10.1017/CBO9780511974533.

[5] P. Blackburn & J. van Benthem (2006): Modal Logic: A Semantic Perspective. In: Handbook of Modal
Logic, Elsevier, pp. 1–84, doi:10.1016/s1570-2464(07)80004-8.

[6] P. Blackburn, M. de Rijke & Y. Venema (2002): Modal Logic. Cambridge University Press,
doi:10.1017/CBO9781107050884.

[7] H. van Ditmarsch, W. van der Hoek & B. Kooi (2007): Dynamic Epistemic Logic. Springer,
doi:10.1007/978-1-4020-5839-4.

[8] J. van Eijck, M. Gattinger & Y. Wang (2017): Knowing Values and Public Inspection. In: Logic and Its
Applications - 7th Indian Conference, ICLA 2017, pp. 77–90, doi:10.1007/978-3-662-54069-5_7.

[9] R. Fagin, J. Y. Halpern, Y. Moses & M. Y. Vardi (1995): Reasoning about knowledge. The MIT Press,
Cambridge, Mass., doi:10.7551/mitpress/5803.001.0001.

[10] J. Fan, Y. Wang & H. van Ditmarsch (2015): Contingency and Knowing Whether. The Review of
Symbolic Logic 8, pp. 75–107, doi:10.1017/S1755020314000343.

[11] J. Fantl (2017): Knowledge How. In E. Zalta, editor: The Stanford Encyclopedia of Philosophy, fall
2017 edition, Metaphysics Research Lab, Stanford University.

[12] R. Fervari, A. Herzig, Y. Li & Y. Wang (2017): Strategically knowing how. In: Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 1031–1038,
doi:10.24963/ijcai.2017/143.

[13] V. Goranko & S. Passy (1992): Using the Universal Modality: Gains and Questions. Journal of Logic
and Computation 2(1), pp. 5–30, doi:10.1093/logcom/2.1.5.

[14] T. Gu & Y. Wang (2016): “Knowing value” logic as a normal modal logic. In: Advances in Modal Logic
11, pp. 362–381.

[15] D. Harel, D. Kozen & J. Tiuryn (2000): Dynamic Logic. The MIT Press,
doi:10.7551/mitpress/2516.001.0001.

[16] S. Hart, A. Heifetz & D. Samet (1996): Knowing Whether, Knowing That, and The Cardinality of State
Spaces. Journal of Economic Theory 70(1), pp. 249–256, doi:10.1006/jeth.1996.0084.

[17] A. Herzig (2015): Logics of knowledge and action: critical analysis and challenges. Autonomous Agents
and Multi-Agent Systems 29(5), pp. 719–753, doi:10.1007/s10458-014-9267-z.

[18] A. Herzig & N. Troquard (2006): Knowing how to play: uniform choices in logics of agency. In:
Proceedings of AAMAS 06, pp. 209–216, doi:10.1145/1160633.1160666.

[19] J. Hintikka (1962): Knowledge and Belief. Cornell University Press, Ithaca N.Y.
[20] W. van der Hoek, B. van Linder & J-J. Ch. Meyer (2000): On Agents That Have the Ability to Choose.

Studia Logica 66(1), pp. 79–119, doi:10.1023/A:1026796912842.

http://dx.doi.org/10.1017/S1755020308090060
http://dx.doi.org/10.4204/EPTCS.146.4
http://dx.doi.org/10.1017/CBO9780511974533
http://dx.doi.org/10.1016/s1570-2464(07)80004-8
http://dx.doi.org/10.1017/CBO9781107050884
http://dx.doi.org/10.1007/978-1-4020-5839-4
http://dx.doi.org/10.1007/978-3-662-54069-5_7
http://dx.doi.org/10.7551/mitpress/5803.001.0001
http://dx.doi.org/10.1017/S1755020314000343
http://dx.doi.org/10.24963/ijcai.2017/143
http://dx.doi.org/10.1093/logcom/2.1.5
http://dx.doi.org/10.7551/mitpress/2516.001.0001
http://dx.doi.org/10.1006/jeth.1996.0084
http://dx.doi.org/10.1007/s10458-014-9267-z
http://dx.doi.org/10.1145/1160633.1160666
http://dx.doi.org/10.1023/A:1026796912842


Areces, Fervari, Saravia & Velázquez-Quesada 37

[21] W. van der Hoek & A. Lomuscio (2003): Ignore at your peril – towards a logic for ignorance. In:
Proceedings of AAMAS 03, pp. 1148–1149, doi:10.1145/860575.860839.

[22] W. Jamroga & T. Ågotnes (2007): Constructive knowledge: what agents can achieve under imperfect
information. Journal of Applied Non-Classical Logics 17(4), pp. 423–475,doi:10.3166/jancl.17.423-475.

[23] W. Jamroga & W. van der Hoek (2004): Agents that Know How to Play. Fundamenta Informaticae
63(2-3), pp. 185–219.

[24] Y. Lespérance, H. J. Levesque, F. Lin & R. B. Scherl (2000): Ability and Knowing How in the Situation
Calculus. Studia Logica 66(1), pp. 165–186, doi:10.1023/A:1026761331498.

[25] Y. Li (2017): Stopping Means Achieving: A Weaker Logic of Knowing How. Studies in Logic 9(4), pp.
34–54.

[26] Y. Li & Y. Wang (2017): Achieving While Maintaining: A Logic of Knowing How with Intermediate
Constraints. In: Logic and Its Applications - 7th Indian Conference, ICLA 2017, pp. 154–167,
doi:10.1007/978-3-662-54069-5_12.

[27] J. McCarthy & P. J. Hayes (1969): Some Philosophical Problems from the Standpoint of Artificial Intelli-
gence. In: Machine Intelligence, Edinburgh University Press, pp. 463–502.

[28] R. Moore (1985): A formal theory of knowledge and action. In: Formal Theories of the Commonsense
World, Ablex Publishing Corporation.

[29] X. Wang (2019): A Logic of Knowing How with Skippable Plans. In: Logic, Rationality, and Interaction
– 7th International Workshop, LORI 2019, pp. 413–424, doi:10.1007/978-3-662-60292-8_30.

[30] Y. Wang (2015): A Logic of Knowing How. In: Logic, Rationality, and Interaction – 5th International
Workshop, LORI 2015, pp. 392–405, doi:10.1007/978-3-662-48561-3_32.

[31] Y. Wang (2018): Beyond knowing that: a new generation of epistemic logics. In H. van Ditmarsch &
G. Sandu, editors: J. Hintikka on knowledge and game theoretical semantics, Springer, pp. 499–533,
doi:10.1007/978-3-319-62864-6_21.

[32] Y. Wang (2018): A logic of goal-directed knowing how. Synthese 195(10), pp. 4419–4439,
doi:10.1007/s11229-016-1272-0.

[33] C. Xu, Y. Wang & T. Studer (2021): A Logic of Knowing Why. Synthese 198, pp. 1259–1285,
doi:10.1007/s11229-019-02104-0.

http://dx.doi.org/10.1145/860575.860839
http://dx.doi.org/10.3166/jancl.17.423-475
http://dx.doi.org/10.1023/A:1026761331498
http://dx.doi.org/10.1007/978-3-662-54069-5_12
http://dx.doi.org/10.1007/978-3-662-60292-8_30
http://dx.doi.org/10.1007/978-3-662-48561-3_32
http://dx.doi.org/10.1007/978-3-319-62864-6_21
http://dx.doi.org/10.1007/s11229-016-1272-0
http://dx.doi.org/10.1007/s11229-019-02104-0

	1 Introduction
	2 A logic of knowing how
	3 Uncertainty-based semantics
	3.1 Axiomatization
	3.2 Comparing LTS semantics and LTSU semantics
	3.3 Complexity

	4 Final Remarks

