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The formalization of action and obligation using logic languages is a topic of increasing relevance

in the field of ethics for AI. Having an expressive syntactic and semantic framework to reason about

agents’ decisions in moral situations allows for unequivocal representations of components of behav-

ior that are relevant when assigning blame (or praise) of outcomes to said agents. Two very important

components of behavior in this respect are belief and belief-based action. In this work we present a

logic of doxastic oughts by extending epistemic deontic stit theory with beliefs. On one hand, the

semantics for formulas involving belief operators is based on probability measures. On the other,

the semantics for doxastic oughts relies on a notion of optimality, and the underlying choice rule is

maximization of expected utility. We introduce an axiom system for the resulting logic, and we refer

to its soundness, completeness, and decidability results. These results are significant in the line of

research that intends to use proof systems of epistemic, doxastic, and deontic logics to help in the

testing of ethical behavior of AI through theorem-proving and model-checking.

1 Introduction

It has been argued that an appropriate theory of agency and obligation should take into account what

agents know—and what they know how to do—both before and at the moment of acting ([41], [22],

[21], [13]). Following considerations from epistemic game theory (EGT)—which has clear conceptual

and technical connections to stit theory (see [16, Chapter 1] and [37])—we put forward that agents’

beliefs also play an important role in the relation between agency and obligation. In recent years we

have seen a growing interest in adding knowledge modalities to stit theory, but there are relatively few

extensions of this logic by means of belief operators (notably those in [39] and [12]). The novelty of the

present approach lies in its intention to develop a link between beliefs and ought-to-do. This is a natural

step to take in the line of both Horty’s formalization of act utilitarian ought-to-do ([23]) and its extension

with epistemic notions ([21], [13]).

According to Horty ([23]), act utilitarian ought-to-do stems from a measure of optimality of actions.

The consequences of optimal actions are taken to be the conditions that agents ought to have brought

about in the world. Horty’s idea of optimality is undeniably inspired by solution concepts from game

theory, particularly by dominance of strategies. Following this idea, the recent works [21] and [1] in-

troduce epistemic (resp. subjective) ought-to-do’s to account for the relation between knowledge and

obligation. To be more precise, in both these works the optimal actions once again underlie what agents

epistemically (resp. subjectively) ought to do, but the measure of optimality now takes into considera-

tion agents’ epistemic states. The resulting formalization can deal with complex scenarios for which the

initial—non-epistemic—ought-to-do fell short of very intuitive standards in the context of responsibil-

ity attribution. Since stit theory can—at least in principle—incorporate most game theoretic ideas into

multi-agent action-settings, we find it worthy to extend the theory of ought-to-do with a notion of belief.

Our long-term goal is to achieve a nuanced formalization of obligation and responsibility, where agents’

hierarchies of belief would serve as explanations of the actions that these agents perform interactively.
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Consider the following example, inspired by the famous film The Verdict, of 1982. Suppose that a

patient is admitted to the hospital in urgent need of surgery. The nurses draw up a chart with important

background information for the surgeons, but unfortunately the figure regarding how long it has been

since the patient last ate has a mistake. Anesthetics for this surgery should only be supplied if the patient

has had an empty stomach for at least eight hours, and they are deadly otherwise. Because of the mistake

in the chart, the anesthesiologist never comes to know that the patient had had a full meal just one

hour before admittance. Therefore, she gives the anesthetics and the patient dies. It is clear that the

doxastic state of the anesthesiologist plays a key role in determining whether she is morally responsible

for the patient’s death. On the causal level, the anesthesiologist is responsible for it. However, it seems

natural that she should not be held culpable, because she acted upon the false—but justified—belief

that the patient had an empty stomach before admittance. Moreover, the anesthesiologist is justified in

considering the action of supplying the anesthetics as something that she ought to have done, given the

circumstances.

There are several options of conceptual backgrounds for incorporating beliefs into deontic stit logic

(see [39], ([4], and [20] for some alternatives). In this work we adopt a quantitative version of agentive

belief, and we use probability measures (on the domain of stit structures) to represent doxastic states. An

agent’s subjective belief in a proposition is taken to depend on the probability that the agent assigns to

the indices at which the propositions holds. The reason for choosing a probabilistic semantics of belief is

that it allows us to base a notion of doxastic ought on a key concept in decision theory: maximization of

expected utility. Thus, we propose that at a given index of evaluation an agent had the doxastic obligation

to see to it that ϕ if ϕ is a consequence of all the actions that maximized expected (deontic) utility at

such index, where this utility is identified with the deontic value of the index just as in [23]. The basic

aspects of the logic that we develop here, then, can be summarized in this way: we extend the basic stit

language with (a) epistemic and doxastic operators, (b) objective and subjective ought-to-do operators

(whose logic was developed in [1]), and (c) a doxastic ought-to-do operator, meant to build up formulas

to characterize the effects of those actions that agents’ belief-systems render as optimal—i.e., the effects

of rational best responses (see [8]).

The paper is structured as follows. In Section 2 we introduce the syntax and semantics of the epis-

temic deontic logic that we use as basis for our theory of doxastic oughts. In Section 3 we present the

probabilistic conceptualization of belief that we intend to incorporate into the logic of Section 2, and we

elaborate on the reasons for choosing such a notion of belief. In Section 4 we introduce the syntax and

semantics for formulas involving the doxastic ought-to-do operator, and we discuss an example to illus-

trate its reach within a stit-theoretic analysis of responsiblity and excusability. In Section 5 we develop

an axiomatic system for the resulting logic and address its soundness, completeness, and decidability

results, after which we conclude.

2 Epistemic Deontic Stit

As discussed in [21], [13], and [1], an adequate theory of ought-to-do should account for agents’ epis-

temic states before and at the moments of action. This is all the more relevant in contexts of responsibility

attribution, and more specifically for excusability (see, for instance, [27]). In principle, if an agent does

not know how to fulfill an obligation, it should be excused for not having done so. The mentioned [21],

[13], and [1] all extend Horty’s stit theory of act utilitarian ought-to-do with knowledge operators and

explore the relation between uncertainty and obligation. In turn, here we will be extending the logics of



Ramı́rez Abarca & Broersen 283

[13] and [1] with modalities for belief.1

Definition 1 (Language) Given a finite set Ags of agent names, a countable set of propositions P such

that p ∈ P and α ∈ Ags, the grammar for the formal language LKO is given by:

ϕ := p | ¬ϕ | ϕ ∧ψ |�ϕ | [α ]ϕ | Kαϕ | ⊙[α ]ϕ | ⊙S [α ]ϕ .

�ϕ is meant to express the ‘historical necessity’ of ϕ (♦ϕ abbreviates ¬�¬ϕ). [α ]ϕ stands for

‘agent α has seen to it that ϕ .’ Kα is the epistemic operator for α , so that Kαϕ stands for ‘agent α knows

that ϕ holds.’ ⊙[α ]ϕ is meant to express that α objectively ought to have seen to it that ϕ . Finally,

⊙S [α ]ϕ is meant to express that α subjectively ought to have seen to it that ϕ .

As for the semantics, the structures on which we evaluate formulas of the language LKO are based on

what we call epistemic act-utilitarian branching-time frames.

Definition 2 (Epistemic act-utilitarian branching-time frames) A finite epistemic act-utilitarian

branching-time frame (eaubt-frame for short) is a tuple 〈M,⊏,Choice,{∼α}α∈Ags,Value〉 such that:

• M is a non-empty finite set of moments and ⊏ is a strict partial ordering on M satisfying ‘no

backward branching.’ Each maximal ⊏-chain is called a history, which represents a way in which

time might evolve. H denotes the set of all histories, and for each m ∈ M, Hm := {h ∈ H;m ∈ h}.

Tuples 〈m,h〉 are called indices iff m ∈ M, h ∈ H, and m ∈ h. Choice is a function that maps each

agent α and moment m to a partition Choicem
α of Hm, where the cells of such a partition represent

α’s available actions at m. For m∈M and h∈Hm, we denote the equivalence class of h in Choicem
α

by Choicem
α(h). Choice satisfies two constraints: (NC) No choice between undivided histories: For

all h,h′ ∈ Hm, if m′ ∈ h∩ h′ for some m′ ⊐ m, then h ∈ L iff h′ ∈ L for every L ∈ Choicem
α . (IA)

Independence of agency: A function s on Ags is called a selection function at m if it assigns to

each α a member of Choicem
α . If we denote by Selectm the set of all selection functions at m, then

we have that for every m ∈ M and s ∈ Selectm,
⋂

α∈Ags s(α) 6= /0 (see [7] for a discussion of the

property).

• For α ∈ Ags, ∼α is the epistemic indistinguishability equivalence relation for agent α , which

satisfies the following constraints: (OAC) Own action condition: For every index 〈m∗,h∗〉, if

〈m∗,h∗〉 ∼α 〈m,h〉 for some 〈m,h〉, then 〈m∗,h
′
∗〉 ∼α 〈m,h〉 for every h′∗ ∈ Choicem∗

α (h∗). We

refer to this constraint as the ‘own action condition’ because it implies that agents do not know

more than what they perform. (Unif−H) Uniformity of historical possibility: For every index

〈m∗,h∗〉, if 〈m∗,h∗〉 ∼α 〈m,h〉 for some 〈m,h〉, then for every h′∗ ∈ Hm∗ there exists h′ ∈ Hm such

that 〈m∗,h
′
∗〉 ∼α 〈m,h′〉. Combined with (OAC), this constraint is meant to capture a notion of uni-

formity of strategies, where epistemically indistinguishable indices should have the same available

actions for the agent to choose upon.

For each index 〈m,h〉 and α ∈ Ags, we define α’s information set at 〈m,h〉 as πα [〈m,h〉] :=
{〈m′,h′〉;〈m,h〉 ∼α 〈m′,h′〉}.

• Value is a deontic function that assigns to each history h ∈ H a real number, representing the

utility of h.

As for the deontic dimension, objective ought-to-do’s come from the optimal actions for an agent:

to have seen to it that ϕ is taken to be an objective obligation of an agent at a given index iff ϕ is an

1The models that we use are simpler and at the same time more general than the ones of [21]. The same [13] and [1] discuss

some advantages of their models over the ones developed in [21].
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effect of all the optimal actions for that agent at that index. The optimality of such actions is relative to a

dominance ordering, and this ordering depends on the value of the histories in those actions (provided by

Value). In order to present the semantics for formulas involving the ought-to-do operator, we therefore

need some previous definitions.

For m ∈ M and β ∈ Ags, we define Statem
β =

{

S ⊆ Hm;S =
⋂

α∈Ags−{β} s(α), where s ∈ Selectm
}

.

For α ∈ Ags and m∗ ∈ M, we first define a general ordering ≤ on P(Hm∗) such that for X ,Y ⊆ Hm∗ ,

X ≤ Y iff Value(h) ≤ Value(h′) for every h ∈ X ,h′ ∈ Y . The objective dominance ordering � is defined

such that for L,L′ ∈ Choicem∗
α , L � L′ iff for each S ∈ Statem∗

α ,L∩S ≤ L′∩S. The optimal set of actions

is the set Optimalm∗
α := {L ∈ Choicem∗

α ; there is no L′ ∈ Choicem∗
α such that L ≺ L′}.

As for subjective ought-to-do’s, they involve a dominance ordering as well, but one different to

the one for objective ought-to-do’s. To define this subjective dominance ordering, [13] introduces a

new semantic concept known as epistemic clusters, which are nothing more than a given action’s epis-

temic equivalents in indices that are indistinguishable to the one of evaluation. Formally, we have that

for α ∈ Ags, m∗,m ∈ M, and L ⊆ Hm∗ , L’s epistemic cluster at m is the set [L]mα := {h ∈ Hm;∃h∗ ∈
L s.t. 〈m∗,h∗〉 ∼α 〈m,h〉}. As a convention, we write m ∼α m′ if there exist h ∈ Hm, h′ ∈ Hm′ such that

〈m,h〉 ∼α 〈m′,h′〉. A subjective dominance ordering �s is then defined on Choicem∗
α by the following

rule: for L,L′ ⊆ Hm∗ , L �s L′ iff for each m such that m∗ ∼α m, for each S ∈ Statem
α , [L]

m
α ∩S ≤ [L′]mα ∩S.

Just as in the case of objective ought-to-do’s, this ordering allows us to think about a subjectively optimal

set of actions S−optimalm∗
α := {L ∈ Choicem∗

α ; there is no L′ ∈ Choicem∗
α s. t. L ≺s L′}, where we write

L ≺s L′ iff L �s L′ and L′ �s L. Analogous to what we mentioned regarding objective ought-to-do’s, the

idea is that to have seen to it that ϕ is a subjective obligation of an agent at a given index iff it is an effect

of all the subjectively optimal actions—and their epistemic equivalents—for that agent at that index.

As is customary, the models and the semantics for the formulas are defined by adding a valuation

function to the frames of Definition 2:

Definition 3 An eaubt-model M consists of the tuple that results from adding a valuation function V to
a eaubt-frame, where V : P → 2M×H assigns to each atomic proposition a set of moment-history pairs.
Relative to a model M , the semantics for the formulas of LKOBO is defined recursively by the following
truth conditions, evaluated at a given index 〈m,h〉:

M ,〈m,h〉 |= p iff M ,〈m,h〉 ∈ V (p)
M ,〈m,h〉 |= ¬ϕ iff M ,〈m,h〉 6|= ϕ
M ,〈m,h〉 |= ϕ ∧ψ iff M ,〈m,h〉 |= ϕ and M ,〈m,h〉 |= ψ
M ,〈m,h〉 |=�ϕ iff for each h′ ∈ Hm,M ,〈m,h′〉 |= ϕ
M ,〈m,h〉 |= [α]ϕ iff for each h′ ∈ Choicem

α (h),M ,〈m,h′〉 |= ϕ
M ,〈m,h〉 |= Kα ϕ iff for each 〈m′,h′〉 s.t. 〈m,h〉 ∼α 〈m′,h′〉,M ,〈m′,h′〉 |= ϕ
M ,〈m,h〉 |=⊙[α]ϕ iff for each L ∈ Optimalmα ,h

′ ∈ L implies that M ,〈m,h′〉 |= ϕ

M ,〈m,h〉 |=⊙S [α]ϕ iff for each L ∈ S− optimalmα , for each m′ s.t. m ∼α m′,h′ ∈ [L]m
′

α implies that

M ,〈m,h′〉 |= ϕ .

Satisfiability, validity on a frame, and general validity are defined as usual. We write ‖ϕ‖ to refer to the

set {〈m,h〉 ∈ M×H;M ,〈m,h〉 |= ϕ}.

3 Introducing Beliefs

The logic presented in the previous section offers many benefits for addressing complex interactive situ-

ations. The common thread among these situations is that agentive knowledge is taken into consideration

when deciding whether an agent is responsible for having brought about some circumstance (see Horty’s
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coin-flip puzzles in [21] and [1]). However, we want to enhance the analysis by accounting for agents’

belief-systems. As mentioned in the introduction, the beliefs that an agent has at a given index serve as

justifications or explanations for a particular choice of action of said agent at said index.

In this work we adapt the arguments of [6] and formalize a notion of full belief. To clarify, an

agent’s full belief in the truth of a proposition means that the agent assigns probability 1 to the set of

indices where the proposition is true. However, the typical logic of probabilistic full belief does not

involve classical probability. The reason is that it is well known that classical measures yield problems

for conditional beliefs and for belief revision. In classical-probability settings, conditioning on events

with measure 0 is not defined and therefore “it is unclear how to proceed if an agent learns something

to which she initially assigned probability 0” ([18], see also [17], [38], and [10]). Since we want to

incorporate to stit theory a paradigm of belief that allows for revision, we follow the method of [6] and

use conditional probability as primitive.2 Therefore, we build conditional-probability spaces upon the

branching-time structures from Definition 3. To simplify the terminology—and just as done in [6]—we

focus on finite discrete structures, for which every subset is measurable with respect to special two-place

probability functions mapping pairs of subsets to values in [0,1]. These functions underlie the semantics

for formulas of conditional belief B
ψ
α ϕ , which are meant to be read as ‘after learning ψ , agent α believes

that ϕ was the case (before the learning).’

Definition 4 (Syntax with conditional-belief) The grammar for the formal language LKOB (an exten-

sion of LKO) is given by: ϕ := p | ¬ϕ | ϕ ∧ψ |�ϕ | [α ]ϕ | Kαϕ | B
ψ
α ϕ | ⊙[α ]ϕ | ⊙S [α ]ϕ .

Definition 5 (Epistemic act-utilitarian discrete-conditional-probability branching-time frames) A fi-

nite epistemic act-utilitarian discrete-conditional-probability branching-time frame (dcpbt-frame for short)

is a tuple 〈M,⊏,Choice,{∼α}α∈Ags,{µα}α∈Ags,Value〉 such that M,⊏,Choice,{∼α}α∈Ags, and Value

are like in Definition 2, and for every α ∈ Ags, µα : P(M ×H)×P(M ×H)→ [0,1] is such that (a)

for each B ⊆ M ×H, µB
α := µα (·|B) is either a constant function with value 1 or a classical-probability

function on M×H, and (b) for every A,B,C ⊆ M×H, µα(A∩B|C) = µα(A|B∩C) ·µα(B|C).3

A dcpbt-model M results from adding a valuation function V to a dcpbt-frame, and the semantics

for the formulas of LKOB over such a model is defined recursively as in Definition 3, with the following

additional clause: M ,〈m,h〉 |= B
ψ
α ϕ iff µα (‖ϕ‖ | ‖ψ‖∩πα [〈m,h〉]) = 1.

Remark 1 In what follows, we will refer to any function q : P(M × H)×P(M ×H) → [0,1] that

meets the requirements (a) and (b) of Definition 5 as a vf-function. Therefore, if p : M ×H → [0,1]
is a classical-probability function, then the function pc : (M ×H)× (M ×H) → [0,1], defined by the

rules pc(A|B) =
p(A∩B)

P(B) if p(B) > 0 and pc(A|B) = 1 if p(B) = 0, is a vf-function (see [38] and [17,

Chapter 3]). This means that probability theory’s typical definition of conditional probability in terms of

a classical-probability function is a special instance of a vf-function.

2There have been various attempts to deal with the problem of conditioning on events of measure 0. The best known methods

involve (1) conditional-probability spaces ([31], [32], [14], [38], [6], [17]), (2) nonstandard probability spaces ([33], [19], [26]),

where events with infinitesimally small probability may still be learned or observed, and (3) lexicographic probability systems

([18]), which use sequences of probability measures with a descending order of importance.
3This means that µα is a two-place probability function that meets the following three axioms: (1) µα (A|A) = 1 for every

A ⊆ M×H, (2) if A∩B = /0, C 6= /0, and µC
α is not constant 1, then µα (A∪B|C) = µα(A|C)+µα(B|C), and (3) µα(A∩B|C) =

µα (A|B∩C) · µα(B|C). These three axioms are called the Popper-Rényi axioms for conditional-probability spaces, and they

were first introduced in [32]. Observe that if µα(B|M×H) = 0, then this condition does not prevent µα(·|B) from being defined,

and this is the quality of the theory of conditional-probability spaces that allows for conditioning on events with measure 0. We

illustrate this property and its implications for conditional belief with the example included in Section 4.
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Endowed with semantics for formulas involving conditional belief, we take plain (unconditional)

belief to be represented by beliefs conditional on a tautology. Therefore, in what follows we write Bαϕ to

denote B⊤
α ϕ . With these formulas and the models they are evaluated on, we have extended the epistemic

stit logic of Section 2 into a system that deals with both knowledge and belief. As pointed out in [5],

[4], and [6], the truth conditions in Definition 5 yield a logic for which the knowledge operators validate

the S5 schemata, the conditional-belief operators validate the K schema, and the following interaction

schemata are valid: Kαϕ → B
ψ
α ϕ (Persistence of knowledge); B

ψ
α ϕ → KαB

ψ
α ϕ and ¬B

ψ
α ϕ → Kα¬B

ψ
α ϕ

(Full introspection of belief ). Additionally, the following axioms that regard revision are also valid:

B
ϕ
αϕ (Hypotheses are accepted); B

ψ
α ϕ → (B

ϕ∧ψ
α θ ↔ B

ψ
α θ) and ¬B

ψ
α¬ϕ → (B

ϕ∧ψ
α θ ↔ B

ψ
α (ϕ → θ))

(Minimality of revision); ϕ →¬B
ϕ
α⊥ (Weak consistency of belief ).4

Why account for belief revision? Well, in [18] Halpern argues that belief revision plays a critical role

in the analysis of strategic reasoning in extensive-form games, and since the stit semantics for agency

over branching-time structures can adopt most ideas of the theory of extensive-form games (see [23,

Chapter 7], [15], and [2]), we believe that stit theory should also benefit from an account of conditional

belief and of belief revision. There is a common idea that if a formalization of the temporal evolution of

a game incorporates the assumption that players can change their beliefs about the game as it progresses

due to some flow of information—for instance by drawing conclusions from opponent’s moves—then

the analysis of interactive situations becomes much richer ([9]).5

In stit theory, branching-time structures represent an exhaustive set of possibilities for temporal evo-

lution according to multi-agent interaction, and a treatment of belief change allows for a description

of how agents could have constrained those possibilities if they had learned information regarding past

choices about which they are uncertain. For instance, in the example that we mentioned in the intro-

duction, the doctor did not know that the patient had eaten before being admitted to the hospital, and

moreover the doctor learned—from the mistaken chart—that the patient had not eaten. In principle, if

the doctor had learned that the patient had in fact eaten, then her beliefs should have been different. In

other words, she would revise her beliefs after learning that the patient had eaten before being admit-

ted to the hospital. By incorporating conditional-belief modalities into stit theory, we can analyze both

syntactically and semantically the different ways in which doxastic states can change according to the

learning of information. In this way, we can formalize further the justification of choices of action that

4Observe that the semantics for conditional belief implies that an agent’s belief of ϕ given ψ is relative to the agent’s

epistemic state. In other words, we take it that conditional beliefs depend on the information available to the agent.
5One can easily associate a belief-revision Kripke-structure to an extensive-form game to evaluate formulas that reflect

agents’ belief changes as the game “progresses” (see [9] for an illustration of such an association in the analysis of backward

induction in extensive-form games). The typical way to do so is to think of full strategy profiles—functions that associate each

node to a player’s move (or strategy) at that node—as possible worlds, so that the formulas evaluated on these worlds “[...]

describe the way the game is actually played, and they provide a set of counterfactuals for evaluating the payoffs if the action

taken at any node deviates from the specified action.” The evaluation of formulas at full strategy profiles is reminiscent of stit

theory’s use of histories as part of the indices of evaluation, but in extensive-form games one also considers profiles that cannot

be realized in the structure of the game: regardless of whether the nodes can be reached in a play or not, the functions that

serve as possible worlds map each node to a move (or strategy) that can be played at that node. It is this feature of the belief-

revision structure associated to an extensive-form game that makes conditional-belief modalities very useful. With the syntax

of conditional-belief, we can represent the beliefs of an agent at a node that was actually reached in a play, by conditioning on

formulas that ensure that such a node was reached. Although this feature of the language and the semantics of conditional belief

could be very well exploited in the context of strategic stit theory ([23, Chapter 7]), here we propose that it is also relevant even

in instantaneous-stit theory, namely due to agents’ uncertainty across the set of indices. If an agent had uncertainty about the

index of evaluation it found itself at (because of some lack of information), then the conditional-belief modalities allow us to

reason syntactically about the counterfactual situation in which the agent’s learning of such information would change its state

of uncertainty.
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have moral consequences.

4 Introducing Doxastic Oughts

In keeping with EGT, we argue that agents can be seen as having a doxastic sense of what they ought to

do in interactive situations, and that this sense can be traced back both to their beliefs regarding the index

at which they are and to the utilities of the histories in their available actions. Rather than delving into

the analyses of rationality and rational choice in terms of best responses (see [36] and [29] for surveys

of such analyses), we use the concepts of utility and belief in order to characterize a doxastic sense of

ought-to-do in stit theory. Here, utility and belief underlie the process by which the beliefs of an agent

explain whether that agent was justified in making a particular choice of action. Again, this extension of

deontic stit is important to treat the kind of problems in excusability and responsibility attribution that

stit theory deals with ([27]), as we will illustrate by analyzing the example presented in the introduction.

Our interpretation of belief rests upon probabilities assigned to the alternative histories of branching-

time structures. Inspired by the customary treatment of decision rules under uncertainty (or risk) from

decision theory,6 we identify an agent’s doxastic sense of ought-to-do with the effects of actions that

maximize expected (deontic) utility.

Expected utility theory has somewhat settled interpretations for the components of interactive deci-

sion making (see [34], [24], and [25]). Typically, the utilities of outcomes quantify agents’ preferences,

and the probabilities assigned are seen either as objective measures for the frequency with which sets

of outcomes—the events—ensue or as subjective representations of agentive belief (see Footnote 6). As

mentioned before, in the context of deontic stit based on act utilitarianism we interpret the value of a

history—Value(h)—as its deontic utility for the whole group of agents, with no specific interpretation

for the word ‘utility.’ This means that we do not identify the deontic utility of a history with agentive pref-

erence but rather allow for the assignment of values to “accommodate a variety of different approaches”

(see Section 2.2 [23, Chapter 3]). The notion of deontic utility itself is taken as primitive in act utilitar-

ian stit, and it is a general notion that applies to the whole set of agents—not only to individual ones.

Therefore, it may be thought of—but not necessarily so—as the “total utility of the set of agents in that

history, their average utility, or perhaps some distribution-sensitive aggregation of the utilities of these

individual agents” ([23], p. 38). As for the probabilities, it must be clear by now that we interpret them

as a measure of the agents’ individual doxastic state.

Definition 6 Let M be a dcpbt-model. Let m ∈ M, h ∈ Hm, and α ∈ Ags. Let L ∈ Choicem
α . We define

α’s expected deontic utility of L at 〈m,h〉—denoted by EU
〈m,h〉
α (L)—as the value given by the following

formula: EU
〈m,h〉
α (L) := ∑

m′∼α m,h′∈[L]m
′

α

µα ({h′} | πα [〈m
′,h′〉]) ·Value(h′).

Remark 2 This means that we calculate α’s expected deontic utility for one of its available actions L

at m by summing the utilities of all the histories lying in the epistemic clusters of L, weighted by the

probabilities that α assigns to those histories, conditional on α’s information set at the index where α

6It is convenient to remark about subtle differences in definitions for overlapping concepts. Decision theorists typically

distinguish between choice under uncertainty, for which decision makers do not know the outcome of a decision they engage

in, and choice under risk, for which decision makers have probabilistic information regarding the outcomes. In decision theory,

when agents have such probabilistic information for choices under risk, it means that they have objective information regarding

the outcomes. In other words, the probabilistic information is not meant to embody an agent’s subjective beliefs regarding the

outcomes. When subjective probabilities are introduced, like the ones we deal with here, the general view is to treat these cases

as involving choice under uncertainty (see [30], [35]).
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is. Observe that for every m ∈ M and L ∈ Choicem
α , we have that EU

〈m,h〉
α (L) = EU

〈m,h′〉
α (L) for every

h,h′ ∈ Hm.

Our notion of expected deontic utility can be seen as a stit version of EGT’s interpretation of an

agent’s expected utility for a given strategy, conditional on that agent’s information. According to [29], in

EGT an agent’s expected utility for one of its strategies is calculated with respect to so-called conjectures.

An agent’s conjecture at a given world is a probability distribution on the set of all strategy profiles

involving the other agents. Such a distribution is typically based on probabilities conditional either on

the agent’s strategy-choice at the world of evaluation or on the agent’s information set at said world

([29]). Our framework differs from EGT’s in three essential points: (1) we do not have individual

utilities for each outcome; (2) in our structures, each possible world (which we refer to as an index) has

a deontic utility, whereas in EGT only outcomes—or full strategy profiles—have utilities; and (3) while

EGT regards information sets as subsets of the available strategies, we do not impose this condition—in

fact, the semantic condition (OAC) that we adopt yields that information sets are unions of choice cells.

Since dcpbt-models are finite, we have that for every m ∈ M and h ∈ Hm, the set {EU
〈m,h〉
α (L);L ∈

Choicem
α} has a maximum. Therefore, there are actions that maximize α’s expected deontic utility at

every index, namely the ones whose expected deontic utility is the same as said maximum. We denote

by EU
〈m,h〉
α the set of actions that maximize α’s expected deontic utility at 〈m,h〉.7

Definition 7 (Full syntax) The grammar for the formal language LKOBO (an extension of LKOB) is

given by: ϕ := p | ¬ϕ | ϕ ∧ψ |�ϕ | [α ]ϕ | Kαϕ | B
ψ
α ϕ | ⊙[α ]ϕ | ⊙S [α ]ϕ | ⊙B[α ]ϕ .

We use the same dcpbt-models from Definition 5 to evaluate the formulas of LKOBO. The truth

conditions are the same as before, with the following additional clause: M ,〈m,h〉 |= ⊙B[α ]ϕ iff for

each L ∈ EU
〈m,h〉
α we have that [L]m

′

α ⊆ ‖ϕ‖ for all m′ such that m ∼α m′. In other words, at a given index

it was the case that an agent doxastically ought to have seen to it that ϕ iff ϕ is an effect both of all the

actions that maximized the agent’s expected deontic utility at said index and of the epistemic equivalents

of these actions.

4.1 Example

In order to illustrate the reach of the semantics introduced above, we present a formal analysis of the

example in the introduction, using dcpbt models.

Example 1 Let Ags = {patient,doctor}. Let M and ⊏ be defined so as to be represented by the diagram

in Figure 1. We have three moments (m1 −m3) and four histories (h1 −h4). These histories represent the

different possibilities in which time may have evolved according to the actions available both to patient

and doctor. The actions available to patient at moment m1 are E1, which we interpret as the action of

refusing to eat, and E2, which we interpret as the action of eating. It is according to such actions that

time progressed either into moment m2 or into moment m3. At both these moments, doctor chose from

her available actions and executed one of them. At moment m2, the actions available to doctor are L1,

which we interpret as the action of supplying anesthetics, and L2, which we interpret as the action of

7Formally, our definition of expected deontic utility is in fact an instance of probability theory’s conditional expectation

with respect to an event—albeit in the setting where conditional probability is primitive. In this case, the so-called event is the

information set of a given agent at the index of evaluation. Thus, if L is an available action for an agent at index 〈m,h〉, and

if E denotes the expected value of the random variable Value with respect to µα (·|H) (where we recall that H is the set of all

histories), then EU
〈m,h〉
α (L) = E(Value|πα [〈m,h′〉]) for any h′ ∈ L.
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refusing to supply anesthetics. Similarly, at moment m3 the actions available to doctor are L3, which we

interpret as the action of supplying anesthetics, and L4, which we interpret as the action of refusing to

supply anesthetics.

We model the utilities of the outcomes according to the statement of the example. Therefore, history

h1, where at m1 patient refused to eat and at m2 doctor supplied the anesthetics, gets the highest utility—

Value(h1) = 1—due to the fact that such a history represents the situation in which the patient got ready

for the surgery without any trouble. Histories h2 and h4 get a neutral utility of 0: both of them imply that

doctor refused to supply anesthetics and thus the patient is not ready for the surgery. History h3, on the

other hand, gets a negative utility of −1, since it implies that at m1 patient ate and at m3 doctor supplied

the anesthetics, leading to patient’s death. As implied by the statement of the example, we take h3 to be

the actual history.

The epistemic-doxastic states and ought-to-do’s that we focus on are those of doctor, since they

illustrate important semantic properties of our logic. We represent doctor’s epistemic states with blue

dashed lines, so that at both m2 and m3, along every history running through them, doctor did not know

whether the patient had eaten or not, but she knew which action she performed. The doxastic states of

doctor are represented by the conditional-probability function µdoctor , given by the following rules. Let

pdoctor : P(M ×H)→ [0,1] be a discrete classical-probability function such that pdoctor(〈mi,h j〉) =
.9
4

for i, j ∈ {1,2}, pdoctor(〈m1,hi〉) =
.1
4

for i ∈ {3,4}, and pdoctor(〈m3,hi〉) =
.1
4

for i ∈ {3,4}. We then

define µα so that µdoctor(A|B) =
pdoctor(A∩B)

pdoctor(B)
.

E1 E2

m1

Choice
m1

patient

L3 L4

m3

Choice
m3

doctor

h4h3

L1 L2

m2

Choice
m2

doctor

h2h1
1

a∧ r
¬e

0
¬a∧¬r
¬e

−1
a∧d

e

0
¬a∧¬r
e

Figure 1: Example from The Verdict

Let e denote the atomic proposition ‘the patient has eaten,’ let a denote the atomic proposition ‘anes-

thetics are supplied to the patient,’ let r denote the atomic proposition ‘the patient is ready for surgery,’

and let d denote the atomic proposition ‘the patient will die.’ According to Definition 5, these atomic

propositions and the formulas that are recursively built with them can be taken as true or false depend-

ing on the index of evaluation. For instance, we model the example so that at index 〈m2,h1〉 it was the

case that patient ate, that doctor supplied the anesthetics, and that patient became ready for surgery.

(M ,〈m2,h1〉 |= e∧a∧ r).

As for the evaluation of formulas involving the basic stit-theory operators, observe that some in-

stances of it are M ,〈m2,h1〉 |= �e (at this index it was the case that it was settled that the patient did

not eat), M ,〈m3,h3〉 |= [doctor]d (at this index it was the case that the doctor saw to it that the pa-

tient died). As for formulas involving the epistemic-doxastic operators, we have that for i ∈ {2,3} and

j ∈ {1,2,3,4}, M ,〈mi,h j〉 |= ¬Kdoctore∧¬Kdoctor¬e (at said indices it was the case that the doctor did
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not know whether the patient had eaten or not) and M ,〈mi,h j〉 |= Kdoctor[doctor]a∨Kdoctor [doctor]¬a

(at said indices it was the case that the doctor knew whether she was supplying the anesthetics or not).

Moreover, we have that M ,〈m3,h3〉 |= ¬Bdoctor¬e (at the actual index it was not the case that the doctor

fully and unconditionally believed that the patient had not eaten), that M ,〈m3,h3〉 |= Be
doctord (at the

actual index it was the case that if the doctor had learned that the patient had in fact eaten, then she

would have fully believed that the patient would die), and that M ,〈m3,h3〉 |= Be
doctor[doctor]d (at the

actual index it was the case that if the doctor had learned that the patient had in fact eaten, then she

would have fully believed that she would kill the patient).

As for formulas involving the deontic operators, we first observe that

• Optimal
m2

doctor = {L1}, Optimal
m3

doctor = {L4}.

• S−Optimal
m2

doctor = {L1,L2}, S−Optimal
m3

doctor = {L3,L4}.

• EU
〈m2,hi〉
doctor = {L1} (i ∈ {1,2}), EU

〈m3,hi〉
doctor = {L3} (i ∈ {3,4}).

Therefore, for instance we have that M ,〈m2,hi〉 |=⊙[doctor]a∧¬Kdoctor ⊙ [doctor]a (i ∈ {1,2}) (at

moment m2, along any history running through it, it was the case that the doctor objectively ought to have

supplied the anesthetics, but the doctor did not know that for sure), that M ,〈m3,hi〉 |= ⊙[doctor]¬a∧
¬Kdoctor ⊙ [doctor]¬a (i ∈ {3,4}) (at moment m3, along any history running through it, it was the case

that the doctor objectively ought to have refrained from supplying the anesthetics, although the doctor

did not know that), that M ,〈mi,h j〉 |= ¬⊙S [doctor]a∧¬⊙S [doctor]¬a (i ∈ {1,2} and j ∈ {1,2,3,4})

(at no index it was the case that the doctor either subjectively ought to have supplied the anesthetics or

subjectively ought to have refrained from supplying them), that M ,〈mi,h j〉 |=⊙B[doctor]a∧Kdoctor ⊙B

[doctor]a (i ∈ {2,3} and j ∈ {1,2,3,4}) (at every index it was the case that the doctor doxastically

ought to have supplied the anesthetics and that she knew that). Observe that we could model the fact

that patient’s information chart was mistaken by the fact that M ,〈m3,h3〉 |= B¬e
doctor(¬e∧⊙[doctor]a)

(at the actual index it was the case that if the doctor had learned that the patient had not eaten (as she

did by the mistake in the chart), then she would have fully believed that the patient had not eaten and

that she objectively ought to have supplied the anesthetics.) Coupled with the fact that doctor did not

know that patient had in fact eaten, the satisfaction of these last two formulas at the actual index should

in principle provide a good reason for excusing doctor of actually having caused patient’s death.

5 Axiomatization and Logic Properties

Since one of the main contributions of the present paper is the introduction of doxastic oughts, we

review some of the properties of the semantics for formulas involving the operator ⊙B[α ]. First of

all, we must say that this modal operator yields a KD45 logic. Secondly, the doxastic sense of ought

validates a version of Kant’s imperative ought implies can, as explained by the fact that the following

formula is valid with respect to the class of dcpbt models: ⊙B[α ]ϕ → ♦Kαϕ . We also have that if an

agent doxastically ought to have seen to it that ϕ , then the agent knows that this is settled—the formula

⊙B[α ]ϕ → Kα�⊙B [α ]ϕ is valid as well. As for the interaction between this doxastic sense of ought

and the objective/subjective ought-to-do’s, we have that 6|= ⊙B[α ]ϕ → ⊙[α ]ϕ and that 6|= ⊙[α ]ϕ →
⊙B[α ]ϕ (as can be inferred from Example 1). Similarly, we have that 6|= ⊙[α ]Bϕ →⊙S [α ]ϕ and that

6|= ⊙S [α ]ϕ → ⊙B[α ]ϕ . The first invalidity can be inferred from Example 1. The second one can be

inferred from a variation of Example 1 as follows: let Value(h1) = 2, Value(h2) = 1, Value(h3) = 0,

and Value(h4) = 0; let pdoctor be a discrete classical-probability function such that pdoctor(〈m2,h1〉) =
.1
2

,

pdoctor(〈m2,h2〉) =
.9
2

, pdoctor(〈m3,h3〉) =
.9
2

, pdoctor(〈m3,h4〉) =
.1
2

, and pdoctor has constant value 0 on
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all other indices; let µα be defined as in Example 1; then it is the case that M ,〈mi,h j〉 |=⊙S [doctor]a∧
⊙B[doctor]¬a (i ∈ {2,3} and j ∈ {1,2,3,4}).

In order to further the understanding of our logic, we present a sound, complete, and decidable proof

system for it.

Definition 8 (Proof system) Let Λ be the proof system defined by the following axioms and rules of

inference:

• (Axioms) All classical tautologies from propositional logic. The S5 axiom schemata for �, [α ],
Kα . The following axioms and schemata for the interactions of formulas with the given operators:

⊙[α](ϕ → ψ)→ (⊙[α]ϕ →⊙[α]ψ) (A1)
�ϕ → [α]ϕ ∧⊙[α]ϕ (A2)
�⊙ [α]ϕ ∨�¬⊙ [α]ϕ (A3)
⊙[α]ϕ →⊙[α]([α]ϕ) (A4)
⊙[α]ϕ → ♦[α]ϕ (Oic)
For n ≥ 1 and pairwise different α1, . . . ,αn,
∧

1≤k≤n♦[αi]ϕi → ♦
(

∧

1≤k≤n[αi]ϕi

)

(IA)
Kα ϕ → [α]ϕ (OAC)
♦Kα ϕ → Kα♦ϕ (Uni f −H)
⊙S [α](ϕ → ψ)→ (⊙S [α]ϕ →⊙S [α]ψ) (A5)
⊙S [α]ϕ →⊙S [α](Kα ϕ) (A6)
Kα�ϕ →⊙S [α]ϕ (s.N)
⊙S [α]ϕ → ♦Kα ϕ (s.Oic)
⊙S [α]ϕ → Kα�⊙S [α]ϕ (s.Cl1)
¬⊙S [α]ϕ → Kα�¬⊙S [α]ϕ (s.Cl2)
Bα(ϕ → θ )→ (Bα ϕ → Bα θ ) (A7)

(ψ ↔ ϕ)→ (Bα θ ↔ B
ϕ
α θ ) (A8)

Kα ϕ → Bα ϕ (PK)
Bα ϕ → Kα Bα ϕ (FIB1)
¬Bα ϕ → Kα¬Bα ϕ (FIB2)

B
ϕ
α ϕ (HA)

Bα ϕ → (B
ϕ∧ψ
α θ ↔ Bα θ ) (MBR1)

¬Bα¬ϕ → (B
ϕ∧ψ
α θ ↔ Bα (ϕ → θ )) (MBR2)

ψ →¬Bα⊥ (WCon)
⊙B [α](ϕ → ψ)→ (⊙B [α]ϕ →⊙B [α]ψ) (A9)
⊙B [α]ϕ →⊙B [α](Kα ϕ) (A10)
Kα�ϕ →⊙B [α]ϕ (d.N)
⊙B [α]ϕ → ♦Kα ϕ (d.Oic)
⊙B [α]ϕ → Kα�⊙B [α]ϕ (d.Cl1)
¬⊙B [α]ϕ → Kα�¬⊙B [α]ϕ (d.Cl2)

• (Rules of inference) Modus Ponens, Substitution, and Necessitation for all modal operators.

In the Appendix of this work, we discuss all these axioms and schemata, and we show that the proof

system Λ is sound and complete with respect to a class of models that are more general than the ones

introduced in Definition 5. These models differ from dcpbt-models in two main qualities: (1) following

[1], they are multi-valued to the extent that instead of only one deontic value function, they have three:

one for the objective ought-to-do’s, one for the subjective ones, and one for the doxastic ones; and (2)

they are Kripke-structures based on domains of possible worlds.8 The proof of completeness in the

Appendix also shows that Λ is decidable. This is a consequence of the logic’s finite model property,

which is shown through obtaining a finite canonical model using arguments typical of modal filtrations.

8Nevertheless, one can adapt the correspondence between Kripke models and branching-time models from [40] and [1] to

show that Λ is sound and complete with respect to the class of multi-valued dcpbt models.
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All these results become relevant in a specific line of research where proof systems of deontic logic are

intended to help in the testing of ethical behavior of AI through theorem-proving and model-checking

(see [3], [28], [11]).

Unfortunately, the Appendix is too long to include it here. Therefore, the reader can only find it at

https://www.researchgate.net/publication/351656805_Appendix.

6 Conclusion

“The performance is sometimes masterful, extremely clever, but the control of the actions, their source,

is deranged and depends on various morbid impressions,” says the character Zossimov, in Dostoevsky’s

Crime and Punishment. From the discussions that appear in this paper, it is clear that what agents know

and what they believe at the moment of acting—as well as the obligations that arise according to these

knowledge and beliefs—can be interpreted as “sources” of their actions, as some of those “impressions”

on which agency depends that Zossimov speaks about.

The main novelty of the present, logic-based, treatment of these “sources” of agency lies in the

incorporation of beliefs into deontic stit theory. The relation between (a) a given agent’s doxastic state,

(b) the actions that are available to said agent at some point of time, and (c) the deontic utility of such

actions, gives us the opportunity to reason about a sense of agentive obligation that is based on the idea

of maximizing expected deontic utility. Thus, we end up with a reasonable measure for explaining why

agents could have favored certain actions over others, something that is useful in formal analyses of

responsibility attribution, for instance.

A prominent feature of our analysis is the use of conditional beliefs. We mentioned that, since

stit theory’s account of interactive scenarios would greatly benefit from adopting viewpoints typical of

EGT and of epistemic logic, we wanted to introduce a notion of belief that would satisfactorily open up

possibilities for belief revision. It must be said, then, that the example discussed in Section 4 does not

make heavy use of the theory of belief revision underlying the probabilistic semantics of belief that we

introduced. Although this was a choice made more for the sake of simplicity than anything else, it is true

that the logic presented here is rather a ‘first step’ toward an appropriate theory of belief-based action

and obligation—a theory that would admit revision in both the categories of beliefs and obligations. A

very interesting problem for future work along these lines, then, regards implementing the ideas of belief

revision—in terms of conditional belief—to formalize conditional doxastic oughts. The basic intuition

is that, if at some index an agent has learned that ψ is the case, then the doxastic obligations that such an

agent had at the index should in principle be subject to the revision with ψ—just as beliefs are. Formulas

of the form ⊙B[α ]ψ ϕ could then capture these revised doxastic oughts, such that possible semantics

for these formulas could depend on the restriction of the model’s domain to indices where ψ holds—

just as happens for the version of conditional belief discussed in this paper. In fact, one can find good

pointers in this respect in [23, Chapter 4], since a stit-theoretic account of conditional ought-to-do’s is

presented there. An adequate axiomatization of such possible conditional doxastic oughts, however, is

still a complicated open problem.

In conclusion, this work deals with important questions in the modeling of agency, knowledge, belief,

and obligation. We presented logic-based characterizations of these concepts, that allowed us to devise

unequivocal representations of interactive scenarios, where agents within an environment choose courses

of action through time and where those choices could be traced back both to the epistemic-doxastic states

of the agents and to different senses of obligation. The logic developed here lays the groundwork for

interesting future research, and there is still plenty of work to do.

https://www.researchgate.net/publication/351656805_Appendix
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