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We investigate Kantian equilibria in finite normal form games, a class of non-Nashian, morally moti-
vated courses of action that was recently proposed in the economics literature. We highlight a number
of problems with such equilibria, including computational intractability, a high price of miscoordi-
nation, and problematic extension to general normal form games. We give such a generalization
based on concept of program equilibria, and point out that that a practically relevant generalization
may not exist. To remedy this we propose some general, intuitive, computationally tractable, other-
regarding equilibria that are special cases Kantian equilibria, as well as a class of courses of action
that interpolates between purely self-regarding and Kantian behavior.

1 Introduction

Game Theory is widely regarded as the main conceptual foundation of strategic behavior. The promise
behind its explosive development (at the crossroads of Economics and Computer Science) is that of
understanding the dynamics of human agents and societies and, equally importantly, of guiding the engi-
neering of artificial agents, ultimately capable of realistic, human-like, courses of action. Yet, it is clear
that the main models of Game Theory, primarily based on the self-interested, rational actor model, and
exemplified by the concept of Nash equilibria, are not realistic representations of the richness of human
interactions. Concepts such as bounded rationality [63], and the limitations they impose on the compu-
tational complexity of agents’ cognitive models [56] can certainly account for some of this difference.
But this is hardly the only possible explanation: People behave differently from ideal economic agents
not because they would be irrational [2], but since many human interactions are cooperative, rather than
competitive [68], guided by social norms such as reciprocity, fairness and inequity-aversion [13], often
involving networked minds, rather than utility maximization performed in isolation [27], driven by moral
considerations [69] or by other not purely self-regarding behaviors, e.g. altruism [36] and spite [17, 16].

Moral considerations (should) interact substantially with game theory: indeed, the latter field has
been used to propose a reconstruction of moral philosophy [9, 8, 10]; conversely, some philosophers
have gone as far as to claim that we need a moral equilibrium theory [65]. Whether that’s true or not,
it is a fact that homo economicus, the Nash optimizer of economics, is increasingly complemented by a
rich emerging typology of human behavior [28], that also contains (in Gintis’s words) "homo socialis,
the other-regarding agent who cares about fairness, reciprocity, and the well-being of others, and homo
moralis 1 ... the Aristotelian bearer of nonconsequentialist character virtues".2 These claims are well-
documented experimentally: for instance, Fischbacher et al. [23] investigated the percent of people

1since our agents are not necessarily human, we will use alternate names such as "moral agent" for this type of behavior.
2Gintis proposes a taxonomy of behavior with three distinct types of preferences: self-regarding, other regarding and

universalist; a further relevant distinction is between so-called private and public personas, that leads to further types of
behavior such as homo Parochialis, homo Universalis and homo Vertus. See [28] for further details.
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having self-regarding preferences in a public goods game, showing that it is in the range of 30-40%,
while the remaining were either other-regarding or moral agents. Since artificial agents (will) interact
with humans, such concerns are highly relevant to the design of multiagent systems and justify the
study of alternative other-regarding notions, e.g. Rong and Halpern’s [32, 55] "cooperative equilibria" or
dependency theory [62, 30]. Other-regarding considerations could be encoded (e.g. [22]) as externalities
into agents’ perceived utilities, that may lead them away from straightforward maximization of their
material payoffs. However, keeping them explicit may be important for agent implementations.

The purpose of this paper is to contribute to the emerging literature on non-Nashian, morally in-
spired game theoretic concepts and, equally important, to bring its concerns and methods to the attention
of the various communities represented in TARK. We are inspired by what we believe is one of the
most intriguing classes of equilibrium concepts that can be seen as morally grounded: Kantian (a.k.a.
Hofstadter) equilibria [54]. This notion emerged from three separate lines of research converging on
an identical mathematical definition, but justifying it, however, from several very different perspectives:
superrationality [38, 25], team reasoning [4], and Kantian optimization, respectively [54].

The common framework (most crisply developed for symmetric coordination games) only considers
as relevant the action profiles where all agents choose the same action, choosing the action x that, if
played by everyone, maximizes agents’ (identical) utility functions. The justification of this restriction
depends on the perspective: superrationality assumes that if rationality constrains an agent to choose a
specific course of action x, then the same reasoning compels all agents (at least in the case of symmetric
games, when all agents are positionally indistinguishable from the original agent) to also choose x.3 In
contrast, Kantian optimization justifies the limitation to symmetric profiles in a very different manner:
Roemer [52] suggested that agents often ignore the potential for action of the other players, acting instead
according to the Kantian categorical imperative [58] "act only according to that maxim whereby you can,
at the same time, will that it should become a universal law", that is, choose a course of action that, if
adopted by every agent, would bring all agents the highest payoff. 4 One way to formalize this idea,
employed e.g. in [1], is to decouple the material payoffs agents receive from their (perceived) utility,
which agents maximize in order to select the action. Specifically, assume the given agent i plays strategy
x against action profile y. We assume that the material payoff the agent receives is πi(x,y). On the other
hand the utility the agent uses to evaluate alternative x may not be equal to πi(x,y) and may in fact, have
in fact nothing to do with y at all! Instead, ui(x,y) = πi(x,x−i), where x−i is the action profile where
all agents other than i play x as well. That is, the agent evaluates the desirability of action x in isolation
from the actions of the other players, as if choosing x could somehow "magically" determine the other
players to adopt the same strategy. 5 Alternatively, π(x,x−i) measures the extent to which action x is "the
morally best course of action". Such a justification is cognitively plausible: experiments have shown
[45] that people often employ such "universalization" arguments when judging the morality of a given
behavior.

3To cite Hofstadter: "If reasoning dictates an answer, then everyone should independently come to that answer. Seeing
this fact is itself the critical step in the reasoning toward the correct answer [...]". Though superrationality does away with the
assumption of counterfactual independence of Nash equilibria, it is otherwise compatible with a particular version of homo
economicus that requires some very strong assumptions on agent rationality (see [25] for a discussion).

4As recognized by Roemer himself and discussed e.g. in [14], the connection of Kantian equilibria to actual Kantian ideas
is quite loose. Another possible interpretation is that Kantian equilibria embody rule utilitarianism [35]. Finally, see [60] for a
discussion of the normative aspects of Kantian equilibria.

5Frank [26] refers to this as voodoo causation. Elster [21] argues that Kantian optimization seems to be rooted in a form
of magical thinking, "causing agents to act on the belief (or act as if they believed) that they can have a causal influence on
outcomes that are effectively outside their control". We take a descriptive, rather than normative position: such reasoning is
something people simply do; understanding its implications is strategically valuable.
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The questions we attempt to start answering in this paper are:
1. Can we extend the definition of Kantian equilibria to cover all natural cases of "Kantian behavior"?

However, we are not simply looking in our generalization for yet another equilibrium notion of pri-
marily mathematical interest, but for one satisfying specific tractability requirements that ensure
easy implementation in computational agents. Specifically, a target concept should at least be:
I. expressive, i.e. indicative of realistic behavior of human agents in sufficiently typical situations

II. cognitively plausible: the equilibrium should not be justifiable in terms of expensive epistemic
assumptions (the way common knowledge of rationality can be used to justify Nash equilibria [3]);

III. logically tractable: proposed equilibria should be easy to specify formally, in a way that translates
to efficient implementations.

IV. computationally tractable: equilibria should be easy to compute [56], since bounded rational
agents are assumed to compute (and play) them.

The main message of the paper is that such an extension is possible, but any general notion of
Kantian equilibria may be of theoretical interest only: while we give an interesting extension for
certain symmetric games (Sec. 5) inspired by the concept of program equilibria, it’s not clear how
to further extend it. Together with intractability (Thm. 2) this suggests that a general, practically
relevant, notion of Kantian equilibrium might not exist.

2. What is the relation between Kantian equilibria and Bacharach’s (informally defined) team-reasoning
equilibria [4]? The answer is that Kantian equilibria are a proper subset of team-reasoning equilibria.

3. Given that the answer to Q1 is negative, are there more specialized equilibria related to Kantian opti-
mization that satisfy (I)-(IV)? We will show that there exist, indeed, several more restrictive equilibrium
notions, satisfying tractability and plausibility constraints, and relate them to Kantian equilibria.

4. Real people are seldom purely selfish or purely Kantian. (How) can we formalize this? We give such
a definition, and motivate it through the case of Prisoners’ Dilemma.

The outline of the paper is as follows: In Section 3 we review some basic notions. In Section 4
we obtain some further results on (and highlight some limitations of) Kantian equilibria: first of all, we
point out that finding a mixed Kantian equilibrium is computationally intractable even for two-player
symmetric games (Theorem 2). Second, multiple Kantian equilibria may exist, and lack of coordination
on the same equilibrium may be detrimental to players, even with all of them playing a common linear
combination of Kantian actions. In Section 5 we discuss the problem of extending Kantian equilibria
to non-symmetric games. giving a proposal based on the concept of program equilibria. As such, our
proposal inherits the problems of this concept. Given these problems, in Section 6 we propose several
other-regarding equilibria.6 We show (Theorem 6) that these equilibria can be computed efficiently, that
they are indeed Kantian equilbria (according to our generalized definition), and that they yield Kantian
equilibria for symmetric coordination games. Finally, in Section 7 we relax the assumption that the agents
are other-regarding: we assume that agents have a degree of greed, zero for Kantian agents, infinite for
Nashian agents. We show (Theorem 8) how our definition applies to Prisoners’ Dilemma.

For reasons of space, most proof details are deferred to a longer version of the paper, available
on arXiv [40]. So have we done, for reasons of abundance of technical details, with some of the results:
e.g. the ones the proper definition and characterization of Kantian program equilibria (Theorems 9, 10
in [40]), which also clarify the connection between Kantian and team reasoning.

6Generally, ethical egoism and its variant, rational egoism, are not accepted as a basis of moral behavior; counterexamples
exist, [50]; however, it’s fair to say that such positions are controversial, and somewhat marginal. In contrast, moral and
other-regarding behaviors are better aligned, with other-regarding behavior often a consequence of moral play.
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2 Related Work

The literature on other-regarding game-theoretic models is quite large, and a short section like this one
cannot do justice to all the related, relevant work. Instead we have chosen to highlight a modicum of
references directly relevant to our work.

The major impetus for this work was Kantian optimization. It was developed in [52, 53], developing
early ideas of Laffont [43]. The current status of the theory is consolidated in the recent book [54]. A
recent special issue of the Erasmus Journal of Economics is devoted to discussing and situating Roemer’s
contribution. Particularly valuable articles in this collection include [14, 60].

The other strand of ideas relevant to our work concerns the concept of program equilibria, defined in
[66] and further investigated in [24, 41, 37, 44, 6, 19, 48]. There are several other related (and relevant)
models, such as the translucent player model of [15, 31], or mediated equilibria [46].

The two other paradigms leading to the same concept for two-player symmetric coordination games,
superrationality and (especially) team reasoning are, of course, relevant to our approach. Superrational-
ity is rather different, though, and we only reiterate recommendations of [38, 25]. The main reference
for team reasoning is still [5]. We also recommend papers [64, 18, 29].

Notions of symmetry in games have been insufficiently investigated, and they play an important role
in defining Kantian programs. We refer to [33, 67] for such studies.

Finally, an impressive amount of work on behaviorally relevant game-theoretic notions related to
moral behavior is summarized in [20]. While it is by no means comprehensive (especially with respect
to the computer science literature), it is an excellent starting point.

3 Preliminaries

We assume knowledge of basic results of game theory at the level of a textbook such as, e.g. [49], in
particular with concepts such as normal form games, best response strategy, and mixed (Nash) equilibria.
All the games G we consider are normal form and, unless mentioned otherwise, have identical action sets
ActG for all players. Given a finite set S, we will define ∆(S) to be the set of probability distributions
on s. Elements of ∆(S) are functions c : S→ [0,1] satisfying ∑

i∈S
c(i) = 1. ∆n := ∆({1,2, . . . ,n}) is,

geometrically, a (n−1)-dimensional simplex. When G is a normal-form game and k a player in the game
we will denote by ∆k

G the set of mixed actions available to player k, identified with some simplex ∆n with a
suitable dimension. We will occasionally drop k from the notation and simply write ∆G instead when the
player is clear from the context, or when all agents have the same action set. Given vectors x=(x1, . . . ,xn)
and y = (y1, . . . ,yn), we say that x dominates y iff xi ≥ yi for all i = 1, . . . ,n. The domination is strict
if at least one inequality is. When comparing (mixed) action profiles a and b, the domination relation
may apply to the vectors of agent utilities (u1(a), . . . ,un(a)) and (u1(b), . . . ,un(b)), respectively. Action
profiles that are strictly dominated may be assumed not to occur in game play.

A game with identical action sets is diagonal if every pure action profile is Pareto dominated by some
profile on the diagonal, the set of action profiles where all players play the same action. A particular class
of diagonal games are coordination games, where all player utilities are zero outside the diagonal. Such
a game is symmetric if, additionally, agent utilities are identical for all action profiles on the diagonal.

Definition 1. Let G be a game with common action set A. A variation function is a function φ : Ξ×
A→ A, for some set of parameters Ξ.7 A Kantian (Hofstadter) equilibrium is a pure strategy profile

7The precise form of this definition follows [60], and is motivated by Roemer’s definition of additive/multiplicative Kantian
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Player 1

Player 2
C D

C 2,2 0,3
D 3,0 1,1

Player 1

Player 2
B S

B 2,3 0,0
S 1,1 3,2

Figure 1: a. Prisoners’ Dilemma. b. BoS game as modified by Roemer.

xopt =(xopt
1 , . . . ,xopt

n ) that maximizes the material payoff of each agent, should everyone deviate similarly.
Formally, for every agent i and r ∈ Ξ,

Vi(x
opt
1 , . . . ,xopt

n )≥Vi(φ(r,x
opt
1 ), . . . ,φ(r,xopt

n )).

Example 1. One of the original applications of Kantian equilibria was Prisoners’ Dilemma (PD, Fig. 1
(a)). Kantian equilibria provide an elegant solution to the paradox: Kantian agents coordinate on action
profile (C,C), as jointly doing so gives them a higher payoff than the Nash equilibrium (D,D).

Kantian equilibria are easiest to justify for symmetric diagonal games, since in this case they dom-
inate all other action profiles, thus can be properly seen as "best course of action for all". There are
symmetric (nondiagonal) games, though, where no pure strategy Kantian equilibrium is adequate, and
which seem to compel us to considering mixed-strategy Kantian equilibria. An example is Hofstadter’s
"Platonia’s Dilemma" [38], a special case of the market entry games of Selten and Güth [59]:

Definition 2. In Platonia Dilemma n agents (say, n = 20) are offered to win a prize. Agents may choose
to send their name to a referee. An agent wins the prize if and only if it is the only one submitting their
name: if zero or at least two agents send their names then noone wins anything.

It is easy to see that both pure strategies, sending/not sending their name, are equally bad if adopted
by all agents: they get zero payoff. A better option is to allow independent randomization:

Definition 3. Given a game G with identical actions, a mixed Kantian agent will choose a mixed strategy
XOPT ∈ ∆G that maximizes its expected utility, should everyone play X. For two-player symmetric games
with game matrix A and variation function φ(b,a) = b we have XOPT = argmax{yT Ay : y ∈ ∆G}.

Lemma 1. In Platonia Dilemma the probabilistic strategy where each agent independently submits their
name with probability p brings an expected profit to every agent equal to p(1− p)n−1. This quantity is
maximized for p = 1

n . Thus the strategy with p = 1
n is a mixed Kantian equilibrium.

Proof. Let f (p) = p(1− p)n−1. f ′(p) = (1− p)n−1− (n−1)p(1− p)n−2 = (1− p)n−2(1−np), so f is
increasing on [0,1/n] and decreasing on [1/n,1].

4 Limitations of Mixed Kantian Equilibria

In this section we note some properties of mixed Kantian equilibria. They are mostly negative: finding a
mixed Kantian equilibrium is intractable. Also, such equilibria may be vulnerable to miscoordination.

equilibria, with action set A =R+ and variation functions φ(r,a) = a+r, a ·r, respectively. We will mostly be concerned with
variation functions of the type "change (everyone’s) current action to b" (for b ∈ A). Formally, Ξ = A and φ(b,a) = b.
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4.1 The Computational Intractability of Mixed Kantian Equilibria

We make an easy observation concerning the computational complexity of mixed Kantian equilibria in
symmetric two player games. To our knowledge this has not been discussed before. Note: such equilibria
are guaranteed to exist, since the (n− 1)-dimensional simplex of mixed strategies is a compact set and
the common utility function is continuous. First of all, finding a mixed Kantian equilibrium is easy in
symmetric coordination games, as all such equilibria coincide with pure Kantian equilibria.
Theorem 1. Consider a finite symmetric coordination game. Then mixed Kantian equilibria coincide
with pure Kantian equilibria. Hence one can compute mixed Kantian equilibria in polynomial time.

Platonia Dilemma with n = 2 shows that Theorem 1 does not extend to general symmetric games.
This is no coincidence: in this case finding (or just detecting) the optimal mixed strategy is intractable:
Theorem 2. The following problem, called MIXED KANTIAN EQUILIBRIUM, is NP-hard:

INPUT: A two-player symmetric game G, and an aspiration level r ∈Q.

TO DECIDE: Is there a mixed strategy profile x = (x1, . . . ,xN) such that the utility of every player
under common mixed action x1a1 + x2a2 + . . .+ xmam is at least r?

Proof. We point out to the existence of a reduction from CLIQUE to MIXED KANTIAN EQUILIB-
RIUM, that shows that the latter problem is NP-hard. In fact the reduction will only consider symmetric
games with 0/1 payoffs.

Consider, indeed, a graph g. Let k be an integer and (g,k) be the corresponding instance of CLIQUE.
Define the symmetric two-player game G whose payoff matrix is the adjacency matrix A of g.
Mixed Kantian equilibria x = (x1, . . . ,xN) of G correspond to optimal solutions of the following

quadratic program: 
max(xT Ax)

x1 + . . .+ xN = 1
x1, . . . ,xN ≥ 0.

(1)

This is a problem that has been called [12] the standard quadratic optimization problem, and has
been investigated substantially in the global optimization literature (see e.g. [11]). A beautiful result due
to Motzkin and Straus [47] can be restated as claiming that for programs whose matrix A is the adjacency
matrix of a graph g, if o is the optimum of problem (1) then 1

1−o is the size of the maximum clique in g.
Hence (g,k) ∈CLIQUE if and only if (G, k−1

k ) ∈MIXED-KANTIAN-EQUILIBRIUM.

4.2 Multiple Equilibria and miscoordination

Optimal diagonal action profiles may fail to be unique. If the agents are not communicating (and no
implicit coordination mechanisms are acting, e.g., one of the action profiles being a focal point, such as
in the Hi-Lo game from [5]), agents may reach a suboptimal action profile due to their lack of coordina-
tion on the same optimal action: Consider, indeed, the game in Figure 2. (C,C) and (E,E) are equally
good pure (and mixed) Kantian equilibria. But if one player plays C and the other plays E the result-
ing outcomes are the worst possible for both of them, being dominated by every single possible strategy
profile! Randomizing among Kantian actions might not help either: miscoordination impacts even "Kan-
tian" scenarios, where players, lacking a salient equilibrium to coordinate on, play a joint mixed strategy
formed of Kantian actions.8 We quantify the degradation in performance as follows:

8Such a scenario is, of course, not justifiable from a usual rational choice perspective. But it is justifiable in a Kantian
setting where every player believes that choosing a pure action a will immediately make all other players do the same: a
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Pl1

Pl 2
C D E

C 5,5 3,6 1,2
D 6,3 4,4 6,3
E 2,1 3,6 5,5

Pl2
C D

C 10,1 0,0
D 0,0 4,2

Pl2
B S

B 6,1 0,0
S 0,0 3,2

Pl2
C S

C 10,10 100,200
S 200,100 6,6

Figure 2: (a). A game with multiple Kantian equilibria. (b). Modified BoS (Example 3). (c). Modified
BoS (Example 2). (d). An anti-coordination game.

Definition 4. For a symmetric game G with strictly positive payoffs let NC be the set of mixed ac-
tion profiles composed of Kantian actions only. The price of miscoordination of G is the ratio p(G) =

sup
a∈NC

ui(XOPT )
ui(a)

. Because of symmetry this does not depend on the particular choice of player i.

The following result shows that the price of miscoordination can be arbitrarily large:

Theorem 3. Let G be a symmetric diagonal game with k ≥ 2 players and r ≥ 1 pure Kantian actions.
Then the price of miscoordination of G is in the range [1,rk−1]. Both bounds are tight and can be reached
in settings where players choose a Kantian action uniformly at random.

The merit of this simple result is to point out that the definition of generalized Kantian equilibria
needs to include scenarios where randomness is correlated, as in correlated equilibria (see e.g. [61]).

Proof. The price of miscoordination is insensitive to dividing all utilities by the same factor λ , so w.l.o.g.
one may assume that the utilities agent receive on pure Kantian equilibrium profiles is 1. For the mixed
action a where players play the r Kantian actions (w.l.o.g. 1,2, . . . ,r) with probabilities p1, p2, . . . pr

(which add up to 1), its expected utility is E[ui(a)] =∑ui(i1, i2, . . . ik) · pi1 pi2 . . . pik ≥
r
∑

i=1
pk

i ≥ r · 1
r

k
= 1

rk−1 ,

by Jensen’s inequality. The upper bound is obtained when off-diagonal action profiles formed of Kantian
actions only have utilities equal to 0. As for the lower bound, for diagonal games by domination we have
ui(i1, i2, . . . ik)≤ 1, so E[ui(a)] =∑ui(i1, i2, . . . ik) · pi1 pi2 . . . pik ≤∑ pi1 pi2 . . . pik = (p1+ p2+ . . . pr)

k = 1.
A game realizing the lower bound is the one where agent utilities on all pure action profiles are equal to
1.

5 Kantian Program Equilibria in (Pareto) Symmetric Games

Definition 1 of Kantian equilibria makes the most sense in symmetric coordination games, but does not
capture all the intuitive cases of Kantian behavior. Indeed, let us consider the BoS game, as modified
by Roemer (Fig. 1 (b)).9 Intuitively, agents would perhaps agree that the following protocol could be
called Kantian, in that it is symmetric and both players benefit if they both follow it: flip a fair coin; if it
comes out heads, they (both) play B, else both play S. As described, the protocol requires the centralized
choice of a random bit, but it could easily be implemented in a distributed manner by making each of the

player may use the Kantian imperative to restrict itself to pure Kantian equilibria, then use the assumption to justify playing a
convex combination of pure Kantian equilibria it is indifferent between.

9Roemer ([54], Proposition 2.3) argues that (S,B) is a simple Kantian equilibrium. His argument is, however, ad-hoc, based
on making this profile "diagonal" by flipping the order of B and S for the second player, and the conclusion that (B,S) is Kantian
is, we feel, unintuitive, since (B,B),(S,S) strictly dominate it. Our protocol plays 1

2 (B,B)+
1
2 (S,S), different from (and better

than) what Roemer calls the mixed Kantian equilibrium, where row player plays 3
8 B+ 5

8 S and the column player plays 3
8 S+ 5

8 B.
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two agents flip a (fair) coin and taking their XOR. The implementation of the protocol (Algorithm 5.1)
assumes that each agent is parameterized by an agent ID i ∈ {1,2} (not needed in this particular case)
and vector (myb,otherb) of random bit choices, one for each player, and shared between players.

An even more dramatic case is that of the game from Figure 2 (d), where the best outcomes are not
symmetric. In these cases it even seems irrational for the agents to play symmetric action profiles, since
these action profiles are dominated by all the other action profiles! Rather, it is plausible that agents
would agree that they need to anticoordinate, but they have different preferences for the joint action
profile to coordinate upon. A "best for all" solution would jointly play a random anti-coordinated profile
1
2(C,S) + 1

2(S,C). As in the previous example, this course of action can be implemented by the two
agents in a distributed manner, by jointly playing according to the protocol in Algorithm 5.2. In this
example, in addition to the extra bit otherb communicated by the other player, the protocol of each agent
makes explicit use of the agents’ own id, i ∈ {1,2}.

Algorithm 5.1: (BoS)

BOS(i :: ID,myb :: BIT,otherb :: BIT )

Randomly choose a bit myb ∈ {0,1}
communicate mybit to the
other player as its otherb.
if [myb⊕otherb == 0]

then play B
else play S

Algorithm 5.2: (Anticoord)

Anticoord(i :: ID,myb :: BIT,otherb :: BIT )

Randomly choose a bit myb ∈ {0,1}
communicate myb to the
other player as its otherb.
if [myb⊕otherb≡ i (mod 2)]

then play C
else play S

The intuitive conclusion of these two examples is simple: Definition 1 is not sufficient. Some sim-
ple games may have coordinated protocols that could properly be called "Kantian". In this section we
give a somewhat more general definition10 of Kantian equilibria, but not for general games, only
for a class of "symmetric" games. There are multiple definitions of game symmetry in the litera-
ture [33, 67]; the most important one requires that for every player i, action profile (x1,x2, . . . ,xn) and
permutation σ ∈ Sn, we have uσ(i)(x1,x2, . . . ,xn) = ui(xσ(1),xσ(2), . . . ,xσ(n)). We we use a slightly less
demanding definition (we call our version Pareto symmetry, see Definition 16 in the longer version [40])
to capture some asymmetric games like Romer’s version of BoS. This game is asymmetric, but in an
inconsequential way: all the asymmetries concern dominated profiles. Our extension is inspired by the
concept of program equilibria [39, 66]. To define these equilibria we associate to every finite normal-
form game an extended game whose actions correspond to programs. Agents’ programs have access to
own and others’ sources11, and can act on them. A program equilibrium is a Nash equilibrium in the
extended game. We extend this idea to Kantian equilibria:

Definition 5. Given a (Pareto symmetric) game G with identical actions sets for all players, a Kantian
program equilibrium in G is a probability distribution p on the action profiles of G such that: (a). p has

10other plausible alternatives are discussed (and ruled out) in Section 13 of the longer version [40]. Of special interest is the
relation between Kantian equilibria and team-reasoning equilibria.

11this aspect was important for Nashian optimization. It will be less so for us, since deviations are not present in the definition
of Kantian equilibria. On the other hand, a Kantian agent playing program P can make sure it is not taken advantage upon by
the other players, either alone, as in [66], by reading other players’ programs and only playing P when all do, or with the help
of a mediator, which implements on behalf of all players the following protocol: if all agents follow P then the mediator will
simulate P on behalf of the agent; otherwise it will play in a Nashian way.
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its support on the set of action profiles that are Pareto optimal, that is not Pareto dominated by any other
action profile. (b). p is implemented by agents playing a common program P in the extended game.
(c). there exists no probability distribution q with properties a. and b. such that the vector of expected
utilities (E[ui(q)]) Pareto dominates the vector (E[ui(p)]).

The assumption that players have the same action sets is motivated by the "common program" re-
quirement of Def. 5 (b). Point (a). encodes a simple rationality condition. Points (b). and (c). embody
a generalized version of the Kantian categorical imperative: (b). encodes the constraint of identical
behavior, (c). encodes the fact that implementing p is "a best action" for all players.

We only need to formalize what we mean by program in this definition. The semantics is inspired
by the one in [66], but the full formalization is somewhat subtle. We defer a full presentation to Section 15
of the longer version [40]. A couple of technical points are, however, worth stating:
- The semantics of programs in [66] does not allow for any synchronization between different versions

of the same program, other than testing whether they are syntactically equivalent. Since (as recognized
in Theorem 3) we need to include correlated randomness, we need to extend the semantics of programs
from [66], where this is not possible. There are many ways to do it, but one way is to allow correlated
sampling from distributions: all the programs get an identical sample from a given distribution.

- However, simply adding correlated sampling of action profiles to the semantics of programs from
[66] leads (see Theorem 9 in the long version [40]) to paradoxical results: every convex combina-
tion of Pareto optimal strategy profiles would be a Kantian program equilibrium. This is an issue: in
Prisoners’ Dilemma profiles (C,D),(D,C) could perhaps be justified from a "team reasoning" perspec-
tive where one player "sacrifices itself" so that the other one walks free. To accept them as "Kantian
equilibria" seems, however, problematic (see also the discussion in sections 13.3 and 14 of [40])

- If, on the other hand, agent programs didn’t communicate at all, used no private randomness, or
used no specific ID/payoff information then they would run identically for all agents, coordinating
on the same action (excluding, thus, scenarios like that of Example 3, that we want to model).

- We will take a middle-ground approach, and assume that agents can use their ID and the information
about the game payoffs in a very limited way, that makes the program act "identically with respect to
a group of symmetries acting transitively on the set of agents". This requires us to restrict ourselves to
the class of Pareto symmetric games of Definition 16 in the longer version [40], whose set of Pareto
dominant action profiles has such symmetries. The precise technical details are spelled out in Section
15 of the longer version [40], where we prove (Theorem 10) a characterization of Kantian equilibria
for Pareto symmetric games which also shows that Kantian program equilibria are a strict subset of the
class of team-reasoning equilibria.

Algorithms 4.1 and 4.2 lend some credibility to the intuition that Kantian equilibria are somehow
related to some "symmetric" notion of correlated equilibria. This intuition is correct: in Definition 19 in
the longer version [40] we define a notion of "correlated symmetric equilibrium". We then prove:
Theorem 4. Correlated symmetric equilibria of symmetric games are Kantian program equilibria.

Kantian program equilibria allow players to obtain a better expected payoff in Platonia Dilemma:
Theorem 5. Algorithm 5.3 implements a Kantian program equilibrium for Platonia Dilemma.

Proof. Points (a). and (b). from the definition of Kantian program equilibria are clear, the only one that
merits a discussion is point (c).

The expected utility of each player under Algorithm 5.3 is equal to 1/n. Since the sum of utilities
of all players under a particular set of random choices is equal to 1, no vector of expected utilities can
strictly dominate the vector (1/n,1/n, . . . ,1/n) of expected utilities for the Algorithm.
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Algorithm 5.3: CHOOSE-WINNER(i,b1,b2, . . . ,bn)

Randomly choose an integer bi ∈ Zn

if [∑n
j=1 b j ≡ i (mod n)]

then S(UBMIT)
else D(ON’T)

6 Some computationally efficient other-regarding equilibria

As defined in the previous section, Kantian program equilibria for games with identical action sets inherit
some of the definitional problems of "ordinary" program equilibria. Among them:
- fragility: (Kantian) program equilibria are sensitive (see e.g. [48]) to the precise specification of

programs: do we insist that all agent programs are syntactically identical, or just "do the same thing"?
See [44, 37] for some attempted solutions for program equilibria that could be adapted to our setting.

- lack of generality: Definition 5 it is only applicable to (some of the) games with identical action sets.
To further generalize it to all finite normal-form games one would need to specify what it means for
two agents to "take the same course of action" in settings with differing action sets.

- lack of predictive power: There may be multiple (even infinitely many) Kantian program equilibria.
Given these objections, and with constraints (I)-(IV) in mind, we propose in the sequel a substan-

tially more modest approach: Rather than seeking a general definition of Kantian equilibria we propose
instead several other-regarding equilibria. They all correspond intuitively to real-life situations, are
tractable, can be justified by team reasoning and are related, for symmetric coordination games, to
Kantian equilibria. One was independently suggested in [42], the other ones are first introduced here:

Definition 6. A Rawlsian equilibrium is a probability distribution over Pareto optimal profiles maximiz-
ing the egalitarian social welfare (the expected utility of the worst-off player) and is strictly dominated
by no other profile with this property. Such equilibria implement the idea of justice as fairness [51].

Example 2. We modify the BoS example as in Fig. 2 (c): perhaps 1 is a classical music lover, that gets a
higher utility than the other player by going, together with its partner, to any of the two concerts. Then
(S,S) is the (unique) Rawlsian equilibrium. Choosing such an equilibrium is an example of altruistic
behavior from player 1, since it maximizes the payoff of its non-music-lover partner.

Definition 7. A Bentham-Harsányi equilibrium is a probability distribution on Pareto optimal profiles
maximizing the sum of expected payoffs. See [34] for a philosophical motivation. A best-off equilibrium
is a prob. distrib. on Pareto optimal profiles maximizing the largest expected payoff, and strictly dom-
inated by no profile with this property. E.g., in Exp. 2 (B,B) is the unique Bentham-Harsányi/best-off
equilibrium.

Although a best-off equilibrium may not seem "fair", there exist real-life "team reasoning" situations
that elicit behavior suggestive of such an equilibrium: one such example is, for instance, scenarios where
members of a team "sacrifice" for one of their members (e.g. parents for a child).

The equilibrium notions we introduced so far implicitly assumed that player utility is given by ma-
terial payoffs. Sometimes the frustration a player feels is derived by counterfactually comparing its
realized payoff with all possible ones. There are many implementations of this idea. The following
notion quantifies the extent to which a given profile is worse for the given player than a random profile.



G. Istrate 223

Definition 8. The percentile index of profile a for player i is the percentage of Pareto optimal profiles that
would get i a strictly better payoff than a. A Rawlsian percentile equilibrium is a profile minimizing the
largest expected percentile index of all players, and strictly dominated by no profile with this property.

Example 3. Consider the game shown in Figure 2 (b). Then percentile indices of Pareto optimal profiles
are (0,100) for (C,C), and (100,0) for (D,D), respectively. Profile 1

2(C,C)+ 1
2(D,D) is a Rawlsian

percentile equilibrium. Player 1 gets average utility 7 while player 2 gets average utility 3
2 .

An even less cognitively sophisticated model of agent frustration relies on classifying outcomes as
"happy/not happy". The following is a simple example of such a notion:

Definition 9. The natural expectation point of player i is the median (over all undominated pure strategy
profiles) payoff. If there are two medians then the average value is taken. A player is happy in a pure
strategy profile a iff its payoff is larger or equal than its natural expectation point and unhappy otherwise.

An aspiration equilibrium is a mixed strategy profile that minimizes the largest probability of unhap-
iness among all players and is strictly dominated by no other profile with this property.

Example 4. Take a coordination game with payoffs (C,C)→ (10,1), (D,D)→ (9,2), (E,E)→ (8,3),
(F,F)→ (4,7). The natural expectation points of players are 8.5 and 2.5, respectively. The first player is
happy in (C,C) and (D,D), the second in (E,E), (F,F). Hence in 1

4(C,C)+ 1
4(D,D)+ 1

4(E,E)+
1
4(F,F)

the players are happy 50% of the time and no mixed action profile can do any better.

Unlike general Kantian program equilibria, the equilibria we defined are computationally tractable:

Theorem 6. Rawlsian, Rawlsian percentile, Bentham-Harsányi, best-off, aspiration equilibria existand
can be found by solving a sequence of linear programs (hence in polynomial time).

We now connect our other regarding equilibria to Kantian equilibria in symmetric coordination
games. We call an equilibrium point extremal if it cannot be written as a nontrivial convex combina-
tion of other (similar) equilibria. We show that extremal self-regarding equilibria generalize Kantian
pure equilibria. Extremality is needed, since our equilibria are closed under convex combinations (such
combinations are justifiable from a magical thinking perspective, see footnote 7), while pure Kantian
equilibria are not. Because of Thm. 2 no similar connection is likely for mixed Kantian equilibria:

Theorem 7. In symmetric diagonal games Rawlsian, Bentham-Harsányi, best-off, Rawlsian percentile,
aspiration equilibria coincide with convex combinations of Kantian pure equilibria.

7 Agents with bounded greed

So far we have assumed that people are other-regarding. In reality people are not unrestricted optimizers,
nor are they perfect Kantian moralists. Alger and Weibull [1] attempted to interpolate between utilitarian
agents and Kantian ones, by defining homo moralis to be an agent whose utility has the form ui(x,y) =
(1− k)π(x,y)+ kπ(x,x), where k ∈ [0,1] is the so-called degree of morality of the agent. They showed
that evolutionary models with assortative mixing and incomplete information favor a particular kind of
homo moralis, those whose degree of morality coincides with the degree of assortativity of the matching
process. Interesting as this result is, it has some weaknesses. For instance [1], homo moralis behaves
like homo economicus in Prisoners’ Dilemma and all constant-sum games when k 6= 1. In other words,
agent behavior is not sensitive to the degree of morality, as long as the agent is not Kantian.

We give (for symmetric games, but the idea can be extended to general ones, via Kantian program
equilibria) a definition with the same overall intention, but capturing a slightly different agent behavior:
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Definition 10. Let λ ∈ [1,∞]. Agent i is called λ -utilitarian if, for every action profile (ai,b), its utility
ui(ai,b) is (a). πi(ai,(ai)−i) if ai is a Kantian action. (b). 0 if ai is not Kantian and πi(ai,b) ≤ λ ·
πi(XOPT ); (c). πi(a,b) if ai is not Kantian and πi(ai,b) ≤ λ · πi(XOPT ). I.e., a λ -utilitarian agent
deviates from its Kantian action XOPT only if the utility it obtains is more than λ times larger.

We call the number 1
λ−1 the greed index of i. It varies between 0 (Kantian agents) and ∞ (purely utili-

tarian ones). The natural equilibrium concept for such agents is no longer Kantian, but Nash equilibrium.
Definition 10 allows giving an empirically plausible justification of all possible outcomes in PD:

Theorem 8. All pure action profiles in PD are Nash equilibria of agents with varying degrees of greed.

Proof. Bounded-greed agents still coordinate on the Kantian equilibrium (C,C) as long as both their
greed indices are < 2 (i.e. they would need at least a twofold increase in payoff to deviate). If one of
them has greed index < 2 and the other one has greed index ≥ 2, then the latter one will defect. If both
agents have greed indices ≥ 2, then they will coordinate, just as if utilitarian agents would do, on the
Nash equilibrium (D,D).

8 Conclusions

Our main contribution is bringing Kantian equilibria (and related concepts) to the attention of TARK
community, showing that this notion is theoretically interesting, but that the road to implementable be-
haviors probably goes through less general equilibrium concepts. Many of the notions we introduced,
on the other hand, including Kantian program equilibria and bounded greed agents, deserve further in-
vestigation. For instance a justification like that of Theorem 8 could be used as a rationality criterion.
One could look for evolutionary justifications of bounded greed agents along the lines of [1]. One could
use such agents in relation to work on the concept of price of anarchy [57]. On a more conceptual level,
the use of frames in game theory [5, 7] and how this interacts with equilibrium notions deserves further
study. Finally, several open problems remain: Can we find algorithms for our equilibria that bypass the
need for solving multiple LP’s? Is the problem from Theorem 2 NP-complete (i.e. in NP)?
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