
L.S. Moss (Ed.): TARK 2019
EPTCS 297, 2019, pp. 19–34, doi:10.4204/EPTCS.297.2

c© Y. Babichenko, O. Dean & M. Tennenholtz
This work is licensed under the
Creative Commons Attribution License.

Sequential Voting with Confirmation Network

Yakov Babichenko Oren Dean Moshe Tennenholtz
yakovbab@tx.technion.ac.il orendean@campus.technion.ac.il moshet@ie.technion.ac.il

Faculty of Industrial Engineering and Management
Technion—Israel Institute of Technology

Haifa, ISRAEL

We discuss voting scenarios in which the set of voters (agents) and the set of alternatives are the
same; that is, voters select a single representative from among themselves. Such a scenario happens,
for instance, when a committee selects a chairperson, or when peer researchers select a prize winner.
Our model assumes that each voter either renders worthy (confirms) or unworthy any other agent.
We further assume that the prime goal of each agent is to be selected himself. Only if that is not
feasible, will he try to get one of those that he confirms selected. In this paper, we investigate the
open-sequential voting system in the above model. We consider both plurality (where each voter has
one vote) and approval (where a voter may vote for any subset). Our results show that it is possible to
find scenarios in which the selected agent is much less popular than the optimal (most popular) agent.
We prove, however, that in the case of approval voting, the ratio between their popularity is always
bounded from above by 2. In the case of plurality voting, we show that there are cases in which some
of the equilibria give an unbounded ratio, but there always exists at least one equilibrium with ratio
2 at most.

1 Introduction

Consider a committee voting to select a chairperson. Each committee member would like the honour of
serving as chairperson himself. As a second best option he prefers one of several other members to win
the position.1 The committee members’ preferences profile can be represented by a confirmation net-
work, in which a direct edge indicates that the source of the edge confirms the target. In the confirmation
network of Figure 1 member #5 is the most popular member — he is supported by three other members,
while everyone else is supported by at most one.
As is the case in many committees, we assume the members are well-known to each other, and hence

the confirmation network is known to everyone. The ballot is open and conducted sequentially. Since the
committee members are always sited in the same places around the table, the voting order is prefixed and
known. We consider two voting methods: plurality, in which each voter selects only one other member,
and approval, in which members vote for any subset of the other members. In either voting method, a
member is not allowed to vote for himself, but he is allowed to abstain. The member with the most votes
is elected. Ties are broken by a predetermined and publicly known preference order.

Game-theoretically, we have a multi-stage game, describable as an extensive-form game — a tree
with all possible voting-sequences, and an outcome at every leaf. The standard solution for this kind of
game is a subgame perfect equilibrium (SPE). To find an SPE, we start with the last voter. For every
voting history, we assume this voter will choose a ballot which gives him a best outcome (notice that
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1An equivalent situation arises when the committee is about to select a course of action (e.g., tenure a researcher) and each
committee member is strongly associated with one of the alternatives.
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Figure 1: Five committee members and their confirmations.

there may be more than one ‘best outcome’). Moving to the next-to-last voter, we know, for every voting
history, how the last voter will respond to any of his ballots. Thus, we can find all his best votes and fix
one of them for any sequence of voting history. We can continue this backward process until we select
a best vote for all voters. Since voters are indifferent between their best votes, in general there can be
many SPEs.

We exemplify the model and its complexity in two scenarios. Example 1 shows a case in which
the most popular member is not elected in the unique SPE of plurality voting. The same scenario with
approval voting leads to two different SPEs — in one of them the most popular member is the winner.
In the network of Example 2 each member confirms at most one other member. Later (Proposition 4)
we will see that under this condition the outcome is always ‘almost-optimal’. Nevertheless, Example 2
shows that in the case of approval the outcome is not trivial: one of the members manages to get a better
result by voting for someone he does not confirm.

Example 1. Assume that in the network of Figure 1 the voting order is lexicographic, and so is the tie-
breaking order.2 We will show that in this case, we have a unique SPE for plurality voting, and a different
unique SPE for approval voting. If the voting method is plurality, and voter #1 votes for #5, then #5 will
be elected (even if voter #2 decides to vote for #1, voter #3 cannot get elected himself and he will vote
for #5 which is his second best outcome). However, voter #1 has a better vote. He may abstain, thus
forcing voter #2 to vote for him (if voter #2 votes for #5 then voter #3 may abstain and get elected with
the help of the vote from #4 and the tie-breaking). Since #3 and #5 will not get more than one vote, voter
#1 now wins by tie-breaking. Thus by abstaining #1 gets elected, even though #5 is the most popular
member having the most confirmations. Now, if approval is the voting method and #1 abstains, member
#2 may vote just for #1 and get him elected as before. He may also vote for both #1 and #5. In this
case #3 still cannot get elected (due to the tie-breaking order) and will vote for his second-best outcome,
namely #5. We see that if voter #1 abstains, voter #2 has two ‘best ballots’ (to vote for #1 or to both #1
and #5) that lead to an outcome he confirms (#1 or #5). Later, when we formalize the model (Section
1.3), we add a ‘truth-bias’ assumption which states that each voter prefers the vote which is closest to
his true confirmation set. Under this assumption member #2 favours the vote {#1, #5} over just {#1}.
In this case, #1 does not gain from abstaining; thus, using the ‘truth-bias’ assumption once more, we get
that #1’s best vote is to be truthful (i.e. vote for #5). Everyone else will be truthful as well, and #5 will
be elected.

Example 2. Figure 2 shows a network with four voters and at most one confirmation (outgoing edge)

2I.e., in case of a draw, the voter with lowest index wins.
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for each voter. The voting order and the tie-breaking order are both lexicographic. Since voters #1 and
#2 cannot get elected (as no one confirms them), if they have a vote which gets the one they confirm
elected (#4 for voter #1 and #3 for voter #2), then this will be their best vote. Otherwise, they will just be
truthful (again we assume they are truth-bias) and vote for the one they confirm. In plurality voting voter
#1 has no vote which gets #4 elected, hence both #1 and #2 are truthful and #3 is elected after abstaining.
However, in approval voting, #1 can vote for both #4 and #2. Since #2 precedes #3 in the tie-breaking
order, #3 cannot be elected and will now vote for #4. Thus, in approval voting, #4 is elected.

Figure 2: Four committee members and their confirmations.

1.1 Related work

Voting systems and their limitations have been long studied as part of the broader field of social choice
(see for example the classic book of Farquharson [10] and the more recent handbook, [15]). The classical
voting model assumes that the sets of voters and alternatives are disjoint, and that each voter has a
totally ordered preference over the alternatives. Sequential voting with this model has been studied
before and showed to contain counter-intuitive ‘paradoxes’. Desmedt and Elkind [8] considered both
simultaneous and sequential plurality voting. They showed that a sequential voting system with at least
three alternatives is prone to strategic voting, which might lead to an unexpected outcome, such as
a Condorcet winner who does not win the election. Conitzer and Xia [20] further exemplified this
phenomenon in a wide range of sequential voting systems, characterized by their domination index.
In [4] the authors showed even more extreme examples of strategic ballots in sequential voting systems.

A confirmation network as an underlying model for simultaneous voting has also been studied. Holz-
man and Moulin [13] took an axiomatic approach to show the possibilities and limitations of such elec-
toral systems. The main requirement of such systems, in their paper, is that no voter will be able to
manipulate the system to select him by delivering a dishonest, strategic ballot. Alon et al. [1] investi-
gated the same model, and showed the impossibility of incentive-compatible (that is, ‘non-manipulable’),
deterministic voting systems. They suggested a probabilistic system with a bounded ratio between the
maximal in-degree and the expected in-degree of the elected agent. Further works with the same theme
can be found in [6, 12, 3].

1.2 Our contribution

In this paper, we discuss for the first time sequential voting with the underlying model of a confirmation
network, for both plurality and approval voting. We show the limitations of these voting systems by
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demonstrating extreme cases in which an unpopular member is elected in an SPE. On the other hand, we
prove upper bounds on the ratio between the maximal in-degree in the network and the in-degree of an
SPE outcome.

1.3 The model

Let A be a set of agents. General social choice settings assume that each agent has ordinal preferences
over all possible outcomes (i.e., an elected agent in our case). In such general settings it is arguable
how to measure the quality of the elected agent. In this paper we restrict attention to a simplified setting
where the ordinal preference of each agent has only three levels: each agent prefers himself, those he
confirms are second, and those he does not confirm are last. We model the preferences of the agents
using a directed graph G(A,E) where the interpretation of (x,y) ∈ E is that agent x confirms agent y. In
this setting we have a natural measure of the quality of the elected agent: the number of incoming edges.
As we saw in Examples 1 and 2, and will see in the results, even in this simplified setting the strategic
analysis is quite involved.

The agents cast their votes sequentially and openly. We consider two voting rules: plurality, where
each agent is allowed to vote for at most one other agent, and approval, in which each agent may vote for
any subset of the other agents (abstentions are allowed). The winner of the ballot is the one who receives
the most votes, under a predetermined tie-breaking order. We assume A is ordered; this order is used
both as the voting order and the tie-breaking order.3 The utility of agent x from the outcome y is

Ux(y) =


1, y = x
1/2, (x,y) ∈ E
0, otherwise.

There is nothing particular about this function; any three-level function will do. Actually, U will not be
explicitly used in the remainder of the paper.

We are interested in voting strategies that form a subgame perfect equilibrium (SPE). At least one
SPE is guaranteed to exist [18]; however, if in some subgame more than one ‘best vote’ option is available
to an agent, multiple SPEs exist, possibly with different outcomes. Such a situation can occur, for
instance, when an agent does not confirm anyone and is also not confirmed by any other agent (i.e., the
agent is an ‘isolated’ node). If many agents are isolated, and so indifferent to the outcome, they may each
make an arbitrary vote and anyone may be elected. To avoid this problem, we take the same approach
as in [9] (see also [14, 19, 17]). Namely, when an agent faces several best-votes, he will select the one
which best reflects his true confirmations. In order to quantify the truth-bias assumption, we add the
following bonus utility. Let f (x) be the number of agents that x confirms and actually votes for, and let
g(x) be the number of agents he does not confirm and nevertheless votes for. Then his bonus utility is

Bx = ε
2 f (x)− εg(x),

where 0 < ε < 1/2n.4 When the outcome is y, the actual utility of agent x is given by Ux(y)+Bx.

3It is only for convenience that we assume that the voting order and tie-breaking order are the same. The proofs of the upper
bounds on the ratio (Theorems 7 and 8) do not use this assumption. The negative examples can be altered to give the same
outcome for different tie-breaking orders (this is not to say that the same example works for all tie-breaking orders).

4The intuition behind this function is that a voter would rather not report some or all of his confirmations than vote for
someone he does not confirm. The upper bound on ε is chosen so that the utility from the outcome always dominates the bonus
utility.
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1.4 Definitions and notations

We will use the following notations from graph theory. For a∈A let d(a)= din(a) := #{b∈A : (b,a)∈E}
be the popularity of a. We denote by ∆in(G) :=max

a∈A
d(a) the maximum in-degree in G. Similarly, ∆out(G)

is the maximum out-degree. An agent m is most popular if d(m) = ∆in(G).
An agent is achievable if there is an SPE in which he is elected. We denote by W ⊆ A the set of

all achievable agents. Our goal in this paper is to find bounds on the difference and ratio between the
highest/lowest popularity of achievable agents and the maximal popularity in the graph. Formally, for an
achievable agent w ∈W , let G−Ew be the graph we get from G after removing all the out-edges of w. Let

D(w) = ∆in(G−Ew)−d(w), R(w) =
∆in(G−Ew)

d(w)

be the additive gap and the multiplicative ratio, respectively, between the highest popularity and the
popularity of w. We have two justifications for defining these measures on G−Ew and not directly on G.
The first is philosophical: we do not want w’s own confirmations to influence the way he is measured.5

The second is mathematical elegance. We pay a small price in the definitions in order to get clearer
theorems. It is obvious, though, that ∆in(G−Ew) ≥ ∆in(G)−1; thus it makes little difference, especially
for large values of ∆in.

With a slight abuse of notation, we define for any graph G with plurality/approval voting, D(G) =
min
w∈W

D(w);6 for either plurality/approval let D = sup
G

D(G).7 We shall promptly see that D is unbounded

for both plurality and approval voting. In order to give a better description of the limitations of the two
voting methods, and to differentiate between them, we would like to chart the asymptotic bounds of the
multiplicative ratio when D → ∞.8,9 To that end, we define for a graph G,

R(G) = min
w∈W

R(w), R(G) = max
w∈W

R(w),

the maximal/minimal multiplicative ratio between the most popular agent and the winners. For any
positive integer k, we denote by Gk the family of graphs with D(G)≥ k, and define10,11

R = lim
k→∞

sup
G∈Gk

R(G), R = lim
k→∞

sup
G∈Gk

R(G).

1.5 Main results and paper organization

In Section 2, we show a sharp transition of the additive gap. In networks where each agent confirms
at most one other agent (i.e., the maximum out-degree is one) there is a unique outcome, and D(G) is
always zero (Proposition 4). However, already for networks where agents confirm at most two other

5This argument relates to the notion of ‘incentive compatibility’ which is central in [1] and [13].
6Our definition for D(G) uses the best winner (and not the worst). This strengthens our results for the additive gap which

are all negative.
7For ease of notation we did not add a subscript to distinguish between D of plurality and D of approval. The results are

the same for both anyway.
8Note that if we define R without this asymptotic then it will be predominated by small graphs with low values of D .
9Alternatively, we can take the asymptotic with respect to ∆in→ ∞.

10Again we do not have different notations for plurality and approval. It will be clear from the context to which of the two
we refer.

11R and R are analogue to the ‘price of stability’ and the ‘price of anarchy’, respectively (see [16] Section 17.1.3).
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agents (i.e., ∆out = 2), D is unbounded (Proposition 6). In Section 3, we prove bounds on R and R.
For approval voting we show that 1.5≤R ≤R ≤ 2 (Theorem 7); whereas, for plurality voting we show
that R ≤ 2 and R = ∞ (Theorem 8). These results indicate that in worst-case scenarios approval voting
succeeds in selecting more popular agents than plurality voting. In Section 4 we sketch a generalization
of our results to k-approval voting. We wrap up with a discussion and open problems in Section 5.

2 Bounds on the additive gap

We start our discussion with the special case of graphs with a maximum out-degree of one (i.e. each
agent confirms at most one other agent). In this case, we show that both plurality and approval voting
have a unique winner in any SPE, and the winner is a most-popular agent or almost most-popular agent.12

In approval voting, a vote of an agent to the set of his confirmed agents is called truthful. In plurality
voting, a vote of an agent to one of his confirmed agents (or abstention if he does not confirm anyone) is
called truthful. Our proof is based on the following observation, which is a consequence of our truth-bias
assumption.

Observation 3. In every SPE with outcome w, any agent who does not confirm w is truthful in the SPE
path.13

The reason is that the election of w is one of the worst outcomes for any agent who does not confirm
w; hence, being truthful is the only best vote for such an agent.

Proposition 4. For the class of graphs with a maximum out-degree of one, both plurality and approval
voting have a unique achievable outcome,14 and for both plurality and approval D = 0.

Before we prove this proposition, let us exemplify it in the scenario of Example 2. Notice that every
node in the network of that example has either one out-edge or none, so the proposition applies. Indeed,
we showed there that both plurality and approval have a unique SPE. In addition, in approval voting
agent #4 is elected, and he is the most popular. In plurality, agent #3 is elected; notice, that if we remove
his out-edge to #4, then he becomes one of the most popular agents.

Proof. We start by showing that the outcome is unique using backward induction. Given a subgame (i.e.,
a history of votes), if the agent which is about to vote has a vote which gets him elected, then this will
be the outcome. Moreover, if he cannot get elected but he can get the one he confirms elected, then this
would be the outcome (here we use the assumption that he confirms at most one agent). If he cannot
get elected and cannot get the one he confirms elected, by Observation 3 his unique best action is to be
truthful, and by induction, the outcome is determined uniquely.

Now fix an SPE. Let w be the winner of this SPE and let m 6= w be one of the most popular agents.
We denote by

CW := {a ∈ A : (a,w) ∈ E}; CM := {a ∈ A : (a,m) ∈ E};

the set of agents which confirm w and those which confirm m, respectively. By our assumption on the
out-degree, CM∩CW = /0. Thus, by Observation 3 the agents in CM\{w} are truthful. So m gets the votes
of all those who confirm him, except perhaps the vote of w. Again by Observation 3, no agent in A\CW

12Meaning, that if we ignore his own confirmations, the elected agent is most popular.
13In fact, this simple observation holds even for a wider solution concept of Nash equilibria.
14Though the outcome might be different between plurality and approval; see Example 2.
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votes for w, which means that w cannot get more votes than his in-degree. Since w is elected, we reach
the conclusion that

|CW | ≥ |CM|−1(w,m)∈E ,

and that is exactly the same as D = 0.

The proof of Proposition 4 can be generalized to subgames in which the remaining voters confirm
at most one agent. Suppose we are in the middle of a voting process with graph G. Let U ⊂ A be the
voters who have not yet voted and let G′ be the graph we get from G after removing the out-edges of
vertices in A\U . Let s = (s1, . . . ,sn) be the current scoring vector.15 We define the potential of a vertex
a ∈ A in this subgame to be ρ(a) = din(a,G′)+ s(a), where din(a,G′) is the in-degree of a in G′.16 Let
P = max

a∈A
ρ(a).

Proposition 5. Using the definitions above, if ∆out(G′)≤ 1 then there is a unique SPE for the remaining
voting process; if w is the outcome of this SPE and m is any agent with ρ(m) = P , then

P−ρ(w)≤ 1(w,m)∈E(G′).

We omit the proof which is very similar to that of Proposition 4. Proposition 5 will be used in the proof
of Proposition 6.

In contrast to Proposition 4, we will now show that even for graphs with a maximum out-degree of
two, D is no longer bounded. In the proof, we will show a voting scenario in which voters who confirm
both a very popular agent and a much less popular one are forced to vote only for the less popular.

Proposition 6. For the class of graphs with a maximum out-degree of two, D is unbounded, for both
plurality and approval voting.

Proof. We will build a series of graphs, {Gk}, such that ∀k ≥ 2, ∆out(Gk) = 2, and the unique achiev-
able outcome, for both plurality and approval voting, has popularity ∆in(Gk)− k. Figure 3 depicts the
graph Gk. The agents in B and D are classified by their types (the number of agents in each type is
denoted below its circle). The order of the agents starts with the agents in D by lexicographic order of
their type, then agents in C by reverse lexicographic order and finally the agents in B (i.e., the order is
d1, . . . ,dk−1,ck+1, . . . ,c1,b1, . . . ,bk).17

Notice that by Observation 3, the winner in any SPE must be from C; otherwise, we will have a winner
which got no votes, while c1 gets at least the votes of the agents in b1. Suppose we are in the subgame
which starts right after the ballot of the last agent in D. Since all the remaining voters have at most one
out-edge, according to Proposition 5 the winner must be an agent which will have the highest potential if
he abstains. Since the tie-breaking order is the same as the voting order, the winner will be the first agent
which will have the highest potential if he abstains.

Now, the agents in D confirm both ck+1 and one other agent. The point will be that the only best
vote for these agents is to vote only for ck+1. Before proving the general case, we demonstrate this
phenomenon in the simplest case, when k = 2 (Figure 4). Here, if the agents of type d1 give c1 at
least one vote (e.g., if one votes for c3 and the other for {c1,c3}), then c3 cannot be elected (since after
abstaining his total votes will be at most two, and c1’s potential is at least three). Therefore c3 is truthful

15That is, si is the number of votes agent i received from the voters in A\U .
16In other words, ρ(a) is the maximum number of votes a can hope to reach when the voting is done.
17As explained in Footnote 3, we use the same order for voting and for tie-breaking.
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Figure 3: The graph Gk. Agent c1 has popularity 1
2 k(k+1)+k−1 while the winner, ck+1, has popularity

1
2 k(k+1)−1.

and c2 abstains and wins (he will have two votes from B and one from c3; agent c1 may also have three
votes, but c2 precedes him in the tie-breaking order). This result is unfavourable for the agents of d1.
However, if the agents d1 vote only for c3, then c3 can now abstain; having the same potential as c1 and
c2, agent c3 wins by the tie-breaking.

Turning to the general case, assume first that all the agents in di, 1≤ i≤ k−1 vote for ci, and perhaps
also for ck+1 (in case of approval voting). Since after the ballots of the agents in D, the agents c3, . . . ,ck+1
all have a lower potential than c1, while c2 can abstain and have the highest potential, c2 is the winner.
This outcome is unfavourable for the voters of d1. We claim that a better vote for them is to vote only for
ck+1, since that leads to the election of ck+1.18 Indeed, if now all the voters in di, 2 ≤ i ≤ k−1 vote for
ci, then now c1,c4, · · · ,ck+1 cannot be elected since c2 will have a higher potential than theirs. However,
c3 can abstain and win by tie-breaking. Thus, the agents of d2 are now dissatisfied. If they now all vote
just for ck+1 the same reasoning continues and shows that now c4 will be the winner unless all the agents
of d3 vote just for ck+1. Eventually, if all the voters of D vote just for ck+1 and ck+1 abstains, he will
get elected. The agents of D are all satisfied with this outcome, which shows that this is an equilibrium.
Indeed, our reasoning shows that this is the only equilibrium for both plurality and approval voting. The
difference between the popularity of the winner, ck+1, and the most popular, c1, is k, which implies the
claim of the proposition.

18To be more precise: each voter in d1 considers the situation in his turn. If all the voters before him voted only for ck+1 then
he sees the opportunity to make ck+1 elected. Otherwise, he cannot get a good result and is just truthful.
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Figure 4: The graph G2.

3 Bounds on the multiplicative ratio

In Section 2 we showed that in general, as much as we can tell from the additive gap measure, both
plurality and approval voting systems perform poorly. Notice, however, that in the series of graphs in the
proof of Proposition 6, the maximum in-degree in the graph Gk is ∆in(Gk) = Θ(k2). This means that the
ratio between the maximum in-degree and the popularity of the unique achievable outcome is 1+Θ(k−1).
This raises the question whether a constant fraction of popularity can be guaranteed in sequential voting.
We shall see in Theorems 7 and 8, that the bounds of the multiplicative ratio are non-trivial and are quite
different between plurality and approval voting.
Theorem 7. In plurality voting, R ≤ 2 and R is unbounded.

Proof. We shall first prove that R is unbounded. We show a series of graphs and SPEs, such that the
ratio between the most popular agent and the winner goes to infinity. To this end, consider the graph
in Figure 5. Suppose the agents’ order is: d1,d2,d3,c3,c2,c1,b1. We claim that the following profile of
strategies is an SPE.19

• Agent d1: always vote for b1.
• Agent d2: always vote for c2.
• Agent d3: if d1 voted for c1, then vote for c2. Otherwise, vote for c3.
• The rest of the agents: be truthful (abstain).

To see that all the agents always act rationally, we start from the last voters and proceed backwards to
the first. Agents c1,c2,c3,b1 confirm no one, thus, abstaining is always a best vote for them. Agent d3
always gets an agent which he confirms elected, so his votes are best possible as well. Moving on to
agent d2, he will get c2 elected when d1 votes for c1 and that is a best outcome for him. On the other
hand, if d1 votes for b1, then d2 knows that d3 is about to vote for c3, so the result will be bad for him no
matter how he votes. The best thing he can do is to vote for someone he confirms (like c2). Lastly, agent
d1 is indifferent between voting for b1 and c1 because anyhow the elected will be someone he does not
confirm (c3 in the former case and c2 in the latter). Thus, assuming that he votes for b1 is legitimate.
This proves the existence of a graph and an SPE with a multiplicative ratio 3. Figure 6 shows the general
case. Here, there is an SPE in which d1, . . . ,dk−1 vote for b1, . . . ,bk−1, respectively; dk then votes for ck,
who is elected. If di decides to vote for any of c1, . . . ,ci, then di+1, . . . ,dk all vote for ci+1, hence di gains
nothing. This is an SPE with a ratio of k, which shows that R is unbounded.

19Note that we only want to show that it is an SPE; we do not claim uniqueness here.
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Figure 5: There is an SPE in which c3 is elected.

Figure 6: There is an SPE in which ck is elected.

In order to prove that R ≤ 2, we need to show that there is always an SPE in which the winner’s
in-degree is at least half of ∆in. Let G be any graph, and let m be one of the most popular agents. Assume
that every agent who confirms m would vote for him whenever it is one of his best votes. Fix an SPE
with this assumption, and let w 6= m be the winner. Notice first, that by Observation 3 w cannot get more
than d(w) votes, since anyone who does not confirm him would not vote for him. Let Cm,w be the set of
agents who confirm both m and w, and let Cm,w be the set of agents who confirm m and do not confirm w.
By Observation 3 and our assumption on the SPE, all the agents in Cm,w\{w} vote for m, which means
that |Cm,w\{w}| ≤ d(w). In addition, |Cm,w| ≤ d(w). Hence, we get that m’s popularity in G−Ew is at
most d(m) = |Cm,w|+ |Cm,w\{w}| ≤ 2d(w), and the claim follows.

In the next theorem, we prove finite bounds for both R and R in approval voting.

Theorem 8. In approval voting,
3
2
≤R ≤R ≤ 2.

Proof. The proof of the upper bound on R is similar to the proof of the upper bound on R in Theorem 7.
This time we do not need to make any assumption on the SPE — by Observation 3 any voter who
confirms the most popular agent and does not confirm the winner is voting for the most popular agent.
The claim now follows in a similar way.
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To show the lower bound, we construct a series of graphs {Hk}k≥2 where ∆in(Hk) = Θ(k) and R(Hk) =
3/2. In the graph Hk the agent m is the most popular, and there are four sets of additional agents:
• The k agents in C = {c1, . . . ,ck} are the only agents, besides m, with a positive in-degree. They all
have precisely k in-edges less than m, and all confirm only m. We will show that c1 is the winner in the
unique SPE.
• The k−1 agents in D = {d1, . . . ,dk−1} are those who confirm m but are forced not to vote for him. For
any 1≤ i≤ k−1, agent di confirms m and all the agents {c j : j ≤ i}.
• The k−1 agents in E = {e2, . . . ,ek} provide the threat which prevents agents of D from voting for m.
Agent ei, 2≤ i≤ k, confirms all the agents {c j : j ≤ i}.
• Finally, the set B contains agents of k different types which serve as ‘equalizers’ which ensure that all
nodes in C have a popularity of d(m)− k = ∆in(Gk)− k. For 2≤ i≤ k there are 2i−3 agents of type bi

and they only confirm ci. In addition, there are k−1 agents of type bm who confirm m.

Figure 7: The graph Hk. Agent m has a popularity lead of k over all other agents, yet agent c1 is elected.

The general graph is represented in Figure 7. The agents in C,D and E are ordered alternately in lexi-
cographic order: c1,d1,e2,c2,d2,e3, . . . ,ck−1,dk−1,ek,ck; the agents in B∪{m} are ordered after them in
arbitrary order.
We will prove by induction on k that the winner in the unique SPE is agent c1. Notice that the popularity
of m in G−Ec1

is 3(k− 1) while the popularity of c1 is 2(k− 1), which implies the claimed ratio. Our
induction base is k = 2 (Figure 8). Here is a sketch of the unique SPE in this scenario. The voting
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starts with c1 who abstains. If d1 and e2 are both truthful, then c2 will be truthful as well (since c1 beats
him anyhow), and m will be elected. As e2 does not confirm this result, he will vote only for c2, who
can now abstain and get elected. Agent d1, foreseeing this possibility, must vote only for c1. Everyone
after d1 will now be truthful and c1,c2 and m all end up with two votes, leading to the election of c1 by
tie-breaking. For a general k it is enough to show that the following holds after c1 abstains:

Figure 8: The graph H2. Agent c1 gets elected after abstaining.

(1.) If d1,e2 are both truthful, then the winner is m.

(2.) If d1 is truthful and e2 votes for c2, then c2 is the winner.

(3.) If d1 votes for c1 and e2 is truthful, then c1 wins.

Notice that in any case, agents in B∪D∪E are not achievable since they have no in-edges.

Proof of (1.) After truthful votes from d1 and e2, c1 and c2 have equal potentials. Moreover, every
agent who confirms c2, except for b2, also confirms c1. Since in the tie-breaking order c1 and c2 are
adjacent, it is not hard to see that due to the truthful bias assumption, in any SPE, any agent except b2
must either include both c1,c2 or neither. This means that in any SPE, c1 will precede c2 by tie-braking,
hence c2 is not achievable. It is enough, therefore, to show that if c2 and d2 are truthful, then m is the
only achievable agent. Indeed, suppose that there is an SPE in which the outcome is ci, 3≤ i≤ k.20 By
Observation 3, all the agents in (C\{c1,c2,ci})∪ bm will be truthful, which means that m will end up
with at least 2k−1 votes,21 while the potential of ci is 2k−2, which is a contradiction.

Proof of (2.) Notice that by an argument similar to that of (1), here c1 is not achievable because c2
has higher potential. We claim that the subgame which starts with the vote of c2 is equivalent to the

20Clearly, an agent from D∪E ∪B cannot get elected, since m already has three votes.
21Which are the votes of d1,d2 and C∪bm\{c1,ci}.
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voting (which starts with c1) in the graph Hk−1. More precisely, we define a mapping ϕ : A(Hk)\(B∪
{c1,d1,e1})→ A(Hk−1)\B, by ϕ(c j) = c j−1, ϕ(d j) = d j−1, ϕ(e j) = e j−1, ϕ(m) = m. Since the agents
of B vote last and support only one agent each, they are non-strategic.22 We thus treat these agents as
part of the potential of the agents in C and ignore them in the description of an SPE. Now fix some SPE
of the subgame which starts with the voting of c2, and denote by V (a) ⊆ A(Hk) the ballot of agent a in
this SPE. We claim that the profile of voting in Hk−1 in which each agent ϕ(a) vote for ϕ(V (a)) is an
SPE. Indeed, the only difference between the two voting scenarios is that the potential of every agent
c ∈C(Hk)\{c1} is higher by exactly two then the potential of ϕ(c) in Hk−1.23 Since the graph structure,
voting order and tie-braking are all the same, it is not possible that ϕ(V (a)) is not a best vote of agent
ϕ(a) in Hk−1. By the induction hypothesis, we know that the only SPE of Hk−1 leads to the election of
c1. Hence the only achievable agent in our subgame of Hk is c2, as claimed.

Proof of (3.) Just like in (1), c2 is not achievable, hence c2 is truthful. Again we get a subgame which
is equivalent to Hk−1, only this time we ignore c2 and map ϕ(c1) = c1. The rest of the claims are identical
to the proof of (2). We get that the only achievable agent in this subgame is c1.

4 Generalizing to k-approval

The two voting methods we discussed (namely, plurality and approval) can be generalized to a k-approval
voting method in which every voter is allowed to vote for at most k other agents.24 So plurality is no
more than 1-approval, and approval is the same as (n−1)-approval. The two propositions of the additive
gap (Propositions 4 and 6) had a single proof for both plurality and approval, and it is not hard to see that
it can be generalized for any k-approval. Likewise, the bound R ≤ 2 can be proved for any k-approval
in a similar way to the proof in Theorem 7 (and see also the same argument in Theorem 8). We will now
extend the second part of Theorem 7 to any k-approval with k = o(n) by showing a series of graphs in
which R is unbounded.

Figure 9: There is an SPE in which c3 is elected.

22That is, their only best vote is to be truthful.
23Here the potential includes the “sure votes” of agents in B.
24We allow a voter to vote for less than k other agents and even abstain. Though this is not the standard definition of k-

approval, since we allowed abstentions in plurality and approval, this is the correct definition to get the full range between
plurality and approval with abstentions.
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In the graph in Figure 9 each agent di, i = 1,2,3 confirms the agents c j, 1≤ j ≤ i. In addition, agent
d1 confirms k additional agents, denoted b1, and d2,d3 each confirms k− 1 additional agents, denoted
b2,b3, respectively. The agents’ order is d1,d2,d3,c3,c2,c1 and then the rest. We describe an SPE in
which c3 is elected. In this SPE, if d1 votes for any subset which includes c1, then d2 and d3 will both
vote for a subset which includes c2, and c2 is elected. Since the outcome is one of the worst d1 can get,
voting only for the k agents of b1 is a best vote for him. In this case, d3 decides to vote for c3 and the
k−1 agents of b3, and c3 is elected no matter how d2 votes. The multiplicative ratio in this SPE is 3. It
is not hard to see how to extend this example to get any ratio.

5 Discussion and open problems

Additive gap vs. multiplicative ratio

We have seen (Proposition 4) that in the special case where every agent confirms at most one other
agent, the elected agent will be most-popular or almost most-popular. However, as soon as the maximum
out-degree of the graph is higher than one, this is no longer the case. In fact, we have shown (Proposi-
tion 6 and the discussion in Section 4) that D is unbounded even when ∆in(G) = 2, for any k-approval
voting. We, therefore, come to the conclusion that the additive gap is not a sufficient measure for the
quality of a voting method in this model. Thus we turned to the multiplicative ratio for a finer evaluation.

Indeed the multiplicative ratio gave us different bounds for plurality and approval voting. In the case
of plurality, we have seen (Theorem 7) that even though there might be an SPE with a ‘bad’ outcome (R
is unbounded), for every graph, we are guaranteed to have an SPE with a ratio of 2, at most. Moreover,
our proof explains how to distinguish this SPE from other SPEs: you just give a small extra incentive
for those who confirm the most popular to actually vote for him. The case of approval voting is clearer.
Here (Theorem 8) we have proved finite bounds for both R and R.

Plurality vs. approval

In [7], Brams demonstrated the superiority of approval voting over plurality voting in simultaneous
voting systems. We conclude from our results, that in our setting, plurality voting (and even k-approval
voting for any k = o(n)) allows SPEs with unbounded multiplicative ratio, while in approval, this ratio,
in any SPE, will be between 1.5 and 2. We cannot draw from our results a comparison of the ‘best
outcome’. To achieve that, we need to bound R from below for plurality voting.

Question 9. In plurality voting, is it possible to construct a series of graphs, {Gk}, with ∆in(Gk)→ ∞

and R(Gk)≥ α for some α > 1 and all k?

Notice that in the series of graphs of Proposition 6, when D(Gk) = k, we have ∆in(Gk) = Θ(k2).
So in this particular example, R(Gk) = R(Gk) = 1+O(1/k). If there is a non-trivial (i.e. different
than 1) bound for R in plurality voting, then there is a series of graphs, {Gk} such that D(Gk) = k and
∆in(Gk) = Θ(k) (this is exactly what we have shown for approval voting, when we proved the lower
bound in Theorem 8). So a rephrase of the above question would be:

Question 10. In plurality voting, is it possible to construct a series of graphs, {Gk}, with ∆in(Gk) =Θ(k)
and such that D(Gk)→ ∞?

It is worthwhile to note here that the example giving the lower bound of Theorem 8 does not work
for plurality. To see that, consider the graph H2 (Figure 8). If c1 abstains, then even if d1 votes for c1, e1
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might opt to vote for c2, and as a result, c2 will be elected. So, for the case of plurality voting, the graph
H2 has an SPE in which m is elected, and the proof fails.

For the approval voting method, we have proved both a lower and upper bound on R,R. Still, it
could be nice to further narrow these bounds or even find the exact asymptotic values of R,R.
Question 11. Can the bounds of Theorem 8 be narrowed down?

kkk-approval and a threshold between plurality and approval

Finally, we have seen that k-approval has the same bounds as plurality for any k = o(n). When
k = n− 1 this voting method is precisely approval; and so a natural question is what can be said about
the threshold function which separates k-approval from plurality.
Question 12. Find a minimal function, f (n), such that the voting method f (n)-approval has a finite
bound for R.
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