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Prior work on the complexity of bribery assumes that the bribery happens simultaneously, and that the
briber has full knowledge of all voters’ votes. But neither of those assumptions always holds. In many
real-world settings, votes come in sequentially, and the briber may have a use-it-or-lose-it moment to
decide whether to bribe/alter a given vote, and at the time of making that decision, the briber may not
know what votes remaining voters are planning on casting.

In this paper, we introduce a model for, and initiate the study of, bribery in such an online,
sequential setting. We show that even for election systems whose winner-determination problem is
polynomial-time computable, an online, sequential setting may vastly increase the complexity of
bribery, in fact jumping the problem up to completeness for high levels of the polynomial hierarchy
or even PSPACE. On the other hand, we show that for some natural, important election systems,
such a dramatic complexity increase does not occur, and we pinpoint the complexity of their bribery
problems in the online, sequential setting.

1 Introduction

In computational social choice theory, the three most studied types of attacks on elections are bribery,
control, and manipulation, and the models of those that are studied seek to model the analogous real-world
actions.

Such studies are typically carried out for the model in which all the voters vote simultaneously.
That sometimes is the case in the real world. But it also is sometimes the case that the voters vote in
sequence—in what is sometimes called a roll-call election.

That type of setting has been relatively recently introduced and studied for control and manipulation—
in particular, studies have been done of both control and manipulation in the so-called online, sequential
setting [HHR14, HHR17a, HHR17b]. In the present paper, we study the complexity of, and algorithms
for, the online, sequential case of bribery.
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Briefly put, we are studying the case where the voting order (and the voter weights and cost of bribing
each voter) is known ahead of time to the briber. But at the moment a voter seeks to vote, the voter’s
planned vote is revealed to the briber, who then has a use-it-or-lose-it chance to bribe the voter, by paying
the voter’s bribe-price (and doing so allows that vote to be changed to any vote the briber desires).

The problem we are studying is the complexity of that decision. In particular, how hard is it to decide
whether under optimal play on the part of the briber there is an action for the briber towards the current
voter such that under continued future optimal play by the briber (in the face of all future revelations of
unknown information being pessimal), the briber can reach a certain goal (e.g., having one of his or her
two favorite candidates win; or not having any of his or her three most hated candidates win).

What is an example of a situation that might be modeled by sequential bribery? One example would
be the case of a new department chair meeting sequentially with each faculty member, on the morning
of a noon faculty vote on some crucial issue, and at each meeting quickly finding the faculty member’s
preferences regarding the issue and assessing how much of a bribe would be needed to change those,
and then deciding whether or not to commit that amount from the chair’s (limited) discretionary raise
pool in order to execute a bribe of that faculty member. (See the final three paragraphs of Section 3 of
the technical-report version of this paper [HHR19] for a more detailed discussion of issues regarding the
model, the varying forms the costs in bribery can take (from actual dollars to time or effort spent to risk
accepted), and the fact that, despite the typical associations with the word “bribery,” in many settings
bribery is not modeling immoral or evil acts.)

The following list presents the section structure of our results, and mentions some of the novel proof
approaches needed to obtain them.

1. Sections 4.1 and 4.2 establish our upper bounds—of PSPACE and the Π
p
2k+1 level of the polynomial

hierarchy—on online bribery (i.e., online, sequential bribery, but we will for the rest of the paper
and especially in our problem names often omit the word “sequential” when the word “online” is
present) in the general case and in the case of being restricted to at most k bribes.

The Π
p
2k+1 upper bounds are far less straightforward than upper bounds in the polynomial hierarchy

typically are. Since bribes can occur on any voter (until one runs out of allowed bribes), and so a
yes-no decision has to be made, even for the case of at most k bribes, there can be long strings of
alternating existential and universal choices in the natural alternating Turing machine programs for
the problems. And so there is the threat that one can prove merely a PSPACE upper bound.

However, in Section 4.2.1, we prove a more general result about alternating Turing machines that,
while perhaps having many alternations between existential and universal choices, make most of
them in a “boring” way. Basically, we show that in the relevant setting one can pull much of the
existential guessing upstream and make it external to the alternating Turing machine, and indeed one
can do so in such a way that one transforms the problem into the disjunction of a polynomial number
of uniformly generated questions about actions of alternating Turing machines each of which itself
has at most 2k+1 alternation blocks. From that, we establish the needed upper bound, both for the
relevant abstract case of alternating Turing machines and for our online bribery problems.

2. Section 4.3 proves that there are election systems with simple winner problem such that each
of the abovementioned upper-bounds is tight, i.e., that PSPACE-completeness holds or Π

p
2k+1-

completeness holds.

There is a substantial, novel challenge that the proof here has to overcome. Namely, to prove
for example Π

p
2k+1-hardness, we generally need to reduce from quantified boolean formulas with

particular quantifiers applying to particular variables. However, in online bribery, the briber is
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allowed to choose where to do the bribing. This in effect corresponds to having a formula with
clusters of quantified variables, yet such that we as we attempt to prove theorems related to these
structures don’t have control over which quantifiers are existential and which are universal. Rather,
in effect what the online bribery setting will test is whether there exists an assignment (consistent
with the number of bribes allowed—which limits the number of existential quantifiers one can set)
of each quantifier to be either existential or universal, such that for that quantifier-assignment the
formula evaluates as true. (This is not at all the same as quantifier exchange; in quantifier exchange,
the exchanged quantifiers move around together with their associated variables.)

However, we handle this by showing how to construct a new formula that builds in protection
against this setting. In particular, we note that one can take a quantified boolean formula and turn
it into one such that, in this Wild West setting of quantifier assignment, the new formula can be
made true by a legal (i.e., having at most as many ∃ quantifiers as the original formula) quantifier
assignment exactly if the original formula is true.

3. In Section 5, we look at the complexity of online bribery for various natural systems. We show
that for both Plurality and Approval, it holds that priced, weighted online bribery is NP-complete,
whereas all other problem variants of online bribery are in P. This also shows that bribery can
be harder than online bribery for natural systems. In addition, we provide complete dichotomy
theorems that distinguish NP-hard from easy cases for all our online bribery problems for scoring
rules and additionally we show that Veto elections, even with three candidates, have even higher
lower bounds for weighted online bribery, namely PNP[1]-hardness.

Due to space limits, many of our proofs and much additional discussion can be found only in the
technical-report version of this paper [HHR19]. In particular, only three of our proofs are included in this
conference version and at times this version may refer to proofs found in the technical report as if they
were available to and known to the reader.

2 Related Work

Our paper’s general area is computational social choice, in which studying the complexity of election
and preference aggregation problems and manipulative attacks on them is a central theme. There are
many excellent surveys and book chapters on computational social choice [BCE13, Rot16, BCE+16],
and computational social choice and computational complexity have a long history of close, mutually
beneficial interaction (see the survey [Hem18]).

The prior papers most related to our work are the papers that defined and studied the complexity of
online control [HHR17a, HHR17b], of online manipulation [HHR14], and of (regular) bribery [FHH09].
Particularly important among those is online manipulation, as we will show connections/inheritance
between online manipulation and our model. We also will show connections/inheritance between (reg-
ular) manipulation and our model. Regular manipulation was introduced by Bartholdi, Tovey, and
Trick [BTT89] in the unweighted case and by Conitzer, Sandholm, and Lang [CSL07] in the weighted
case.

The existing work most closely related to our work on the effect of formulas on limits on existential
actions is the work on online voter control [HHR17b], though the issues tackled here are different and
harder.

The work of Xia and Conitzer [XC10] (see also [DE10, Slo93, DP01]) that defines and explores
the Stackelberg voting game is also about sequential voting, although unlike this paper their analysis is
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game-theoretic and is about manipulation rather than bribery. Sequential (and related types of) voting
have also been studied in an axiomatic way [Ten04] and using Markov decision processes [PP13], though
neither of those works focuses on issues of bribery. Poole and Rosenthal [PR97] provide a history of
roll-call voting.

Our approach to the briber’s goal, which is assuming worst-case revelations of information, is inspired
by the approach used in the area known as online algorithms [BE98].

Interesting work that is related—though somewhat distantly—in flavor to our study is the paper of
Chevaleyre et al. [CLM+12] on the addition of candidates. They also focus on the moment at which one
has to make a key decision, in their case whether all of a group of potential additional candidates should
be added.

3 Preliminaries

3.1 Basics

P is the class of decision problems in deterministic polynomial time. NP is the class of decision problems
in nondeterministic polynomial time. For each k ≥ 0, Σ

p
k is the class of decision problems in the kth Σ

level of the polynomial hierarchy [MS72, Sto76], e.g., Σ
p
0 = P, Σ

p
1 = NP, and Σ

p
2 = NPNP (i.e., the class

of sets accepted by nondeterministic polynomial-time oracle Turing machines given unit-cost access to
an NP oracle). For each k ≥ 0, Π

p
k = {L | L ∈ Σ

p
k}, e.g., Π

p
0 = Σ

p
0 = P, Π

p
1 = coNP, and Π

p
3 = coNPNPNP

.
Further, ∆

p
2 = PNP is the class of decision problems solvable by a deterministic polynomial-time oracle

Turing machine with access to an NP oracle, and PNP[1] is the same class restricted to one oracle query.
We say that A≤p

m B (A polynomial-time many-one reduces to B) exactly if there is a polynomial-time
computable function f such that (∀x)[x ∈ A ⇐⇒ f (x) ∈ B].

Fact 3.1. For each complexity class C ∈ {Σp
0 ,Σ

p
1 ,Π

p
1 ,Σ

p
2 ,Π

p
2 , . . .}, C is closed downwards under

polynomial-time many-one reductions, i.e., (B ∈ C ∧ A≤p
m B) =⇒ A ∈ C .

Each of the classes mentioned in Fact 3.1 is even closed downwards under what is known as
polynomial-time disjunctive truth-table reducibility [LLS75]. Disjunctive truth-table reducibility can be
defined as follows. We say that A≤p

dtt B (A polynomial-time disjunctive truth-table reduces to B) exactly
if there is a polynomial-time computable function f such that, for each x, it holds that (a) f (x) outputs
a list of 0 or more strings, and (b) x ∈ A if and only if at least one string output by f (x) is a member of
B. (Polynomial-time many-one reductions are simply the special case of polynomial-time disjunctive
truth-table reductions where the polynomial-time disjunctive truth-table reduction’s output-list function is
required to always contain exactly one element.)

Fact 3.2. For each complexity class C ∈ {Σp
0 ,Σ

p
1 ,Π

p
1 ,Σ

p
2 ,Π

p
2 , . . .}, C is closed downwards under

polynomial-time disjunctive truth-table reductions, i.e., (B ∈ C ∧ A≤p
dtt B) =⇒ A ∈ C .

The above fact is obvious for P, and is easy to see and well known for NP and coNP (for example,
the results follow immediately from the result of Selman [Sel82] that NP is closed downwards under
so-called positive Turing reductions). The results for the NP and coNP cases relativize (as Selman’s
mentioned result’s proof clearly relativizes), and that gives (namely, by relativizing the NP and coNP
cases by complete sets for NP, NPNP, etc.) the claims for the higher levels of the polynomial hierarchy
(in fact, it gives something even stronger, since it gives downward closure under disjunctive truth-table
reductions that themselves are relativized, but we won’t need that stronger version in this paper).

Since all the many-one and disjunctive truth-table reductions discussed in the paper will be polynomial-
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time ones, we henceforth will sometimes skip the words “polynomial-time” when speaking of a
polynomial-time many-one or disjunctive truth-table reduction.

A set L is said to be (polynomial-time many-one) hard for a class C (for short, “L is C -hard”) exactly
if (∀B ∈ C )[B≤p

m L]. If in addition L ∈ C , we say that L is polynomial-time many-one complete for C ,
or simply that L is C -complete.

An (unweighted) election system E takes as input a voter collection V and a candidate set C, such
that each element of V contains a voter name and a preference order over the candidates in C; and for us
in this paper preference orders are always total orders, except when we are speaking of approval voting
where the preference orders are bit-vectors from {0,1}‖C‖. (For the rest of the preliminaries, we’ll always
speak of total orders as the preference orders’ type, with it being implicit that when later in the paper we
speak of and prove results about approval voting, all such places will tacitly be viewed as speaking of
bit-vectors.) The election system maps from that to a (possibly nonproper) subset of C, often called the
winner set. We often will call each element of V a vote, though as is common sometimes we will use the
term vote to refer just to the preference order. We often will use the variable names σ , σ1, σ2, . . . , σi for
total orders. We allow election systems to, on some inputs, have no winners.1

For a given (unweighted, simultaneous) election system, E , the (unweighted) winner (aka the winner-
determination) problem (in the unweighted case) is the set {〈C,V,c〉 | c ∈C ∧ c is a winner of the election
(C,V ) under election system E }.

For a given (unweighted [sic], simultaneous) election system, E , the winner problem in the
weighted [sic] case will be the set of all strings 〈C,V,c〉 such that C is a candidate set, V is a set of
weighted (via binary nonnegative integers as weights) votes (each consisting of a voter name and a total
order over C), c ∈C, and in the unweighted election created from this by replacing each w-weighted vote
in V with w unweighted copies of that same vote, c is a winner in that election under the (unweighted)
election system E . For an election system E , it is clear that if the winner problem in the weighted case is
in P, then so is the winner problem in the unweighted case. However, it is not hard to show that there are
election systems E for which the converse fails. The above approach to defining the weighted winner
problem is natural and appropriate for the election systems discussed in this paper. (The technical-report
version of this paper [HHR19] has a detailed discussion of the strengths and weaknesses of using this
approach to the weighted winner problem in other settings, see also the discussion and results in [FH16].)

3.2 Online Bribery in Sequential Elections

This paper is about the study of online bribery in sequential elections. In this setting, we are—this is
the sequential part—assuming that the voters vote in a well-known order, sequentially, with each casting
a ballot that expresses preferences over all the candidates. And we are assuming—this is the online
part—that the attacker, called “the briber,” as each new vote comes in has his or her one and only chance
to bribe that voter, i.e., to alter that vote to any vote of the briber’s choice.

Bribery has aspects of both the other standard types of electoral attacks: bribery is like manipulation in
that one changes votes and it is like (voter) control in that one is deciding on a set of voters (in the case of
bribery, which ones to bribe). Reflecting this, our model follows as closely as possible the relevant parts of
the existing models that study manipulation and control in online settings [HHR14, HHR17b, HHR17a].
In particular, we will follow insofar as possible both the model of, and the notation of the model of, the

1Although in social choice this is often disallowed, as has been discussed previously, see, e.g., [FHH16, Footnote 3],
artificially excluding the case of no winners is unnatural, and many papers in computational social choice allow this case. A
typical real-world motivating example is that in Baseball Hall of Fame votes, having no inductees in a given year is a natural
outcome that has at times occurred.
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paper by Hemaspaandra, Hemaspaandra, and Rothe [HHR17b] that introduced the study of online voter
control in sequential elections. In particular, we will follow the flavor of their model of control by deleting
voters, except here the key decision is not whether to delete a given voter, but rather is whether a given
voter should be bribed, i.e., whether the voter’s vote should be erased and replaced with a vote supplied by
the briber. That “replace[ment]” part is more similar to what happens in the study of online manipulation,
which was modeled and studied by Hemaspaandra, Hemaspaandra, and Rothe [HHR14]. We will, as both
those papers do, focus on a key moment—a moment of decision—and in particular on the complexity of
deciding whether there exists an action the briber can take, at that moment, such that doing so will ensure,
even under the most hostile of conditions regarding the information that has not yet been revealed, that the
briber will be able to meet his or her goal.

If u is a voter and C is a candidate set, an election snapshot for C and u is specified by a triple
V = (V<u,u,V>u), which loosely put is made up of all voters in the order they vote, each accompanied in
models where there are prices and/or weights with their prices and/or weights (which in this paper are
assumed to be nonnegative integers coded in binary).2 In addition, for each voter voting before u (namely,
the voters in V<u), also included in this listing will be the vote they cast (or if they were bribed, what
vote was cast for them by the briber) and whether they were bribed; and for u the listing will also include
the vote u will cast unless bribed to cast a different vote. So V>u is simply a list, in the order they will
vote, of the voters, if any, who come after u, each also including the voter’s price and/or weight data if
we are in a priced and/or weighted setting. Further, the vote for u and all the votes in V<u must be votes
over the candidate set C (and in particular, in this paper votes are total orderings of the candidates, e.g.,
a > b > c).3

2Why do we feel it natural in most situations for the prices and weights be in binary rather than unary? A TARK referee, for
example, asked whether it was not natural to assume that prices and weights would always be small, or if not, would always be
multiples of some integer that when divided out would make the remaining numbers small.

Our answer is that both prices and weights in many settings tend to be large, and without any large, shared-by-all divisor. To
see this clearly regarding weights, consider for example the number of shares of stock the various stockholders hold in some
large corporation or the number of residents in each of the states of a country. Prices too are potentially as rich and varied as are
individuals and objects, e.g., in some settings each person’s bribe-price might be the exact fair market value of his or her house,
or might be closely related to the number of visits a web site they own has had in the past year.

Pulling back, we note that requiring prices and weights to be in unary is often tremendously (and arguably inappropriately)
helping the algorithms as to what their complexity is, since in effect one is “padding” the many inputs’ sizes as much as
exponentially. But if weighted votes are viewed as indivisible objects—and that is indeed how they are typically treated in the
literature—the right approach indeed is to code the weights in binary, and not to give algorithm designers the potentially vastly
lowered bar created by the padding effect of coding the weights in unary. Indeed, it is known in the study of (nonsequential)
bribery that changing prices or weights to unary can shift problems’ complexities from NP-hardness to being in deterministic
polynomial time [FHH09, pp. 500–504].

Also, people typically do code natural numbers in binary, not unary.
3There is a slight overloading of notation above, in that we have not explicitly listed in the structure the location of the

mentioned extra data. In fact, our actual definition is that the first and last components of the 3-tuple V are lists of tuples, and the
middle component is a single tuple. Each of these contain the appropriate information, as mentioned above. For example, for
priced, weighted bribery:

1. the elements of the list V<u will be 5-tuples (vi, pi,wi,σi,bi) whose components respectively are the voter’s name, the voter’s
price, the voter’s weight, the voter’s cast ballot (which is the voter’s original preference order if the voter was not bribed and is
whatever the voter was bribed into casting if the voter was bribed), and a bit specifying whether that vote resulted from being
bribed,

2. the middle component of V will be a tuple that contains the first four of those five components, and
3. the elements of the list V>u will contain the first three of the above-mentioned five components.

Similarly, for example, for unpriced, unweighted bribery, the three tuple types would respectively have three components, two
components, and one component.

As a remaining tidbit of notational overloading, in some places we will speak of u when we in fact mean the voter name that is
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Let us, with the above in hand, define our notions of online bribery for sequential elections. Settings
can independently allow or not allow prices and weights, and so we have four basic types of bribery in our
online, sequential model, each having both constructive and destructive versions.

In the original paper on nonsequential bribery there were other types of bribery, e.g., microbribery,
unary-coding, and succinct variants [FHH09]. Many other types have been studied since, e.g., nonuniform
bribery [Fal08] and swap- (and its special case shift-) bribery [EFS09] (see also [EF10, BCF+16]).
However, for compactness and since they are very natural, this paper focuses completely on (standard)
bribery in its eight typical versions (as to prices, weights, and constructive/destructive), except now in an
online, sequential setting.

Our specification of these problems as languages is centered around what Hemaspaandra, Hema-
spaandra, and Rothe [HHR14] called a magnifying-glass moment. This is a moment of decision as to a
particular voter. To capture precisely what information the briber does and does not have at that moment,
and to thus allow us to define our problems, we define a structure that we will call an OBS, which stands
for online bribery setting. An OBS is defined as a 5-tuple (C,V,σ ,d,k), where C is a set of candidates;
V = (V<u,u,Vu<) is an election snapshot for C and u as discussed earlier; σ is the preference order of the
briber; d ∈C is a distinguished candidate; and k is a nonnegative integer (representing for unpriced cases
the maximum number of voters that can be bribed, and for priced cases the maximum total cost, i.e., the
sum of the prices of all the bribed voters).

Given an election system E , we define the online unpriced, unweighted bribery problem, abbreviated
by online-E -Bribery, as the following decision problem. The input is an OBS. And the question is: Does
there exist a legal (i.e., not violating whatever bribe limit holds) choice by the briber on whether to bribe
u (recall that u is specified in the OBS, namely, via the middle component of V ) and, if the choice is to
bribe, of what vote to bribe u into casting, such that if the briber makes that choice then no matter what
votes the remaining voters after u are (later) revealed to have, the briber’s goal (the meeting of which itself
depends on E and will be defined explicitly two paragraphs from now) can be reached by the current
decision regarding u and by using the briber’s future (legal-only, of course) decisions (if any), each being
made using the briber’s then-in-hand knowledge about what votes have been cast by then?

Note that this approach is about alternating quantifiers. It is asking whether there is a current choice
by the briber such that for all potential revealed vote values for the next voter there exists a choice by
the briber such that for all potential revealed vote values for the next-still voter there exists a choice by
the briber such that. . . and so on. . . such that the resulting winner set under election system E meets the
briber’s goal. This is a bit more subtle than it might at first seem. The briber is acting very powerfully,
since the briber is represented by existential quantifiers. But the briber is not all-powerful in this model.
In particular, the briber can’t see and act on future revelations of vote values; after all, those are handled
by a universal quantifier that occurs downstream from an existential quantifier that commits the briber to a
particular choice.

In the above we have not defined what “the briber’s goal” is, so let us do that now. WE (C,U) will
denote the winner set, according to election system E , of the (standard, nonsequential) election (C,U),
where C is the candidate set and U is the set of votes. By the briber’s goal we mean, in the constructive
case, that if at the end of the above process U ′ is the set of votes (some may be the original ones and
some may be the result of bribes), it holds that WE (C,U ′)∩{c | c≥σ d} 6= /0, i.e., the winner set includes
some candidate (possibly itself being d) that the briber likes at least as much as the briber likes d. In the
destructive case, the goal is to ensure that no candidate that the briber hates as much or more than the briber

the first component of the tuple that makes up the middle tuple of V . That is, we will use u both for a tuple that names u and gives
some of its properties, and as a stand-in for the voter him- or herself. Which use we mean will always be clear from context.
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hates d belongs to the winner set, i.e., the briber’s goal is to ensure that WE (C,U ′)∩{c | d ≥σ c}= /0.
Above, we have defined both online-E -Bribery and online-E -Destructive-Bribery. Those both are in

the unpriced, unweighted setting. And so as per our definitions, the voters passed in as part of the problem
statement do not come with or need price or weight information.

But our definitions note that for the priced and/or weighted settings, the OBS will carry the prices
and/or weights. And so the same definition text that was used above defines all the other cases, except that
one must keep in mind for the priced cases that when the “bribery limit” is mentioned one must instead
speak of the “bribery budget,” and in the weighted cases the winner set W is of course defined in terms of
the weighted version of the given voting system (which must, for that to be meaningful, have a well-defined
notion of what its weighted version is; Section 3.1 provides that notion for all systems in this paper).
Thus, we also have tacitly defined the six problems online-E -$Bribery, online-E -Destructive-$Bribery,
online-E -Weighted-Bribery, online-E -Destructive-Weighted-Bribery, online-E -Weighted-$Bribery, and
online-E -Destructive-Weighted-$Bribery.

For an unpriced online bribery problem, we will postpend the problem name with a “[k]” to define
the version where as part of the problem definition itself the bribery limit is—in contrast with the above
unpriced problem—not part of the input but rather is fixed to be the value k. For example, online-E -
Bribery[k] denotes the unpriced, unweighted bribery problem where the number of voters who can be
bribed is set not by the problem input but rather is limited to be at most k. Note that in each of the “[k]”
variants, we tacitly are altering the definition of OBS from its standard 5-tuple, (C,V,σ ,d,k), to instead
the 4-tuple (C,V,σ ,d); that is because for these cases, the k is fixed as part of the general problem itself,
rather than being a variable part of the individual instances. For priced “[k]” variants, there will be both a
limit (being a variable part of the input) on the total price of the bribes and a fixed as part of the general
problem itself limit on the number of voters who can be bribed.

Of course, there are some immediate relationships that hold between these eight problems. One has
to be slightly careful since there is a technical hitch here. We cannot for example simply claim that
online-E -Bribery[k] is a subcase of online-E -$Bribery[k]. If we had implemented the unpriced case by
still including prices in the input but requiring them all to be 1, then it would be a subcase. But regarding
both prices (weights), our definitions simply omit them completely from problems that are not about
prices (weights). In spirit, it is a subcase, but formally it is not. Nonetheless, we can still reflect the
relationship between these problems, namely, by stating how they are related via polynomial-time many-
one reductions. (We could even make claims regarding more restrictive reduction types, but since this
paper is concerned with complexity classes that are closed downwards under polynomial-time many-one
reductions, there is no reason to do so.) The following proposition (and the connections that follow from
it by the transitivity of polynomial-time many-one reductions) captures this.

Proposition 3.3. 1. For each k > 0 and for each election system E ,

• online-E -Bribery[k]≤p
m online-E -$Bribery[k],

• online-E -Bribery[k]≤p
m online-E -Weighted-Bribery[k],

• online-E -$Bribery[k]≤p
m online-E -Weighted-$Bribery[k], and

• online-E -Weighted-Bribery[k]≤p
m online-E -Weighted-$Bribery[k].

2. The above item also holds for the case when all of its problems are changed to their destructive
versions.

3. The above two items also hold for the case when all the “[k]”s are removed (e.g., we have online-
E -Bribery≤p

m online-E -$Bribery).



Edith Hemaspaandra, Lane A. Hemaspaandra & Jörg Rothe 241

As mentioned in the introduction, the technical-report version of this paper [HHR19] includes some
additional discussion of the model, of the flexibility of bribery, and of the fact that bribery is not necessarily
always modeling immoral/evil acts.

4 General Upper Bounds and Matching Lower Bounds

Even for election systems with simple winner problems, the best general upper bounds that we can prove
for our problems reflect an extremely high level of complexity.

One might wonder whether that merely is a weakness in our upper-bound proofs. However, in each
case, we provide a matching completeness result proving that these really are the hardest problems in the
classes their upper bounds put them in.

However, in Section 5, we will see that for many specific natural, important systems, the complexity
is tremendously lower than the upper bounds, despite the fact that the present section shows that there
exist systems that meet the upper bounds.

4.1 The General Upper Bound, Without Limits on the Number of Bribes

This section covers upper bounds for the case when any bribe limit/bribery budget is passed in through
the input—not hardwired into the problem itself.

Theorem 4.1. 1. For each election system E whose winner problem in the unweighted case is in
polynomial time (or even in polynomial space), each of the problems online-E -Bribery, online-E -
Destructive-Bribery, online-E -$Bribery, and online-E -Destructive-$Bribery is in PSPACE.

2. For each election system E whose winner problem in the weighted case is in polynomial time (or
even in polynomial space), each of the problems online-E -Weighted-Bribery, online-E -Destructive-
Weighted-Bribery, online-E -Weighted-$Bribery, and online-E -Destructive-Weighted-$Bribery is
in PSPACE.

The proof is made available through the technical-report version of this paper [HHR19].

4.2 The General Upper Bound, With Limits on the Number of Bribes

Turning to the case where in the problem the number of bribes has a fixed bound of k, these problems fall
into the Π

p
2k+1 level of the polynomial hierarchy. That is not immediately obvious. After all, even when

one can bribe at most k times, one still for each of the current and future voters seems to need to explore
the one-bit-per-voter decision of whether to bribe the voters (plus in those cases where one does decide to
bribe, one potentially has to explore the exponential—in the number of candidates—possible votes to
which the voter can be bribed). On its surface, for our problems, that would seem to say that the number of
alternations between universal and existential moves that the natural polynomial-time alternating Turing
program for our problem would have to make is about the number of voters—a bound that would not leave
the problem in any fixed level of the polynomial hierarchy, but would merely seem to put the problem in
PSPACE.

So these problems are cases where even obtaining the stated upper bound is interesting and requires a
twist to prove. The twist is as follows. On the surface the exploration of these problems has an unbounded
number of alternations between universal and existential states in the natural, brute-force alternating
Turing machine program. But for all but k of the existential guesses on each accepting path, the guess
is a boring one, namely, we guess that regarding that voter we don’t bribe. We will show, by proving a
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more general result about alternating Turing machines and restrictions on the structure of their maximal
existential move segments along accepting paths, a Π

p
2k+1 upper bound on our sets of interest. In some

sense, in terms of being charged as to levels of the polynomial hierarchy, we will be showing that if for
a certain collection of 0-or-1 existential decisions one on each accepting path chooses 0 all but a fixed
number of times (although for the other times one may then make many more nondeterministic choices),
one can manage to in effect not be charged at all for the guessing acts that guessed 0.

We know of only one result in the literature that is anything like this. That result, which also came
up in the complexity of online attacks on elections, is a result of Hemaspaandra, Hemaspaandra, and
Rothe [HHR17b], where in the context not of bribery but of voter control they showed that for each fixed
k > 0 it holds that, for each polynomial-time alternating Turing machine M whose alternation blocks are
each one bit long and that for at most k of the existential blocks guess a zero, the language accepted by M
is in coNP.

In contrast, in the present paper’s case we are in a far more complicated situation, since in bribery our
existential blocks are burdened not just by 1-bit bribe-or-not decisions, but for the cases when we decide
to try bribing, we need to existentially guess what bribe to do. And so we do not stay in coNP regardless
of how large k is, as held in that earlier case. But we show that we can at least limit the growth to at most
2k+1 alternating quantifiers—in particular, to the class Π

p
2k+1. And since we later provide problems of

this sort that are complete for Π
p
2k+1, our 2k+1 is optimal unless the polynomial hierarchy collapses.

We will approach this in two steps. First, as Section 4.2.1, we will prove the result about alternating
Turing machines. And then, as Section 4.2.2, we will apply that to online bribery in the case of only
globally fixed numbers of bribers being allowed.

4.2.1 A Result about Alternating Turing Machines

Briefly put, an alternating Turing machine [CKS81] (aka ATM) is a generalization of nondeterministic
and conondeterministic computation. We will now briefly review the basics (see [CKS81] for a more
complete treatment). An ATM can make both universal and existential choices. For a universal “node” of
the machine’s action to evaluate to true, all its child nodes (one each for each of its possible choices) must
evaluate to true. For an existential “node” of the machine’s action to evaluate to true, at least one of its
child nodes (it has one child node for each of its possible choices) must evaluate to true. A leaf of the
computation tree (a path, at its end) is said to evaluate to true if the path halted in an accepting state and is
said to evaluate to false if the path halted in a nonaccepting state. (As our machines are time-bounded, all
paths halt.) Without loss of generality, in this paper we assume that each universal or existential node has
either two children (namely, does a universal or existential split over the choices 0 and 1; we will often
call this a “1-bit move”) or has exactly one child (it does a trivial/degenerate universal or existential choice
of an element from the one-element set {0}; we will often call this a “0-bit move”). The latter case is in
effect a deterministic move, except allowing degenerate ∀ steps of that sort will let us put a “separator”
between otherwise contiguous ∃ computation segments. Of course, long existential guesses can be done
in this model, for example by guessing a number of bits sequentially. An ATM accepts or rejects based on
what its root node evaluates to (which is determined inductively in the way described above).

Definition 4.2. Consider a path ρ in the tree of an ATM. The weight of that path is as follows. Consider
all maximal segments of existential nodes along the path. (As mentioned above, we may without loss of
generality, and do, assume that each nonleaf node is ∃ or ∀, although perhaps a degenerate such node in
the way mentioned above). The weight of path ρ is its number of maximal existential segments such that
the concatenation of the bits guessed in that segment is not the 1-bit string 0.
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∃

∀

∃

∀

∃
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0 1

0 1

0 1

0

0 1

Figure 1: A weight 0 path in the tree of an ATM.

Figure 1 gives an illustration of this. In the figure, the illustrated path (the leftmost one at the left edge
of the tree) has weight 0; it has three maximal existential segments, but each is of length one and makes
the guess 0.

With this definition in hand, we can now state our key theorem showing that limited weight for ATMs
simplifies the complexity of the languages accepted. The result is one where one may go back and forth
between thinking it is obvious and thinking it is not obvious. In particular, note that even on accepting
paths, which must be of weight at most k, it is completely possible that the number of alternations between
existential and universal nodes may be far greater than k and may be far greater than 2k+1, and indeed
may grow unboundedly as the input’s size increases. What the theorem below is saying is that despite
that, machines with bounded weight on their accepting paths still accept only Π

p
2k+1 sets.

Theorem 4.3. Let k ≥ 0 be fixed. Each polynomial-time ATM M such that on no input does M have an
accepting path of weight strictly greater than k accepts a language in Π

p
2k+1.

Proof. Let k ≥ 0 be fixed. Let L be the language accepted by polynomial-time ATM M that has the
property that each of its accepting paths has weight at most k. Our goal is to prove that L ∈Π

p
2k+1.

We will do so by proving that there is a set G ∈ Π
p
2k+1 such that L ≤p

dtt G, i.e., L polynomial-time
disjunctively truth-table reduces to G. By Fact 3.2, it follows that L ∈Π

p
2k+1.

Let q be a nondecreasing polynomial that upper-bounds the running time of M. Let 〈·, ·〉 be a standard
pairing function, i.e., a polynomial-time computable, polynomial-time invertible bijection between Σ∗×Σ∗

and Σ∗. Recall that every step of our ATM M involves either a 0-bit existential move (which we’ll think of
basically as existentially choosing 0 from the choice palette set {0}) or a 1-bit existential move (which,
recall, involves choosing one element from the choice palette set {0,1} with the machine enforcing an
“or” over the two children thus reached) or a 0-bit universal move (which we’ll think of basically as
universally choosing 0 from the choice palette set {0}) or a 1-bit universal move. And the 1-bit moves
involve successor states hinged on whether the move-choice is a 0 or a 1. (As Turing machines are
standardly defined, there can be (one or multiple) successor states to a given state, hinged on a (degenerate
or nondegenerate) choice.)

G will be the set of all 〈x,s〉 such that all of the list of conditions that we will give below hold relative
to x and s. The intuition here is that s is a bit-vector whose ith bit controls how the ith maximal existential
segment is handled: If that bit is a 1, the segment moves forward unrestrained, but if that bit is a 0, then
we expect and require (and cut off that part of the tree otherwise) the maximal existential segment to be a
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single existential step (either guessing a bit from {0,1} or the allowed but superfluous existential step of
guessing a bit from the one-element set {0}) and we basically cut that step out of the tree by replacing it
by a trivially universal step. Returning to our defining of G, the set G will be all 〈x,s〉 such that all the
following claims hold.

1. x ∈ Σ∗ and s ∈ {0,1}q(|x|).

2. The number of “1”s in the bit-string s is at most k.

3. M accepts when we simulate it on input x but with the following changes in the machine’s action.

As one simulates M on a given path, consider the first existential node (if any) that one encounters.

If the first bit of s is a 1, then for that node we will directly simulate it, and on all paths that follow
from this one, on all the following existential nodes (if any) that are in an unbroken segment of
existential nodes from this one, we will similarly directly simulate them. On the other hand, if the
first bit of s is a 0, then (a) if it is the case that if the current node makes the choice 0 then the node
that follows it is an existential node, then the current path halts and rejects (because something that
s is specifying as being a maximal existential segment consisting of a single 0 clearly is not); and
(b) if (a) does not hold (and so the node that follows if we make the choice 0 is either universal
or a leaf), then do not take an existential action at the current node but rather implement it as a
degenerate universal step (namely, a “∀” guess over one option, namely, 0, matching as to next state
and so on whatever the existential node would have done on the choice of 0).

If the path we are simulating didn’t already end or get cut off during the above-described handling
of its first, if any, maximal existential segment, then continue on until we hit the start of its
second existential segment. We handle that exactly as described above, except now our actions are
controlled not by the first bit of s but by the second.

And similarly for the third maximal existential segment, the fourth, and so on.

All other aspects of this simulation are unchanged from M’s own native behavior.

Note that G ∈Π
p
2k+1. Why? Even in the worst of cases for us, the computation of M starts with a ∀

block and then has k ∃ blocks each separated by a ∀ block; and then we finish with a ∀ block. But then our
ATM as it does that simulation starts with ∀ and has 2k alternations of quantifier type, and thus has 2k+1
alternation blocks with ∀ as the leading one. And so by Chandra, Kozen, and Stockmeyer’s [CKS81]
characterization of the languages accepted by ATMs with that leading quantifier and that number of
alternations, this set is in Π

p
2k+1.

Finally, we argue that L ≤p
dtt G. In particular, note that L ≤p

dtt G via the reduction that on input x
generates every length q(|x|) bit-string having less than or equal to k occurrences of the bit 1, and as its
≤p

dtt output list outputs each of those paired with x. This list is easily generated and is polynomial in
size. In particular, the number of pairs in the list is clearly at most ∑0≤ j≤k

(q(|x|)
j

)
≤ ∑0≤ j≤k(q(|x|)) j ≤

(k+1)(q(|x|))k. That completes the proof. q

In the above, we focused on maximal existential guess sequences, and limiting the number of those,
on accepting paths, whose bit-sequence-guessed was other than the string 0. So we barred from accepting
paths any maximal existential guess sequences that contain a 1 and any that have two or more bits. We
mention in passing that we could have framed things more generally in various ways. For example, we
could have made each maximal existential guess be of a fixed polynomial length and could have defined
our notion of a “boring” guess sequence not as the string “0” but as a string of 0’s of exactly that length.
The Π

p
2k+1 upper bound holds also in that setting, via only slight modifications to the proof.
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4.2.2 The Upper-Bound Results Obtained by Applying the Previous Section’s Result about Alter-
nating Turing Machines

Theorem 4.4. 1. For each k ∈ {0,1,2, . . .}, and for each election system E whose winner problem in
the unweighted case is in polynomial time,4 each of the problems online-E -Bribery[k], online-E -
Destructive-Bribery[k], online-E -$Bribery[k], and online-E -Destructive-$Bribery[k] is in Π

p
2k+1.

2. For each k ∈ {0,1,2, . . .}, and for each election system E whose winner problem in the
weighted case is in polynomial time,5 each of the problems online-E -Weighted-Bribery[k], online-
E -Destructive-Weighted-Bribery[k], online-E -Weighted-$Bribery[k], and online-E -Destructive-
Weighted-$Bribery[k] is in Π

p
2k+1.

Proof. Let k > 0 be fixed. Let us start by arguing that online-E -Weighted-$Bribery[k] ∈Π
p
2k+1.

As noted (for the case without the bound of k) in Section 3.2, what is really going on here is about
alternating quantifiers. Consider a given input to the problem online-E -Weighted-$Bribery[k]. Let the
voter under consideration (i.e., u) in the focus moment of that problem just for this paragraph be referred
to as u1, and let the ones coming after it be called, in the order they occur, u2, u3, . . . , u`. What the
membership problem is in essence asking is whether there exists an allowable (within both the price
budget and the global limit of k allowed bribes) choice as to whether to bribe u1 (and if the decision is to
bribe, then whether there exists a vote to which to bribe u1) such that, for each vote that u2 may then be
revealed to have, there exists an allowable (within both the price budget and the global limit of k allowed
bribes) choice as to whether to bribe u2 (and if the decision is to bribe, then whether there exists a vote to
which to bribe u2) such that, for each vote that u3 may then be revealed to have, . . . , such that there exists
an allowable (within both the price budget and the global limit of k allowed bribes) choice as to whether
to bribe u` (and if the decision is to bribe, then whether there exists a vote to which to bribe u`) such that
WE (C,U ′)∩{c | c≥σ d} 6= /0 (recall that that inequality says that the winner set includes some candidate
that the briber likes at least as much as the briber likes d; U ′ is here representing the vote set after all the
voting/bribing, as per Section 3.2’s definitions).

Note that for at most k of the choice blocks associated with u1,u2, . . . can we make the choice to
bribe. (In fact, if we have already done bribing of one or more voters in V<u, then our remaining number
of allowed bribes will be less than k.) Keeping that in mind, imagine implementing the above paragraph’s
alternating-quantifier-based algorithm on a polynomial-time ATM. In our model, every step is either a
universal or an existential one, and let us program up all deterministic computations that are part of the
above via degenerate universal steps. (We do that rather than using degenerate existential steps since those
degenerate existential steps would interact fatally with our definition of maximal existential sequence; we
really need those places where one guesses that one will not bribe to be captured as a maximal existential
sequence of length one with guess bit 0; this comment is quietly using the fact that when making a 1-bit
choice as to whether to bribe we associate the choice 1 with “yes bribe this voter” and 0 with “do not
bribe this voter.”) In light of that and the fact that we know that the weighted winner problem of election
system E is in P, the limit of k ensures that no accepting path will have weight greater than k. And so by
Theorem 4.3, we have that online-E -Weighted-$Bribery[k] ∈Π

p
2k+1.

4Unlike Theorem 4.1, we cannot allow the winner problem here to be in PSPACE and argue that the rest of the theorem
holds unchanged. However, we can allow the winner problem here to even be in NP∩ coNP, and then the rest of the
theorem holds unchanged. The key point to notice to see that that holds is—as follows immediately from the fact that
NPNP∩coNP = NP [Sch83]—that for each k ≥ 0, NP∩ coNP is Π

p
2k+1-low, i.e., that

(
Π

p
2k+1

)NP∩coNP
= Π

p
2k+1.

5As in the case of the immediately preceding footnote, the rest of the theorem remains unchanged even if we relax the
“polynomial time” to instead be “NP∩ coNP.”
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By the exact same argument, except changing the test at the end to WE (C,U ′)∩{c | d ≥σ c}= /0, we
have that online-E -Destructive-Weighted-$Bribery[k] ∈Π

p
2k+1.

From these two results, it follows by Proposition 3.3 that online-E -Weighted-Bribery[k] ∈Π
p
2k+1 and

online-E -Destructive-Weighted-Bribery[k] ∈Π
p
2k+1.

That completes the proof of part 2 of the theorem. Now, we cannot simply invoke Proposition 3.3 to
claim that part 1 holds. The reason is that part 1’s hypothesis about the winner problem merely puts the
unweighted winner problem in P, but the proof we just gave of part 2 used the fact that for that part we
could assume that the weighted winner problem is in P.

However, the entire construction of this proof works perfectly well in the unweighted case, namely,
we are only given that the unweighted winner problem is in P, but the four problems we are studying are
the four unweighted problems of part 1 of the theorem statement. So we have that each of the problems
online-E -Bribery[k], online-E -Destructive-Bribery[k], online-E -$Bribery[k], and online-E -Destructive-
$Bribery[k] is in Π

p
2k+1. That completes the proof of the theorem. q

4.3 Matching Lower Bounds

For each of the PSPACE and Π
p
2k+1 upper bounds established so far in this section, we can in fact establish

a matching lower bound. We show that by, for each, proving that there is an election system, with a
polynomial-time winner problem, such that the given problem is polynomial-time many-one hard for the
relevant class (and so, in light of the upper-bound results, is polynomial-time many-one complete for the
relevant class).

Theorem 4.5. 1. For each problem I from this list of problems: online-E -Bribery, online-
E -Destructive-Bribery, online-E -$Bribery, online-E -Destructive-$Bribery, online-E -Weighted-
Bribery, online-E -Destructive-Weighted-Bribery, online-E -Weighted-$Bribery, and online-E -
Destructive-Weighted-$Bribery, there exists an (unweighted) election system E , whose winner
problem in both the unweighted case and the weighted case is in polynomial time, such that I is
PSPACE-complete.

2. For each k ∈ {0,1,2, . . .}, and for each problem I from this list of problems: online-
E -Bribery[k], online-E -Destructive-Bribery[k], online-E -$Bribery[k], online-E -Destructive-
$Bribery[k], online-E -Weighted-Bribery[k], online-E -Destructive-Weighted-Bribery[k], online-
E -Weighted-$Bribery[k], and online-E -Destructive-Weighted-$Bribery[k], there exists an (un-
weighted) election system E , whose winner problem in both the unweighted case and the weighted
case is in polynomial time, such that I is Π

p
2k+1-complete.

This is the most involved and interesting proof in the paper, but it also is quite long. So due to space the
proof—and how to extend the proof to ensure that all the constructed election systems are simultaneously
(candidate-)neutral and (voter-)anonymous—is made available through the technical-report version of this
paper [HHR19].

5 Online Bribery for Specific Systems

In this section, we look at the complexity of online bribery for various natural systems. For both Plurality
and Approval, we show that priced, weighted online bribery is NP-complete but that the election system’s
other three online bribery variants are in P. This also shows that bribery can be harder than online bribery
for natural systems. In addition, we provide complete dichotomy theorems that distinguish NP-hard
from easy cases for all our online bribery problems for scoring rules and additionally we show that Veto
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elections, even with three candidates, have even higher lower bounds for weighted online bribery, namely
PNP[1]-hardness.

The following theorem is useful for proving lower bounds for online bribery for specific systems.
Theorem 5.1. 1. (“Regular”) manipulation reduces to corresponding online bribery. (So, E -UCM

reduces to online-E -Bribery, E -DUCM reduces to online-E -Destructive-Bribery, E -WCM re-
duces to online-E -Weighted-Bribery, and E -DWCM reduces to online-E -Destructive-Weighted-
Bribery.)

2. Constructive manipulation in the unique winner model reduces to corresponding online destructive
bribery. (So, E -UCM in the unique winner model reduces to online-E -Destructive-Bribery and
E -WCM in the unique winner model reduces to online-E -Destructive-Weighted-Bribery.)

3. Online manipulation reduces to corresponding online priced bribery. (So, online-E -UCM
reduces to online-E -$Bribery, online-E -DUCM reduces to online-E -Destructive-$Bribery,
online-E -WCM reduces to online-E -Weighted-$Bribery, and online-E -DWCM reduces to online-
E -Destructive-Weighted-$Bribery.)

The proof is made available through the technical-report version of this paper [HHR19].
It is interesting to note that, assuming P 6= NP, bribery does not reduce to corresponding online

bribery, not even for natural systems. For example, Approval-Bribery is NP-complete [FHH09, Theorem
4.2], but we will show below in Theorem 5.7 that online-Approval-Bribery (and even online-Approval-
Weighted-Bribery and online-Approval-$Bribery) are in P.

We end this section with a simple observation about unpriced, unweighted online bribery.
Observation 5.2. For unpriced, unweighted online bribery, it is always optimal to bribe the last k voters
(we don’t even have to handle u in a special way). This implies that unpriced, unweighted online bribery
is certainly reducible to unweighted online manipulation, and so we inherit those upper bounds.

5.1 Plurality

In this section, we completely classify the complexity of all our versions of online bribery for the most
important natural system, Plurality. In this system, each candidate scores a point when it is ranked first
in a vote and the candidates with the most points are the winners. We show that these problems are
NP-complete if we have both prices and weights, and in P in all other cases.

In the constructive case we call all members of {c | c≥σ d} and in the destructive case we call all
members of {c | c >σ d} desired candidates, where σ is the briber’s ideal ranking and d the designated
candidate. The following observation is crucial in our upper bound proofs: For online-Plurality-Weighted-
$Bribery and online-Plurality-Destructive-Weighted-$Bribery, there is a successful bribery if and only if
there is a successful bribery where all bribed voters from u onward vote for the same highest-scoring
desired candidate and all nonbribed voters after u vote for the same highest-scoring undesired candidate.
If u is bribed, we do not count u’s original vote to compute the highest score. If u is not bribed, then we
count u’s vote.
Theorem 5.3. online-Plurality-Bribery, online-Plurality-Destructive-Bribery, online-Plurality-
Weighted-Bribery, online-Plurality-Destructive-Weighted-Bribery, online-Plurality-$Bribery, and
online-Plurality-Destructive-$Bribery are in P.
Theorem 5.4. online-Plurality-Weighted-$Bribery and online-Plurality-Destructive-Weighted-$Bribery
are NP-complete, even when restricted to two candidates.

The proofs of the above two theorems are made available through the technical-report version of this
paper [HHR19].
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5.2 Beyond Plurality

A scoring rule for m candidates is a vector α = (α1, . . . ,αm) of integers α1 ≥ α2 ≥ ·· · ≥ αm ≥ 0. This
defines an election system on m candidates where each candidate earns αi points for each vote that ranks
it in the ith position and the candidates with the most points are the winners.

Theorem 5.5. For each scoring vector α = (α1, . . . ,αm),

1. online-α-Weighted-$Bribery and online-α-Destructive-Weighted-$Bribery are in P if α1 = αm

and NP-hard otherwise;

2. online-α-Weighted-Bribery and online-α-Destructive-Weighted-Bribery are in P if α2 = αm and
NP-hard otherwise; and

3. online-α-Bribery,online-α-Destructive-Bribery,online-α-$Bribery, and online-α-Destructive-
$Bribery are in P.

The proof is made available through the technical-report version of this paper [HHR19].
In Veto, each candidate scores a point when it is not ranked last in a vote and the candidates with the

most points are the winners. Now let’s look at 3-candidate-Veto.

Theorem 5.6. 1. online-3-candidate-Veto-Bribery, online-3-candidate-Veto-Destructive-Bribery,
online-3-candidate-Veto-$Bribery, and online-3-candidate-Veto-Destructive-$Bribery are in P.

2. online-3-candidate-Veto-Weighted-Bribery and online-3-candidate-Veto-Destructive-Weighted-
Bribery are PNP[1]-complete.

3. online-3-candidate-Veto-Weighted-$Bribery and online-3-candidate-Veto-Destructive-Weighted-
$Bribery are PNP[1]-hard and in ∆

p
2 (and we conjecture that they are ∆

p
2 -complete).

Proof. We look at different cases for the placement of the designated candidate in the preference order
a >σ b >σ c. (Note that the polynomial-time cases also follow from Theorem 5.5.)

1. If d = c in the constructive case or d = a in the destructive case, the problem is trivial.

2. If d = a in the constructive case, we need to ensure that a is a winner, and if d = b in the destructive
case, we need to ensure that a is the unique winner. In both these cases, the nonbribed voters
veto a, no matter what. This means that the location of the bribed voters doesn’t matter (though
their prices and weights will). In the priced case, bribe the cheapest voters (as many as possible
within the budget) and bribe to minimize the maximum score of b and c. So that’s in P. The priced
and weighted (and so also the weighted) case is in NP: Guess a set of voters to bribe, check that
they are within the budget, guess votes for the bribed voters, and have all nonbribed voters veto a.
NP-hardness for the weighted case follows from the NP-hardness for weighted manipulation plus
the proof of Theorem 5.1.

3. If d = b in the constructive case, the goal is to not have c win uniquely, and if d = c in the destructive
case, the goal is to have c not win. In this case, all bribed voters veto c (no matter what). The same
argument as above shows that priced bribery is in P.
The unpriced, weighted cases are coNP-complete. To show that the complement is in NP, pick the k
heaviest voters to bribe. Then check if you can partition the remaining voters to veto a or b in such
a way that c wins uniquely in the constructive case or that c wins in the destructive case. Note that
it is always best for the briber to bribe the k heaviest voters: Swapping the weights of a lighter voter
to be bribed with a heavier voter not to be bribed will never make things worse for the briber. To
show hardness, note that the complement is basically (the standard NP-complete problem) Partition.
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To show the upper bound for the priced, weighted case, note that we need to check that there exists
a set of voters that can be bribed within the budget such that if all bribed voters veto c, then for all
votes for the nonbribed voters, c is not the unique winner (in the constructive case) or not a winner
(in the destructive case). This is clearly in Σ

p
2 . With some care, we can show that it is in fact in

∆
p
2 . First use an NP oracle to determine the largest possible total weight (within the budget) of

bribed voters. Then determine whether we should bribe u, by using the oracle again to determine
the largest possible total weight (within the budget) of bribed voters, assuming we bribe u. If that
weight is the same as the previous weight, bribe u. Otherwise, do not bribe u. Repeating this will
give us a set of voters to bribe of maximum weight. All these voters will veto c. It remains to check
that for all votes for the nonbribed voters, c is not the unique winner (in the constructive case) or
not a winner (in the destructive case). This takes one more query to an NP oracle.

Putting all cases together, the priced case (and so also the unpriced, unweighted case) is in P. The
weighted case is PNP[1]-complete, since it can be written as the union of a NP-complete set and a coNP-
complete set that are P-separable. (Two sets A and B are P-separable [GS88] if there exists a set X
computable in polynomial time such that A⊆ X ⊆ B.)

The priced, weighted case inherits the PNP[1]-hardness from the weighted case (in fact, it already
inherited this from online manipulation, using Theorem 5.1), and it is in ∆

p
2 . q

We end this section by looking at approval voting. In approval voting, each candidate scores a
point when it is approved in a vote and the candidates with the most points are the winners. Though
Approval-Bribery is NP-complete [FHH09, Theorem 4.2], we show that online-Approval-Bribery (and
even online-Approval-Weighted-Bribery and online-Approval-$Bribery) are in P. This implies that even
for natural systems, bribery can be harder than online bribery (assuming P 6= NP).

Theorem 5.7. 1. online-Approval-Bribery, online-Approval-Destructive-Bribery, online-Approval-
$Bribery, online-Approval-Destructive-$Bribery, online-Approval-Weighted-Bribery, and online-
Approval-Destructive-Weighted-Bribery are each in P.

2. online-Approval-Weighted-$Bribery and online-Approval-Destructive-Weighted-$Bribery are
each NP-complete.

The proof is made available through the technical-report version of this paper [HHR19].
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