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In standard epistemic logic, knowing that p is the same as knowing that p is true, but it does not say
anything about understanding p or knowing its meaning. In this paper, we present a conservative
extension of Public Announcement Logic (PAL) in which agents have knowledge or belief about both
the truth values and the meanings of propositions. We give a complete axiomatization of PAL with
Boolean Definitions and discuss various examples. An agent may understand a proposition without
knowing its truth value or the other way round. Moreover, multiple agents can agree on something
without agreeing on its meaning and vice versa.

1 Introduction

Konnyaku Mondo (jelly dialogue) is a story from the traditional Japanese comic storytelling in the rakugo
form. Quoting [13], the story goes like the following:

There was a temple where no monks were living any longer. A devil’s tongue jelly maker,
named Rokubei, lived next door. He moved into the temple and started pretending to be a
monk. One day, a traveling Zen Buddhist monk passed by and challenged Rokubei to a debate
on Buddhism, Rokubei had no knowledge on Buddhism and was not able to have a debate. He
tried to refuse, but he could not escape and finally agreed. The Buddhist dialogue started but
Rokubei didn’t know how to perform and therefore, he kept silent. The Buddhist monk tried
to communicate to Rokubei in many ways. After some time, Rokubei started responding with
gestures to the body movements the monk made. The monk took this as a style of dialogue
and tried to answer in gestures, too. They exchanged gestures, and after some time, the monk
told Rokubei, “your thoughts are profound and mine are of no comparison. I am very sorry
to have bothered you”, After saying this, he left the temple.

In fact, the monk thought “the master” (Rokubei) had expressed deep Buddhist thoughts by his gestures,
but Rokubei had never learned any Buddhist thoughts. Rather, from some stage on, he thought the monk
was talking badly about his jelly with those gestures, thus he gave the monk a lesson by some angry
moves, and apparently defeated the monk.

The intriguing nature of the story is that, as remarked in [13], it seems the proposition Rokubei has
defeated the monk is common knowledge between the two, but it is based on mutual misunderstanding.
The two actually have completely different understanding for the commonly agreed “defeat of the monk”.
Such mutual misunderstanding also happens a lot in everyday life communications, even in academic
exchanges when people “agree” to the same thing due to different interpretations or definitions of the
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same concept. See [13] for excellent (and entertaining) interactive discussions about such Konnyaku
Mondo phenomena in Game theory.

Mutual misunderstanding is not always harmful. To postpone immediate conflicts and achieve some
consensus, it is sometimes even intended to allow respective interpretations of the same proposition, which
happens in diplomatic scenarios. For example, two brothers may disagree about who represents officially
their father, but they may reach the temporary consensus that there is one and only one successor in order
to avoid immediate conflicts.

Philosophically, if we require that knowledge should be at least properly justified as Gettier’s examples
suggest [11], we can hardly say both Rokubei and the monk “know” that Rokubei has defeated the monk,
since the same proposition is justified by two different reasons by different parties. The tricky thing here
is that perhaps there is no single “real” justification for the defeat. More crucially, it is debatable in this
particular case, whether there is a fixed “real” meaning of the proposition that Rokubei has defeated the
monk.

As logicians, the story makes us think about how to represent such situations in the framework
of epistemic logic, where Ki p expresses that agent i knows that p. According to the standard Kripke
semantics, Ki p merely means that agent i is certain that p is true, and there is nothing about the meaning
of p in the semantics. For example, suppose you do not understand Chinese, but someone said a Chinese
sentence p and guaranteed you its truth, then it seems you indeed know the truth value of p, but without
knowing its meaning. Now suppose the speaker then tells you that by p, he actually meant r∧q in your
own language, then you know both the meaning of p and its truth value (and the truth values of q and r).
Note that, even when p is uttered in a language that you know, it still can have a different meaning than
the surface one, e.g, when a Chinese says “we will think about it later” when asked a yes-no question, it
often means “no”. It is crucial to see that knowing that p means ϕ is different from knowing that p↔ ϕ ,
where the latter is again simply about the truth value. For example, knowing that p↔> does not imply
that p means >. We need new techniques to handle knowledge of meanings in epistemic logic.

More generally, knowing the value of something does not imply understanding what information it
carries. For example, knowing the ID number of a Chinese person (e.g., 110105198002290022) does not
tell you much, unless you know that the first 6 digits encode the residence (Chaoyang District in Beijing),
the next 8 digits encode the birth date (29th of February 1980) and so on. Clearly, the interpretation of
the structure of the ID is important to your understanding. You may also only know part of the meaning
of the message and there are different “layers” of your understanding. You may or may not know that
the gender of the person is given by the parity of the second to last digit (in this case even for female).
Merely knowing that the first 6 digits code the residence does not tell you the exact city where this person
is registered, you may need to know further that the fist three digits code the city and 110 is the code for
Beijing. Therefore, by limited knowledge of the structure, you may only get part of the meaning.

Coming back to the propositional setting in this paper, for a sentence ϕ , you might also just understand
some part of it, e.g., knowing what q means in p∨q but only understand p as¬r for some incomprehensible
r. Now, if others elaborate that r means q∧o, then you have a deeper understanding of p∨q. We may also
enhance our understanding by matching the structure of the proposition — if someone utters (p∧ p′)∨ p′′

and later explains that it means q∨ (r∧ r′), then we know q means p∧ p′, and p′′ means (r∧ r′). The
technical goal of this paper is to formally flesh out such reasoning patterns with a minimal extension of
public announcement logic [17, 18]. The basic idea is to treat incomprehensible propositions as atomic
propositions with boolean definitions based on the basic atomic propositions.

Concerning related work, the distinction between knowing the value and knowing the meaning is
crucial in cryptographic message passing. The goal of encryption schemes is to hide the meaning of a
message, even if the transmitted ciphertext is known [19, 4]. Another related recent attempt [6], based
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on a logic of knowing value [22, 9, 1], introduces a functional dependency operator to express that the
agent knows a function which can explain the dependency between variables c and d. However, as the
author of [6] also remarked, it is not enough to capture the meaning of variables. In [16], the meaning
of an utterance by an agent depends on the type of the agent, which is a function mapping the uttered
proposition to its actual meaning. Similarly, protocols can also give meaning to communicative actions, as
demonstrated in [2, 20, 7], where the meaning of an action is defined by the corresponding precondition
of the protocol regarding this. We discuss other related work in the conclusion.

In the rest of this paper, we first layout the language and semantics of our logic in Section 2, and then
axiomatize it in Section 3, before concluding with ideas for future work.

2 PAL with Boolean Definitions

2.1 Language, Models, Semantics

Throughout the paper our languages and models are parameterized by a set of proposition letters Prop and
a finite set of agents I. The language we study consists of two parts: a purely boolean layer for which our
models will also provide definitions, and on top of that a version of Public Announcement Logic (PAL) as
in [17, 8].

Definition 1 (Language). The boolean language LB is defined by

P ::= p | ¬P | (P∧P)

where p∈Prop, a countable set of propositional letters. We already note that the parentheses are essential
for pattern matching as we will see later.

The full language L is given by

ϕ ::= P | P≡ P | ¬ϕ | (ϕ ∧ϕ) |�iϕ | [ϕ]ϕ

where P ∈LB and i ∈ I. We write Q 6≡ P for ¬(Q ≡ P) and use the standard abbreviations for other
boolean operators ϕ ∨ψ := ¬(¬ϕ ∧¬ψ), ϕ → ψ := ¬ϕ ∨ψ and ϕ ↔ ψ := (ϕ → ψ)∧ (ψ → ϕ).

For modalities we use the notation �i and avoid the symbol Ki which would suggest knowledge. This
is because we will not assume additional modal axioms besides K. Our framework can easily be adapted
to multi-agent KD45, S5 and other logics.

We read P1 ≡ P2 as “P1 and P2 have the same meaning” or “P1 and P2 are equivalent by definition”.
For example, if p means r∨ r′ and q means ¬o, then our semantics below will also imply that p∧¬o has
the same meaning as ((r∨ r′)∧q).

We avoid reading the ≡ operator as “. . . is defined as . . . ” which would suggest a directedness and
uniqueness on the right side. In fact, while our models will contain unique definitions for which one might
write :=, we do not refer to the definition. The formal language can only express that certain propositions
are equivalent by definition.

A model in our framework is a Kripke model with a local definition function DEFw on each world w,
which assigns to each p ∈ Prop a definition as its (most thorough) meaning. To stay as general as possible,
we do not assume any frame property in this paper. Intuitively, if a proposition letter p is assigned itself
as the definition, this means that p is self-evident or truly basic. Based on those definitions, we can
then “unravel” each boolean formula in LB to obtain its meaning by recursively applying DEFw. Further
constraints are imposed to avoid circularity and make sure each non-self-evident proposition is assigned a
definition using self-evident propositions.
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Definition 2 (Models). A premodel M is a tuple (W,R,V,DEF) where W is a non-empty set of worlds,
Ri ⊆W ×W is a relation for each agent i, V : W → Prop→{0,1} is a valuation function and DEF : W →
Prop→LB is a definition function.

We write Vw for the valuation at w and lift it to LB as usual by the standard boolean semantics
included in Definition 3 below. Similarly, we lift the definition function DEFw at w from Prop to LB using
definitions from the premodel for atoms and recursing over ¬ and ∧. Formally, let defw : LB→LB be
defined by:

defw(p) := DEFw(p)
defw(¬P) := ¬defw(P)

defw((P1∧P2)) := (defw(P1)∧defw(P2))

Intuitively, defw(P) is obtained by replacing all the propositions letters in P by their definitions.
A premodel is a model iff we have for all worlds w:

• For all P,Q ∈LB: If defw(P) = defw(Q), then Vw(P) =Vw(Q).

• For all p,q ∈ Prop: If p is in DEFw(q), then DEFw(p) = p.

To connect definitions and truthvalues the first model constraint demands that whatever is definitionally
equivalent is also assigned the same truth value. We note that only demanding this condition for atomic
propositions does not suffice for our purposes.

The second model constraint ensures well-foundedness: Models never contain circular definitions like
p := (p∧q). Moreover, they also do not contain chains of definitions that would imply such a definition
if they were unraveled, for example p := r and r := (p∧q). While some of these might actually make
sense as fixpoints or infinite conjunctions, for now we do not allow them in our framework.

Definition 3 (Semantics). We interpret L on models as follows.

M ,w � p ⇐⇒ Vw(p) = 1
M ,w � P1 ≡ P2 ⇐⇒ defw(P1) = defw(P2)
M ,w � ¬ϕ ⇐⇒ not M ,w � ϕ

M ,w � (ϕ ∧ψ) ⇐⇒ M ,w � ϕ and M ,w � ψ

M ,w � �iϕ ⇐⇒ for all v : wRiv implies M ,v � ϕ

M ,w � [ϕ]ψ ⇐⇒ M ,w � ϕ implies M ϕ ,w � ψ

where M ϕ is the restriction of M to the new set of worlds {v ∈W |M ,v � ϕ}.

In the second condition, the = symbol on the right side is syntactic equality within LB. As we
mentioned, parentheses in ≡ formulas matter, e.g., (p∧ (q∧ r)) 6≡ ((p∧ q)∧ r) is valid. In contrast
(p∧ (q∧ r))↔ ((p∧q)∧ r) is clearly valid, where we can omit the parentheses. Note that all clauses
besides the one for ≡ are standard PAL as in [17, 8]. In particular, the result of announcements is defined
as usual, preserving the valuation and now also the local definitions at each world.

2.2 Examples

To illustrate our semantics and to show that it can describe various different scenarios, we now give some
examples.

Example 1 (Knowing without Understanding). As mentioned in the introduction, you can know that
something is true without knowing what it means and without knowing that its meaning is true. Figure 1
shows such a model. We use undirected edges to indicate an equivalence relation and we omit the
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self-evident definitions for q and r in all three worlds. At the actual world in the middle we have
�i p∧ (p ≡ q)∧¬�i(p ≡ q)∧¬�iq. Moreover, even if p↔ q were announced, only the right world
would be removed. The agent would then know that p↔ q but still not know the stronger p≡ q.

p
q
¬r
p := q

p
¬q
r
p := r

i
p
q
r
p := r

i

Figure 1: Knowing without Understanding

p
q
p := q

¬p
¬q
p := q

i

Figure 2: Understanding without Knowing

Example 2 (Understanding without Knowing). Conversely, an agent can know the meaning of a
proposition but still not know whether it is true. Both worlds in the model shown in Figure 2 satisfy
�i(p≡ q)∧�i(p↔ q)∧¬�i p.

Example 3 (Understanding different parts). Two agents can also have different partial knowledge of the
meaning of some proposition. The middle world of the model in Figure 3 satisfies these three formulas:

�a(p≡ (q∧ r))∧�b(p≡ (q∧ r))

�b(p≡ (¬q1∧ r))∧¬�a(p≡ (¬q1∧ r))

�a(p≡ (q∧¬r1))∧¬�b(p≡ (q∧¬r1))

Note that if the agents would combine their knowledge by announcing both partial meanings, they would
arrive at the most thorough meaning, which is more informative than what either of them knows at the
moment. Formally, we have [r ≡ ¬r1][q≡ ¬q1](∧i=a,b�i(p≡ (¬q1∧ (¬r1)))).

¬p,¬q,r
¬q1,¬r1

p := q∧¬r1
q := q
r := ¬r1

p,q,r
q1,r1

p := ¬q1∧¬r1
q := ¬q1
r := ¬r1

a

¬p,q,¬r
¬q1,¬r1

p := ¬q1∧ r
q := ¬q1
r := r

b

Figure 3: Understanding different parts

p
¬q
r
p := r

p
¬q
¬r
p := p

i
p
q
¬r
p := q

j

Figure 4: Consensus with misunderstanding

Example 4 (Consensus with misunderstanding). As in the Konnyaku Mondo example, two agents can
agree on something but actually have different beliefs about what it means. In the model from Figure 4, at
the middle world, we have p∧�i p∧� j p but also �i((p≡ r)∧ r∧¬q) and � j((p≡ q)∧q∧¬r).
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3 Axiomatization

Note that the addition of ≡ does not invalidate the standard reduction axioms of PAL. We can rather think
of ϕ ≡ ψ as a new atomic proposition which is evaluated purely locally.
Definition 4. A formula P≡Q is a circular formula iff there is an atomic p such that either (i) P = p and
Q 6= p and p occurs in Q or (ii) vice versa.

For example the formulas p≡ (p∧q) and ¬q≡ q are both circular, but p≡ p is not circular.
Definition 5 (Axioms and Rules). We define the following proof system SPALD for L . We call the
system without the PAL reduction axioms SMLD.

Axiom Schemes
• All propositional tautologies.

• The K axiom: �i(ϕ → ψ)→ (�iϕ →�iψ)

• PAL reduction axioms:
– [ϕ]p↔ (ϕ → p)
– [ϕ](P≡ Q)↔ (ϕ → (P≡ Q))

– [ϕ]¬ψ ↔ (ϕ →¬[ϕ]ψ)

– [ϕ](ψ ∧θ)↔ ([ϕ]ψ ∧ [ϕ]θ)
– [ϕ]�iψ ↔ (ϕ →�i(ϕ → [ϕ]ψ))

– [ϕ][ψ]ξ ↔ [ϕ ∧ [ϕ]ψ]ξ

• Definition axioms
– Reflexivity: (P≡ P)
– Symmetry: (P≡ Q)→ (Q≡ P)
– Transitivity: ((P≡ Q)∧ (Q≡ R))→ (P≡ R)
– Equivalence: (P≡ Q)→ (P↔ Q)

– Atomic occurrence substitution: ((p≡ Q)∧ (R≡ S))→ (R≡ [k:p 7→ Q]S) where k:p denotes
the kth occurrence of p in S.

– Pattern ¬: (¬P≡ ¬Q)↔ (P≡ Q)

– Pattern ∧: ((P∧Q)≡ (R∧S))↔ ((P≡ R)∧ (Q≡ S))
– Pattern mismatch: ¬P 6≡ (Q∧R)
– Non-circularity: p 6≡ P where p occurs in P but P 6= p

Rules
• Modus Ponens: from ϕ and ϕ → ψ infer ` ψ .

• Necessitation for �i: from ` ϕ infer �iϕ .
Somewhat non-standard in our axiom system is the usage of occurrence substitutions, in contrast to

standard substitutions which usually replace all occurrences of a given atom. We also use the notation
[k:p 7→ Q] in proofs in the next section and it will become more clear there.

We note that our logic does not allow replacement of equivalents in ≡ formulas, hence this is not an
admissible proof rule. For example, p↔ (p∧ p) is valid and so is p ≡ p, but p ≡ (p∧ p) is not valid
and in fact a contradiction, by the non-circularity axiom. Finally, we note that necessitation for [ϕ] is an
admissible rule [21].
Theorem 1. The axiom system SPALD from Definition 5 is sound for the semantics from Definition 3.
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4 Completeness

To show the completeness of our axiomatization, we can first show the completeness of SMLD for
announcement-free formulas. Then by using the reduction axioms we can obtain the completeness of
SPALD in the usual way [17]. In the following, we write ` ϕ if ϕ is provable in SMLD.

Before we go on, note that our axioms enforce non-circularity but not well-foundedness. That is, the
set {pi ≡ pi+1∧ pi+2 | i ∈ N} is consistent according to the proof system above, but it does not have a
model, since you cannot give definitions to pi using some self-evident atoms. However, any finite subset
of this set has a model, hence our logic is not compact and we cannot show strong completeness.

Fortunately, we can still show completeness because any finite set of formulas only uses finitely many
atomic propositions.

For the rest of this section, we fix a finite vocabulary Prop.

Example 5. Consider the following three formulas and an infinite sequence of consequences:

p≡ q∧ r
q≡ p∧ r
s≡ p

s≡ q∧ r
s≡ (p∧ r)∧ r
s≡ ((q∧ r)∧ r)∧ r
...

Note that none of these formulas alone is circular. However, it is easy to spot another consequence
p≡ (p∧ r)∧ r which is circular. Hence the original set of three formulas is inconsistent.

The main idea for our completeness proof is that Example 5 is not an exception: Whenever a set of
equivalent definitions is infinite we can systematically derive a circular formula. Before stating our central
Lemma 1 we need a few more definitions.

Definition 6. For each boolean formula P ∈LB we define its length l(P) as follows:

l(p) := 1
l(¬P) := l(P)+1
l((P∧Q)) := l(P)+ l(Q)+3

Additionally, we define its vocabulary v(P) as follows:

v(p) := {p}
v(¬P) := v(P)
v((P∧Q)) := v(P)∪ v(Q)

As an example, l(¬p) = 2 and l(p∧ (p∧q)) = 9. Note that the parentheses also count.

Definition 7. Given a maximally consistent set Γ ⊆L (Prop), we define a relation over LB(Prop) by
P≡Γ Q :⇐⇒ (P≡Q) ∈ Γ. Per relevant axioms in Definition 5 this is an equivalence relation. For each
P ∈LB(Prop) we denote its ≡Γ-equivalence class by

[P]
Γ
= {Q ∈LB(Prop) | (P≡ Q) ∈ Γ}

and call it the set of Γ-definitions of P.
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Lemma 1. For each maximally consistent set Γ⊆L (Prop) and each atomic proposition p ∈ Prop, the
set [p]

Γ
is finite.

To prove Lemma 1, we first need some definitions and notation. We fix an enumeration of Prop, say
alphabetically. This induces a lexicographic ordering < over LB. For example, we have p < q, therefore
also ¬p < ¬q and similarly for conjunctions.

Definition 8. Let merge : LB×LB→LB be defined as follows:

merge(p,q) := if p < q then p else q
merge(p,Q) when Q 6= q := Q
merge(P,q) when P 6= p := P
merge((P∧Q),(R∧S)) := (merge(P,R)∧merge(Q,S))
merge(¬P,¬R) := ¬merge(P,R)

merge(¬P,(Q∧R)) := undefined
merge((Q∧R),¬P) := undefined

By definition, merge is symmetric: merge(P,Q) =merge(Q,P).

Example 6. We have merge((p∧ (q∧ r)),(¬s∧ t)) = (¬s∧ (q∧ r)).

It is also easy to see that, viewed as term-rewriting rules, merge always terminates, since the recursive
clauses reduce the complexity of the formulas.

Definition 9. Let [k:p 7→ P]Q denote the result of replacing the k-th occurrence of p in Q with P. For
multiple such occurrence substitutions, let [k:p 7→ P ⊕ k′:p′ 7→ R]Q denote their simultaneous application
to Q.

Example 7. We have [2:p 7→ (q∧ r)](p∧ p) = ( p∧ (q∧ r)). As an example of two simultaneous
occurrence substitutions, we have [2:p 7→ (q∧ r) ⊕ 1:q 7→ ¬r]((p∧ p)∧q) = ((p∧ (q∧ r))∧¬r).

Lemma 2. For all P,Q such that P≡ Q ∈ Γ we have:

(i) merge(P,Q)≡ P ∈ Γ

(ii) There are indices k1, . . . ,kn ∈ N, atoms p1, . . . , pn ∈ Prop and formulas R1, . . . ,Rn ∈LB for some
fixed n ≥ 0 such that we have merge(P,Q) = [kn:pn 7→ Rn ⊕ . . .⊕ k1:p1 7→ R1]P and pi ≡ Ri ∈ Γ

for all i≤ n. (Note that n = 0 iff merge(P,Q) = P.)

Proof. Since Γ is consistent, if P≡ Q ∈ Γ then merge(P,Q) is always defined, based on the axioms of
pattern mismatch.

For (i) we do induction on the structure of P.
Suppose P = p, then merge(P,Q) is p or Q. Then it is straightforward that merge(P,Q) ≡ P ∈ Γ,

since P≡ Q ∈ Γ.
Suppose P = ¬P′. Since P≡ Q ∈ Γ, the shape of Q is either q or ¬Q′ due to the pattern mismatch

axiom and the fact that Γ is consistent. The first case reduces to the above case due to the axiom of
symmetry and the fact that merge is symmetric. For the second case, by pattern inference we have
P′ ≡Q′ ∈ Γ. Now by induction hypothesis, merge(P′,Q′)≡ P′ ∈ Γ. Therefore ¬merge(P′,Q′)≡¬P′ ∈ Γ

by pattern inference axiom, namely merge(P,Q)≡ P ∈ Γ.
The case of P = (P1∧P2) is similar.
For (ii), we also do induction on the structure of P.
Suppose P = p, then merge(P,Q) is p or Q. In the first case we just need a trivial substitution

[1:p 7→ p] since p≡ p ∈ Γ. In the second case we take [1:p 7→ Q] since p≡ Q ∈ Γ.
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Suppose P = ¬P′. As in the proof of (i) we can show that Q is in the shape of either q or ¬Q′. For
the first case, merge(P,q) = P = ¬P′ by definition of merge. Then we can take the trivial substitution to
prove the claim. In the second case, merge(P,Q) = ¬merge(P′,Q′). Since P ≡ Q ∈ Γ, P′ ≡ Q′ ∈ Γ by
pattern inference. Now by induction hypothesis, there are substitutions to turn P′ into merge(P′,Q′). The
same substitutions can also turn P = ¬P′ into merge(P,Q) = ¬merge(P′,Q′).

Again the case of P = (P1∧P2) is similar.

Lemma 3. For all p ∈ Prop and all P,Q ∈ [p]
Γ

we have:

(i) merge(P,Q) ∈ [p]
Γ

(ii) l(merge(P,Q))≥max(l(P), l(Q))

(iii) There are indices k1, . . . ,kn ∈ N, atoms p1, . . . , pn ∈ Prop and formulas R1, . . . ,Rn ∈LB for some
fixed n ≥ 0 such that we have merge(P,Q) = [kn:pn 7→ Rn ⊕ . . .⊕ k1:p1 7→ R1]P and pi ≡ Ri ∈ Γ

for all i≤ n.

Proof. For (i): Suppose P,Q ∈ [p]
Γ
. Then P ≡ Q ∈ Γ and according to part (i) of Lemma 2 we have

merge(P,Q)≡ P ∈ Γ. Since P ∈ [p]
Γ
, thus by transitivity axiom, merge(P,Q) ∈ [p]

Γ
.

For (ii): a simple induction on the clauses of merge suffices.
Finally, (iii) is a special case of part (ii) in Lemma 2 since P,Q ∈ [p]

Γ
implies P≡ Q ∈ Γ.

Intuitively, Lemma 3 says that the result of merging two Γ-definitions of p (i) is also a Γ-definition
of p, (ii) is at least as long as the longest given formula, and (iii) can be reached by replacing atom
occurrences step by step.

In fact, the occurrence substitutions given by (iii) are unique up to enumeration and trivial substitutions
of the form [k:p 7→ p]. Moreover, the pattern matching axioms imply that Ri ∈ [pi]Γ.

Proof of Lemma 1. Suppose [p]
Γ

is infinite.
Then in particular the length of formulas in [p]

Γ
is unbounded, because Prop is finite. Hence there

must be an infinite chain P0 = p,P1,P2, . . . in [p]
Γ

which is unbounded in length. Note that there might be
big “jumps” in length and in general the formulas will not be related systematically.

To deduce a circular formula and thus a contradiction, we now define a second chain Q0,Q1, . . . using
merge. Let Q0 := P0 = p and for all k ≥ q let Qk :=merge(Qk−1,Pk). From Lemma 3 we now get that (i)
the chain of Qis is also a chain in [p]

Γ
, (ii) l(Qi)≥ l(Pi) and thus this chain is also unbounded in length,

and (iii) for each step from Qi to Qi+1 there are finitely many atoms that are replaced with longer formulas.
Let us list such a sequence of substitutions as:

Q0
k:p7→R−−−−→ Q1

m:q7→T−−−−→ Q2 · · ·

where k:p 7→ R denotes the simultaneous substitution [kn:pn 7→ Rn ⊕ . . .⊕ k1:p1 7→ R1] for some n. We
can denote each single substitution as [k : p 7→ R]i where the superscript i means the substitution happens
at Qi.

Now let (N, ) be the graph where N is the set of all occurrence substitutions in the Q chain (indexed
with superscripts) and there is an edge [m:p 7→ R]i [n:q 7→ S] j iff i < j and n:q is an occurrence within
R of Qi+1. Then (N, ) is a tree with the first substitution [1:p 7→ P1]

0 as its root. Intuitively, we have an
edge from one substitution to another iff the second “happens within” the result of the first. This tree of
substitutions is illustrated in Figures 5 and 6 below as examples.
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The Qi chain of formulas is infinite, hence there are infinitely many substitutions and N is infinite.
However, each occurrence of an atomic proposition can be replaced with a longer formula only once.
Hence the number of children of each node in (N, ) is bounded by the length of the formula. Formally,
each node [k:p 7→ R]i can only have as many children as there are occurrences of atoms in R.

Together, (N, ) is an infinite but also finitely branching tree. By Kőnig’s Lemma [15, 10] there
must be an infinite branch. In particular, there must be a branch longer than |Prop| and there must be two
substitutions of the same atom along this branch. We now use this branch to derive a circular formula in Γ.

Let Ri be the sequence of formulas starting with R0 := p and then applying the substitutions from the
branch. For each i, let [ki:qi 7→ Si]

ιi be the substitution at node i happening at Qιi . Note that the branch
need not have a node at every level, hence ιi ≥ i but not necessarily ιi = i.

Because |Prop| is finite there must be j < k such that q j = qk =: q. Then we have q ∈ R j and q ∈ Rk
and S j,Sk ∈ [q]

Γ
. Now consider the sequence of substitutions Rs:

q occurs in R j

q does not occur in R j+1 = [k j+1:q 7→ S j]
ι j R j

... q must be reintroduced by some step [km:qm 7→ Sm]
ιm

q occurs in Rk
q does not occur in Rk+1 = [kk+1:q 7→ Sk]

ιk Rk

In particular, because these substitutions happen along the same branch, km:qm is an occurrence in Q j.
Hence, reasoning inside Γ we have q≡ Q j and q≡ [km:qm 7→ Qm]

ιmQ j. But because q occurs in Qm, the
latter is a circular formula in Γ. Contradiction!

To illustrate our proof method, we give two examples.

Example 8. The chain of Qi might for example be all right parts of consequences in Example 5. That is,
in the set [s]

Γ
we have Q0 = p, Q1 = (q∧ r), Q2 = ((p∧ r)∧ r), Q3 = (((q∧ r)∧ r)∧ r), and so on. The

sequence of occurrence substitutions is then [1:p 7→ (q∧ r)]0, [1:q 7→ (p∧ r)]1, [1:p 7→ (q∧ r)]2, and so
on. This is an easy case: each step replaces an occurrence within the previous substituens. Hence the tree
of substitutions shown in Figure 5 only has one branch.

[1:p 7→ (q∧ r)]0

[1:q 7→ (p∧ r)]1

[1:p 7→ (q∧ r)]2

...
E

p≡ (p∧ r)∧ r

Figure 5: A simple substitution tree and the resulting circular formula.

Example 9. An example which yields a proper tree is shown in Figure 6. On the left side we first show
the Pi chain. Note that its formulas are strictly increasing in complexity, but for example P2 and P3
are not directly related via substitutions. The second chain Qi is obtained using the merge function
from Definition 8 and restores this property. For example, we can go from Q2 to Q3 via the substitution
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P0 = p

P1 = q∧ r

P2 = (u∨ r)∧ r

P3 = q∧¬¬s

P4 = (u∨¬¬s)∧¬¬(r→ p)

P5 = q∧¬¬(¬¬s→ p)

...

Q0 = p

Q1 = q∧ r

Q2 = (u∨ r)∧ r

Q3 = (u∨ r)∧¬¬s

Q4 = (u∨¬¬s)∧¬¬(r→ p)

Q5 = (u∨¬¬s)∧¬¬(¬¬s→ p)

...

[1:p 7→ (q∧ r)]0

[1:q 7→ (u∨ r)]1

[2:r 7→ (¬¬s)]2

[1:r 7→ ¬¬s]3 [1:s 7→ (r→ p)]3

[1:r 7→ ¬¬s]4...
...

E
r ≡ ¬¬(r→ p)

Figure 6: A definition chain and the resulting occurrence substitution tree. The right branch yields a
circular formula.

[2:r 7→ ¬¬s]2. All those substitutions are then arranged in the (N, ) tree. Finally, we show how two
substitutions of the same proposition (r) in the same branch lead to a circular formula (r ≡ ¬¬(r→ p)).

Given that all [p]
Γ

sets are finite, we can now choose a definition for each p ∈ Prop, namely the
longest and among those the lexicographically least formula in [p]

Γ
. In fact, this is the same as applying

all possible substitutions until reaching the leaves in the substitution trees from the proof of Lemma 1.

Definition 10. For any finite set of boolean formulas X ⊆LB, we define pick(X) as the longest element
of X and among those the lexicographically first.

Formally, let pick(X) := min<{P ∈ X | ∀Q ∈ X : l(P)≥ l(Q)}
Definition 11 (Canonical Model). For a finite vocabulary Prop the corresponding canonical model
M = (W,R,V,DEF) is defined as follows:

• W := {Γ⊆L (Prop) | Γ is maximally consistent}
• Γ1RiΓ2 :⇐⇒ {ϕ |�iϕ ∈ Γ1} ⊆ Γ2

• V (Γ) := Γ∩Prop
• For each Γ and any p ∈ Prop, let DEFΓ(p) := pick([p]

Γ
)

Lemma 4. The canonical model is indeed a model, and not just a premodel.

Proof. We need to show two properties.

• For all P,Q ∈LB: If defw(P) = defw(Q), then we also have Vw(P) =Vw(Q). This follows from the
equivalence axiom (P≡ Q)→ (P↔ Q) and the boolean part of the Truth Lemma 6 below which
can be shown independently.

• For all p,q ∈ Prop, we need to show that if p occurs in DEFw(q), then DEFw(p) = p. Now, take
any p in DEFw(q). Because DEFw(q) is among the longest formulas in [q]

Γ
, there cannot be any

P ∈ [p]
Γ

with l(P)> 1. Namely, [p]
Γ

only consists of propositional letters.
Because DEFw(q) is the lexicographically first among the longest formulas in [q]

Γ
, also p must be

lexicographically first in [p]
Γ
, for otherwise we can replace it in DEFw(q) by another propositional

letter which is lexicographically smaller than p to obtain a lexicographically smaller formula in
[q]

Γ
. Together, we have DEFw(p) = p.
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Lemma 5. In the canonical model we have for all P ∈LB(Prop) that defΓ(P) = pick([P]
Γ
).

Proof. By induction on the structure of P. The base case P = p follows from Definition 11.
For the induction step, consider the case P = ¬Q. Then we have the following chain of identities:

defΓ(¬Q)
Def. 11
= ¬defΓ(Q)

IH
= ¬pick([Q]

Γ
)
∗
= pick([¬Q]

Γ
)

where the step IH is by induction hypothesis and the step ∗ is shown as follows. By definition of pick we
have that pick([¬Q]

Γ
) is

min<{P ∈ [¬Q]
Γ
| ∀R ∈ [¬Q]

Γ
: l(P)≥ l(R)}

which by pattern matching is the same as

min<{¬P | P ∈ [Q]
Γ

and ∀R ∈ [Q]
Γ

: l(¬P)≥ l(¬R)}.

Because < and ≥ with respect to l(·) is preserved under negation, this is the same as

¬min<{P ∈ [Q]
Γ
| ∀R ∈ [Q]

Γ
: l(P)≥ l(R)}

which is ¬pick([Q]
Γ
).

A similar chain covers the case P = (Q1∧Q2).

Lemma 6 (Truth Lemma). Consider the canonical model M . For all worlds Γ and all formulas ϕ

without announcement operators we have M ,Γ � ϕ iff ϕ ∈ Γ.

Proof. By induction on the complexity of ϕ . The only non-standard case is the ≡ operator. We want to
show

P≡ Q ∈ Γ ⇐⇒ M ,Γ � P≡ Q

for which it suffices to show

[P]
Γ
= [Q]

Γ
⇐⇒ defΓ(P) = defΓ(Q).

For left to right, suppose [P]
Γ
= [Q]

Γ
. This implies pick([P]

Γ
) = pick([Q]

Γ
). Hence we have defΓ(P) =

defΓ(Q) by Lemma 5.
For right to left, suppose we have defΓ(P) = defΓ(Q). Then by Lemma 5 we have a single formula

R := pick([P]
Γ
) = pick([Q]

Γ
). In particular we have R ∈ [P]

Γ
and R ∈ [Q]

Γ
. Hence P ≡ R ∈ Γ and

R≡ Q ∈ Γ. Now by transitivity from Definition 5 we have P≡ Q ∈ Γ. Therefore [P]
Γ
= [Q]

Γ
.

Finally, we can state and prove completeness.

Theorem 2 (Completeness). SMLD is weakly complete for announcement-free fragment of L , and
SPALD is weakly complete for the full L .

Proof. Suppose ϕ is not provable. By the PAL reduction axioms there is a formula ϕ ′ without announce-
ments such that ` ϕ ↔ ϕ ′. Hence ϕ ′ is not provable and therefore ¬ϕ ′ is consistent.

Let Prop be the vocabulary of ϕ ′. Let M be the canonical model for Prop per Definition 11. Let Γ be
any maximally consistent set containing ¬ϕ ′. Such a set always exists and can be defined using a standard
Lindenbaum Lemma [3, p. 197]. In particular, Γ is an element of W in M . Then by the Truth Lemma we
have M ,Γ � ¬ϕ ′.

The reduction axioms are also semantically valid, so we have M ,Γ �¬ϕ . Hence ϕ is not semantically
valid.



218 Public Announcement Logic with Boolean Definitions

5 Knowing the Definition

Our language does not allow us to express that an agent knows the definition of a proposition. We can
add this using an operator similar to Kv from [22]. Formally, let KdiP where P ∈LB have the following
semantics:

M ,w � Kdi(P) ⇐⇒ ∀w′ : wRiw′ implies defw(P) = defw′(P)

As we have shown in Examples 1 and 2 knowing whether something is true and knowing its definition
are contingent, neither implies the other.

We can then also define the notion of explicitly knowing, which is the combination of knowing that
and knowing the definition:

Kxi(P) :=�iP∧Kdi(P)

However, in our framework it is only possible to know propositional formulas explicitly. For example, the
formula Kxi(� j(p∧q)) is not in the language.

Also adding the definition itself to the language, with the following operator := could be helpful.

M ,w � p := P ⇐⇒ DEFw(p) = P

For example we then have the following validities:

• p := P→ p≡ P (definition implies equivalence)

• p := P→¬(p := Q) for all P 6= Q (uniqueness)

• (p := P∧Kdi(p))→�i(p := P)

• KdiP∧�i(P≡ Q)→ KdiQ

In fact, the := operator could also simplify our original completeness proof. Choosing definitions for
the canonical model is trivial for this extended language, because each maximally consistent set Γ will
contain exactly one formula of the form p := P for each p ∈ Prop.1

We leave it as future work to axiomatize the extension of our logic with Kd.

6 Conclusion and Future Work

We presented an extension of Public Announcement Logic (PAL) to model the knowledge of meanings
with boolean definitions. In our logic agents can understand a proposition without knowing its truth
value or the other way round. Moreover, multiple agents can agree on something without agreeing on its
meaning and vice versa.

We also presented a sound and complete axiomatization with intuitive axioms to characterize the
equivalence operator ≡. The completeness proof is based on a standard canonical model construction,
extended with two new ideas for boolean definitions. We use merge to combine different possible
definitions and then use a tree of occurrence substitutions to ensure that there are only finitely many
definitions to choose from.

Our formal contributions are thus more about pattern matching and less the epistemic and dynamic
operators. Nevertheless, we think that our logic showcases an interesting interaction between boolean
definitions and the standard operators K and [ϕ]. On the other hand, as a subsystem of our proof system,
the pattern matching logic regarding ≡ seems interesting on its own. It may be applied in computer

1We thank Alexandru Baltag for pointing out how := may simplify our logic.
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science or combined with other philosophical logics. In fact, our pattern matching and mismatching
axioms are reminiscent of term rewriting rules. We therefore conjecture that our central Lemma 1 can
also be shown using Kruskal’s Theorem applied to term rewriting, as discussed in [5].2

Our work can be extended in several ways.
The framework is compatible with the range of multi-agent epistemic logics from Kn to S5n. The usual

axioms for frame properties can be added, for example one might add transitivity for positive introspection,
or reflexivity for truthfulness of knowledge.

We already mentioned in the last section that our logic relates to the Kv operator from [22]. We think
that “knowing value” models could also be equipped with definitions for their general variables instead of
propositions. This can then be combined with “public inspection” from [9] and the resulting framework
might give a new perspective on knowledge of terms.

The distinction between value and meaning is best illustrated in the setting of cryptographic protocols,
where you may know the value of the message but only part of the meaning. To illustrate this, suppose
you have your own private key k. If you receive an encrypted message {a,{b}k′}k, then you can decode
the outer level and learn the value of a. But you cannot learn b if it is encrypted by another key k′ that
you do not have. In fact, you might not even know that the message you received is of this form and only
understand {a,x}k. Such phenomena also happen in everyday communication. You may only get part of
the meaning of a sentence, but by asking “what do you mean by . . . ?” you can learn more.

After seeing the details of our framework one might wonder how it relates to other logics of ambiguity.
We only mention two related works and leave more detailed comparisons for the future.

A semantic approach is [12] where agents are given different valuation functions to encode their
disagreement about (ambiguous) atomic propositions. In our models with definitions there is no need for
additional valuation functions and our approach is more syntactic. In our logic, knowing the meaning of
a proposition is not reducible to knowing the valuation, e.g., two tautologies can still be very different
definitionally. Moreover, we also handle uncertainty about the actual meaning of propositions and provide
agents with a way to learn it by update and pattern matching.

Another related approach to model syntactic ambiguity is [14] where the meaning of connectives is
not fixed. For example, an agent might wonder whether p∗q means p∨q or p∧q. A similar example
could be modelled in our logic with r ≡ (p∨q) vs. r ≡ (p∧q).

Finally, there are two obvious limitations of our logic. First, all definitions are boolean but in principle
also modal definitions like p :=� jq are interesting. Second, as mentioned above, logical equivalence and
equivalence by definition are not connected. For example, ¬(p∧q) and ¬p∨¬q are logically equivalent,
but due to the pattern mismatch axiom we can never have ¬(p∧ q) ≡ (¬p∨¬q). Depending on the
application, users of our logic might consider this a problem or a feature. We think that our ideas can be
extended in both directions, but leave this as future work.
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