
J. Lang (Ed.): TARK 2017
EPTCS 251, 2017, pp. 324–335, doi:10.4204/EPTCS.251.22

A Knowledge-Based Analysis of the Blockchain Protocol

Joseph Y. Halpern
Cornell University

Ithaca, NY 14853, USA
halpern@cs.cornell.edu

Rafael Pass
Cornell University

Ithaca, NY 14853, USA
rafael@cs.cornell.edu

At the heart of the Bitcoin is a blockchain protocol, a protocol for achieving consensus on a public
ledger that records bitcoin transactions. To the extent that a blockchain protocol is used for appli-
cations such as contract signing and making certain transactions (such as house sales) public, we
need to understand what guarantees the protocol gives us in terms of agents’ knowledge. Here, we
provide a complete characterization of agent’s knowledge when running a blockchain protocol using
a variant of common knowledge that takes into account the fact that agents can enter and leave the
system, it is not known which agents are in fact following the protocol (some agents may want to
deviate if they can gain by doing so), and the fact that the guarantees provided by blockchain proto-
cols are probabilistic. We then consider some scenarios involving contracts and show that this level
of knowledge suffices for some scenarios, but not others.

1 Introduction

At the heart of the Bitcoin [10] is the blockchain protocol, a protocol for achieving consensus on a
public ledger that records bitcoin transactions. Indeed, much of the promise of Bitcoin involves using a
blockchain protocol for applications that go far beyond a pure digital currency, such as an infrastructure
for online payments, a way to record contracts and asset exchanges, and a basis for dispute resolution.1

At any given time when running a blockchain protocol, different agents typically have different views
about which transactions are in the public ledger. With current blockchain protocols, it is also possible
that a given transaction is included in agent i’s view of the ledger at time m and not included at a later
time m′. Nakamoto’s protocol [2, 10, 11] gives guarantees in the spirit of the following, which we call
T -consistency (where T is a non-negative integer): Say that a ledger X is a T -prefix of a ledger Y if X is
any prefix of the ledger that contains all but the last T transactions in Y . T -consistency says that if i is
honest (i.e., i has followed the protocol since joining the system) and X is a T -prefix of i’s blockchain at
time m, then at all times m′ ≥ m, all honest agents will have X as a prefix of their ledger.

Does T -consistency suffice to use a blockchain protocol for the types of applications envisioned
for it? If not, what else do we need? More generally, what guarantees do we get using a blockchain
protocol? Of course, the answer to the latter question depends in part on the application. We focus here
on contracts. In the old days, when agents got together in one place to sign a contract, the fact that
the contract was in force was common knowledge: all agents knew that all agents knew that all agents
knew . . . that the contract was in force. Today, with electronic signatures, we can get the same effect if
there is a global clock. Suppose that the attorneys require that signatures on the contract are received by
11:30 AM on the global clock and, if they are, the contract will be in force at noon on the global clock.
Then if signatures are indeed received by 11:30 AM and it is common knowledge that messages from the

1Statistics showing Bitcoin’s increasing usage can be found at https://blockchain.info/charts; even today, the size of the
replicated ledger is over 50MB. The article “The great chain of being sure about things” [The Economist, Oct. 31, 2015]
provides a high-level discussion of potential applications of blockchain protocols.

http://dx.doi.org/10.4204/EPTCS.251.22

J. Y. Halpern & R. Pass 325

attorney are all received within at most 5 minutes, then at noon on the global clock all agents know that
at noon on the global clock all agents know . . . that the contract is in force. That is, at noon, the agents
have common knowledge that the contract is in force.

Can we get the equivalent common knowledge from T -consistency? As we show here, T -consistency
does not suffice. Roughy speaking, the problem is the following: Suppose that at time t agent 1 has the
signed contract in a T -prefix of his ledger. Thus, at if 2 is honest. Unfortunately, the contract may not
be in a T -prefix of 2’s ledger. Moreover, if 2’s ledger does not grow, it may never be in a T -prefix of 2’s
ledger, so 2 will never know that 1 knows about the contract.

For agent 2 to know that the contract is on 1’s ledger, agent 2’s ledger has to grow sufficiently long
that the contract is in a T -prefix of 2’s ledger. Moreover, for 1 to have a bound on the time by which he
knows that 2 will have the contract in his ledger, he must know that this growth will happen by a certain
time. That guarantee is provided by the property called ∆-weak growth [11], which says the following:
if i is an honest agent and has a ledger of length N at time t, then all honest agents will have ledgers
of length N by time t +∆. (Note that ∆-weak growth does not place any requirements on the content
of the ledger; it just talks about the length of the ledger. T -consistency, on the other hand, does place
requirements on the content of ledgers.) Here, we show that the combination of ∆-weak growth and
T -consistency suffices not just for agent 1 to know that agent 2 will know (within time ∆) that 1 will have
the contract in his ledger, the combination is necessary and sufficient to achieve ∆-2-common knowledge
among the honest agents that the contract is in all of their ledgers. Roughly speaking, ∆-2-common
knowledge [5, 6] of a formula ϕ holds among the honest agents if each honest agent knows that within
∆ all the honest agents will know from that point on that within ∆ all the honest agents will know from
that point on . . . ϕ .

As shown in [1], ∆-common knowledge (everyone knows within ∆ that everyone knows within ∆

. . .) suffices to ensure coordination among groups of agents within a time window of ∆. In the context
of contract signing, this means that once the first person has signed the contract, every honest party in
the system will know within ∆ time units that the contract has been signed. But because the set of honest
agents is a non-rigid or indexical set—its membership changes over time—it does not follow from ∆-
common knowledge that new honest agents who enter the system will also know about the contract being
signed. This does follow from ∆-2–common knowledge, which is why we want the stronger condition.

Things are yet more complicated in our setting because the formula ϕ of interest, being on the ledger,
is also agent dependent; a contract can be on 1’s ledger without being on 2’s ledger Ignoring these sub-
tleties, and just accepting for now that using a blockchain protocol gives ∆-2-common knowledge, the
question then arises whether this is what we need for contracts. It is well known [1] that ∆-common
knowledge among a fixed group G of agents is necessary and sufficient for coordination within a time
window of ∆. That is, it is necessary and sufficient to guarantee that all agents in G perform a given action
within a window of ∆. (Thus, common knowledge is necessary and sufficient to guarantee simultaneous
coordination.) ∆-2-common knowledge turns out to be what is needed to extend this result to an index-
ical set of agents. ∆-2-common knowledge (or just ∆-common knowledge if the set of agents is fixed),
in turn, suffices for time-stamped common knowledge if there is a global clock and a commonly-known
upper bound on message-delivery time. Here, we show by example that while ∆-2-common knowledge
suffices for some scenarios involving contracts, it does not suffice for all of them. In general, a few extra
properties are needed (which are also satisfied by some blockchain protocols). These examples make it
clear that we need a better understanding of the properties needed for various applications.

Nakamoto’s blockchain protocol [10] actually does not quite provide T -consistency and ∆-weak
growth [2, 11]; nor do subsequent blockchain protocols such as [12, 13]. These protocols just provide
these properties with high probability. Our results (and the examples) for the deterministic case extend

326 A Knowledge-Based Analysis of the Blockchain Protocol

naturally to the probabilistic case.

2 Runs, systems, and knowledge: a review

Runs and Systems: In order to reason about the knowledge of agents running a blockchain protocol,
we use the standard “runs and systems” framework [1], which we now briefly review. The description
below is largely taken from [1], which should be consulted for more details and intuition. However, some
new subtleties arise because the set of agents is not fixed.

A multiagent system consists of agents interacting over time. At each point in time, each agent is in
some local state. Intuitively, an agent’s local state encapsulates all the information to which the agent
has access. In the blockchain setting, we take agent i’s local state at time m to be i’s history: i’s initial
state together with the messages that agent i has sent and received (which together determine i’s ledger at
time m) and the outcome of random coin tosses, if the agent is randomizing. This means that agents have
what is called perfect recall [1]; roughly speaking, they do not forget facts that they have learned. It is
also conceptually useful to have an “environment” whose state can be thought of as encoding everything
relevant to the description of the system that may not be included in the agents’ local states. For example,
the environment state might include a list of the agents currently in the system and which ones are honest;
it could also include the time on some clock that none of the agents have direct access to. The global
state of a system consists of the local state of each agent currently in the system and the environment’s
state. (We define global state more formally below.)

A global state describes the system at a given point in time. But a system is not a static entity; it
constantly changes. Since we are mainly interested in how systems change over time, we need to build
time into our model. We define a run to be a function from time to global states. Intuitively, a run is a
complete description of how the system’s global state evolves over time. For the purposes of this paper,
we take time to range over the natural numbers. Thus, the initial global state of the system in a possible
execution r is r(0), the next global state is r(1), and so on.

In general, there are many possible executions of a system: there could be a number of possible initial
states and many things that could happen from each initial state. In the case of a blockchain protocol,
even with a fixed initial state, there are different sets of agents who could join or leave the system at
various points and messages could take different lengths of time to be delivered. Formally, a system is
a nonempty set of runs. Intuitively, these runs describe all the possible sequences of events that could
occur in the system. Thus, we are essentially identifying a system with its possible behaviors.

We will be particularly interested in the set of runs generated when the players are following a
blockchain protocol P. Formally, a protocol for agent i is a function from i’s local states to actions. When
we talk about a protocol like the blockchain protocol, we implicitly have in mind a protocol for each
agent. We think of the environment as running a protocol as well, which (among other things) determines
which agents act in each global state, and which messages will be delivered. We use the environment’s
protocol to model the adversary’s behavior. Since we are considering asynchronous systems, we allow
the adversary to delay the messages for an arbitrary amount of time. We allow dishonest players, but we
may want to limit the number of dishonest players, or limit what they can do. For simplicity, we assume
that all of these choices are under the control of the environment. Thus, for example, the environment
decides which players are going to be dishonest, when they become dishonest, and what they do when
they are dishonest. We typically think of the environment’s protocol as being nondeterministic; for
example, the adversary can nondeterministically choose how long it will take a message to be delivered
or who is dishonest. Following [1], we take a context γ to be a pair consisting of a protocol Pe for the

J. Y. Halpern & R. Pass 327

environment and a set of possible initial global states that the system can start in. Given a context γ and
a protocol P for the agents, there is a system RP,γ generated by running protocol P in context γ . We refer
the reader to [1] for a more formal treatment.2

In most previous work on multiagent systems, there are assumed to be a fixed number n of agents
in the system, so for simplicity we take the set of agents to be {1, . . . ,n} and take a global state to have
the form (se,s1, . . . ,sn), where se denotes the environment state and si denotes agent i’s state. However,
as we observed above, the set of agents in the systems we are interested in is an indexical set, whose
membership may change. Thus, we can no longer take global states to have this form. We thus assume
that there is a (possibly infinite) set A G that contains the names of all agents that are ever in the system.
Formally, an indexical set S of agents in a system R is a function from the points in R to subsets of A G ;
intuitively, S (r,m) is the set of agents in A G who are in S at the point (r,m). We will be particularly
interested in two indexical sets: A , the set of agents currently in the system, and H , the honest agents
currently in the system, where H ⊆ A (more precisely, H (r,m) ⊆ A (r,m) for all points (r,m) in the
system). We then take r(m), the global state at a point (r,m), to be the set {(si, i) : i∈A (r,m)}∪{(se,e)};
that is, r(m) consists of the state of each agent currently in the system tagged by the agent’s name,
together with the environment state se tagged with “e” for “environment”. (We assume that e /∈A G , to
avoid confusion.)

If i ∈ A (r,m) and (si, i) ∈ r(m), then define ri(m) = si. We write (r,m) ∼i (r′,m′) if agent i ∈
A (r,m)∩A (r′,m′) and ri(m) = r′i(m

′); that is, (r,m) ∼i (r′,m′) if i is in the system at both (r,m) and
(r′,m′) and i has the same local state at both points. In systems with a fixed set of agents, ∼i is an
equivalence relation on the points in R; in our setting, ∼i is an equivalence relation on {(r,m) : i ∈
A (r,m)}. Define Ki(r,m) = {(r′,m′) : (r′,m′)∼i (r,m)}. Note that if i /∈A (r,m), then Ki(r,m) = /0.

Propositional and temporal reasoning in systems: Assume that we have a set Φ of primitive propo-
sitions whose truth is determined by the global state. In our intended applications, the primitive propo-
sitions will be statements such as “X is a T -prefix of i’s ledger” and “agent j is honest”. An interpreted
system is a pair (R,π) consisting of a sytem R and an interpretation π that associates with each prim-
itive p and global state s a truth value; that is, π(p,s) ∈ {true, false}. We can then define the truth of a
Boolean combination of primitive propositions at a point (r,m) in an interpreted system I = (R,π) in
the standard way:

(I ,r,m) |= p for a primitive proposition p iff π(p,r(m)) = true
(I ,r,m) |= ϕ ∧ψ iff (I ,r,m) |= ϕ and (I ,r,m) |= ψ

(I ,r,m) |= ¬ϕ iff (I ,r,m) 6|= ϕ

We can also reason about time using the standard temporal logic operator 2 and©∆:

(I ,r,m) |=2ϕ iff (I ,r,m′) |= ϕ for all m′ ≥ m
(I ,r,m) |=©∆ϕ iff (I ,r,m+∆) |= ϕ.

As usual, we say that a formula ϕ is valid in I = (R,π) if (I ,r,m) |= ϕ for all points (r,m) ∈
R× IN.

2In [1], the context had other components. We can ignore these for our purposes here.

328 A Knowledge-Based Analysis of the Blockchain Protocol

3 Blockchain properties

A blockchain protocol constructs a distributed ledger. What this means is that each agent running a
blockchain protocol has a current view of the ledger, where a ledger is just a sequence (t1, t2, . . . , tN) of
transactions. The details of the transactions are not relevant to our discussion here; for our purposes, we
can just assume that there is a (commonly known) set T of possible transactions, and each element ti in
the ledger is in T .

We think of the ledger constructed by a blockchain protocol as being a “public” ledger. Since each
agent running a blockchain protocol has its own view of the ledger, and the set of agents running the
protocol can change over time, we need to explain more carefully what “public” means in this context.
Given a ledger L = (t1, . . . , tN), the length of the ledger L, denoted |L|, is N. A prefix of L has the form
(t1, . . . , tN′), with N′ ≤ N. A T-prefix of L is ledger of the form (t1, . . . , tM), with M ≤ N−T (so is the
empty sequence if N ≤ T).

Some agents might deviate from a blockchain protocol, especially if they think it is advantageous to
do so. Say that an agent is honest at time m if i is an agent in the system at time m and it has followed
the protocol from the time that it joined the system up to time m. Consider the following three properties
of a run r:
• (T -consistency:) For all times m and m′ ≥ m, if i is honest at time m in run r, L′ is a T -prefix of

Li(r,m), i ledger at time m in run r, and j is honest at time m′, then L′ is a prefix of L j(r,m′).

• (∆-weak growth:) For all times m and m′ ≥ m+∆, if i is honest at time m in r and j is honest at
time m′, then |L j(r,m′)| ≥ |Li(r,m)|.
• T -∆–acceptability: For all times m and m′ ≥ m, if i is honest at time m in r, L′ is a T -prefix of

Li(r,m), and j is honest at time m′+∆, then L′ is a T -prefix of L j(r,m′+∆).
The following is almost immediate:

Proposition 3.1: If a run satisfies T -consistency and ∆-weak-growth, then it is T -∆–acceptable.
Proof: Suppose that a run r satisfies T -consistency and ∆-weak-growth. If i is honest at time m in r, L′

is a T -prefix of Li(r,m), m′ ≥m, and j is honest at time m′ ≥m+∆, then by T -consistency, L′ is a prefix
of L j(r,m′); by ∆-weak-growth, |L j(r,m′)| ≥ |Li(r,m)|, so L′ is a T -prefix of L j(r,m′).

A protocol P is T -consistent (resp., satisfies ∆-weak growth, is T -∆–acceptable) in context γ iff all
runs in RP,γ satisfy T -consistency (resp., ∆-weak growth, T -∆–acceptability). It follows immediately
from Proposition 3.1 that if a protocol is T -consistent and satisfies ∆-weak growth in context γ , then it is
T -∆–acceptable in context γ .

There is no known blockchain protocol that is T -∆–acceptable; that is, none guarantees the properties
of T -consistency and ∆-weak growth. However, as shown in [2, 11], Nakamoto’s blockchain protocol
guarantees that these properties hold with high probability (taken over the runs of the protocol) in appro-
priate contexts (roughly, under the assumption that a majority of the players are honest, and that some
systems parameters—specifically, what is referred to as the “mining hardness”—are appropriately set as
a function of the worst-case delay on the networks), and hence is T -∆–acceptable with high probability
in those contexts. We defer a discussion of protocols with probabilistic guarantees to Section 6.

4 A temporal characterization of blockchain protocols

We can already give a characterization of blockchain protocols, without using knowledge. The character-
ization involves statements about honest agents. In the language, we have primitive propositions i ∈H

J. Y. Halpern & R. Pass 329

and T-prefix(X ,Li). We take πP to be such that i ∈H is true at (r,m) if i ∈H (r,m) and T-prefix(X ,Li)
is true at (r,m) if X is a T -prefix of Li(r,m). Given a context γ , let IP,γ = (RP,γ ,πP). Note that whether
P is T -∆–acceptable will, in general, depend on the context and, more specifically, what the adversary is
allowed to do.

Proposition 4.1: If r is a T -∆–acceptable run of a protocol P, then

(IP,γ ,r,m) |= i ∈H ∧T-prefix(X ,Li)⇒©∆2(j ∈H ⇒ T-prefix(X ,L j)).

Proof: This is almost immediate from the definition of T -∆–acceptability, so we omit the details here.

Corollary 4.2: P is T -∆–acceptable in context γ iff for all i, j ∈A G and ledgers X, the formula

i ∈H ∧T-prefix(X ,Li)⇒©∆2(j ∈H ⇒ T-prefix(X ,L j))

is valid in IP,γ .

We also want an analogous characterization of blockchain protocols that give only probabilistic guar-
antees. However, there are some subtleties involved in dealing with probability, so we defer this to
Section 6.

5 ∆-2–common knowledge and indexical sets

While Corollary 4.2 does give us a characterization of blockchain protocols, it does not give a good
intuition regarding what assurances agents have when they run a blockchain protocol. To provide this,
we need to add the agents’ knowledge to the picture.

The standard way to reason about the knowledge of agents is to add a modal operators Ki to the
language, where Kiϕ is read “agent i knows ϕ .” As usual, we say that Kiϕ holds at a point (r,m) if ϕ

holds at all points that i can’t distinguish from (r,m):

(I ,r,m) |= Kiϕ iff (I ,r′,m′) |= ϕ for all (r′,m′) ∈Ki(r,m).

Given a fixed set G of agents, we take common knowledge among G to hold if everyone in G knows,
everyone in G knows that everyone in G knows, and so on. We add operators EG and CG to the language
for “everyone in G knows” and “it is common knowledge among the agents in G”. Taking En+1

G ϕ to be
an abbreviation of EGEn

Gϕ , we have

(I ,r,m) |= EGϕ iff (I ,r,m) |= Kiϕ for all i ∈ G
(I ,r,m) |=CGϕ iff (I ,r,m) |= En

Gϕ for all n≥ 1.

There are two ways in which CG is insufficient for our purposes. For one thing, as is well known [1],
common knowledge is closely related to simultaneous coordination; we cannot obtain common knowl-
edge in asynchronous systems, where there is no common clock; we are interested in the asynchronous
setting for blockchain applications. Thus, we must consider variants of common knowledge, such as
∆-common knowledge, that are attainable for some appropriate ∆ (at least, if we can assure that clocks
are synchronized reasonably closely, an assumption that is quite plausible for our application domain).
Secondly, we will typically be interested in facts that are (∆-)common knowledge among the honest
agents, an indexical set. So we need to define common knowledge relative to indexical sets S .

330 A Knowledge-Based Analysis of the Blockchain Protocol

In general, an agent in S may not know that it is in S . For example, an agent i may not know if it
is honest at time m; perhaps some fault resulted in it not following the protocol at the previous step. It
might seem that the obvious way to define ES ϕ is just as ∧i∈S Kiϕ , in analogy to the way that EGϕ is
defined. As shown in [1, 9], this whether it is in S (i.e., if it is not the case that i ∈S ⇒ Ki(i ∈S) is
valid; note that the latter condition implies that i /∈S ⇒ Ki(i /∈S) is also valid). Instead, following [9],
we define BS

i ϕ to be an abbreviation for Ki(i ∈S ⇒ ϕ); that is, BS
i ϕ holds if i knows that if it is in S ,

then ϕ holds. Thus,

(I ,r,m) |= BS
i ϕ iff (I ,r′,m′) |= ϕ for all (r′,m′) ∈Ki(s) such that i ∈S (r′,m′).

We can now define ES ϕ as ∧i∈S BS
i ϕ , and CS ϕ as ∧n≥1En

S ϕ; more precisely, (I ,r,m) |= ES ϕ iff
(I ,r,m) |= BS

i ϕ for all i ∈S (r,m) and (I ,r,m) |=CS ϕ iff (I ,r,m) |= En
S ϕ for all n ≥ 1. It is easy

to check that Kiϕ⇒ BS
i ϕ is valid and if i knows whether i is in S , then ES ϕ is equivalent to ∧i∈S Kiϕ .

We will be interested in some variants of common knowledge. Since they are all defined the same
way, we give the general approach once and for all. Let X be a sequence of modal operators. Then we
define CX

S ϕ to hold if (XES)nϕ holds for all n ≥ 1, where (XES)1ϕ is just XES ϕ and (XES)n+1ϕ is
XES (XES)nϕ . Clearly, CS is is CX

S where X is the empty sequence. For ∆≥ 0, ∆-common knowledge
is CX

S where X is©∆.3

One reason for the interest in (∆-)common knowledge is because of its tight connection to coordi-
nation. As mentioned in the introduction, ∆-common knowledge is a necessary and sufficient condition
for agents to coordinate within a window of ∆. For the reasons discussed in the introduction, we are
interested in ∆-2–common knowledge, that is, CX

S where X is©∆2.
We want to prove that a formula of the form i ∈ S ∧ψ ⇒ CX

S ψ is valid. The standard way to
prove that ψ ⇒ CGϕ (for a fixed group G) is valid is to show that ψ ⇒ CG(ϕ ∧ψ). This is called the
induction rule. As observed in [1, Exercise 6.13(d)], the induction rule can also be used for indexical
common knowledge. We want to apply it to indexical variants of common knowledge. Say that Y is
a simple sequence of modal operators if there is a relation Y on points such that (I ,r,m) |= Y ϕ iff
(I ,r′,m′) |= ϕ for all points (r′,m′) ∈ Y (r,m) = {(r′,m′) : ((r,m),(r′,m′)) ∈ Y }. Note that©∆ and 2

are simple, and simple operators are closed under composition, so©∆2 is simple.

Lemma 5.1: If Y is simple and i∈H ∧ψ⇒Y EH (ϕ∧ψ) is valid for all i∈H , then so is i∈H ∧ψ⇒
CY

H (ϕ).

We defer the proof of this and all later results to the full paper.
The formula i ∈H ∧ T-prefix(X ,Li)⇒ ©∆2(j ∈H ⇒ T-prefix(X ,L j)) from Proposition 4.1 is

actually not far from having the form i ∈ S ∧ψ ⇒ Y ES (ϕ ∧ψ) needed to apply Lemma 5.1. The
antecedent of the formula has the right form, and Y is clearly ©∆2, which, as we have observed, is
simple. It is also not hard to show that (j ∈H ⇒ T-prefix(X ,L j)) implies BH

j (T-prefix(X ,L j)). The
only thing that prevents us from applying Lemma 5.1 is that the arguments of the B j operators are
different formulas. But they all say roughly the same thing: X is a T -prefix of “my” ledger. We now
modify the logic so that the formulas say exactly this.

Specifically, we add the primitive propositions T-prefix(X ,L) and I ∈H to the language. The in-
tended interpretation of the first formula is just what we said above: “X is a T -prefix of my ledger”;

3There are two differences between the presentation of ∆-common knowledge here and that in [1]. The first is that we
define variants of common knowledge in terms of infinite conjunctions rather than in terms of fixed points. Secondly, in [1],
∆-common knowledge of ϕ is taken to hold at the point (r,m) if there is an interval of size ∆ such that for each agent i, Kiϕ

holds at some point in the interval. The definition given here is the one given in [5]. In the presence of perfect recall (which, as
we have observed, holds in the systems that we consider), the two definitions can be shown to be equivalent.

J. Y. Halpern & R. Pass 331

the intended interpretation of the second formula is “I am honest”. These are agent-relative formulas;
following [3, 4], we give such formulas semantics by having an agent on the left-hand side of |= as well
as (I ,r,m). We have to redefine the semantics of all formulas in the more general setting. The semantics
of conjunction and negation and of temporal operators is unaffected, but the semantics of some of the
primitive propositions and of the knowledge operator is affected. Specifically,

(I ,r,m, i) |= T-prefix(X ,L) iff X is a T -prefix of Li(m)
(I ,r,m, i) |= I ∈H iff i ∈H (r,m)
(I ,r,m, i) |= ϕ ∧ψ iff (I ,r,mi) |= ϕ and (I ,r,m, i) |= ψ

(I ,r,m, i) |= ¬ϕ iff (I ,r,m, i) 6|= ϕ

(I ,r,m, i) |=2ϕ iff (I ,r,m′, i) |= ϕ for all m′ ≥ m
(I ,r,m, i) |=©∆ϕ iff (I ,r,m+∆, i) |= ϕ

(I ,r,m, i) |= K jϕ iff (I ,r′,m′, j) |= ϕ for all (r′,m′) ∈K j(r,m)

Note that in the semantics for K jϕ , we use K j and give the semantics relative to j. Intuitively, this
says that j knows ϕ from i’s perspective if j’s interpretation of ϕ is true in all worlds that j considers
possible. Although other choices are possible (see [3] for discussion), this choice is the one that was
adopted in [3, 4] and works well for our purposes. The remaining clauses of the definition of |= are the
same as before; we omit the details here. The agent i just comes along for the ride, so to speak, in the
other clauses; it is only relevant in giving semantics where who “I” is matters. We continue to view BS

i ϕ

as an abbreviation for Ki(i ∈S ⇒ ϕ) and ES ϕ as an abbreviation for ∧i∈S BS
i ϕ . The definition CY

S ϕ

is also unchanged. Say that (I ,r,m) |= ϕ if (I ,r,m, i) |= ϕ for all agents i. As before, ϕ is valid in I
if (I ,r,m) |= ϕ for all points (r,m).

This language gives us just what we want.

Theorem 5.2: The following are equivalent:

(a) P is T -∆-acceptable in context γ;

(b) for all i, j ∈A G and ledgers X,

i ∈H ∧T-prefix(X ,Li)⇒©∆2(j ∈H ⇒ T-prefix(X ,L j))

is valid in IP,γ .

(c) for all ledgers X, I ∈H ∧T-prefix(X ,L)⇒©∆2EH (T-prefix(X ,L)) is valid in IP,γ .

(d) for all ledgers X, I ∈H ∧T-prefix(X ,L)⇒C©
∆
2

H (T-prefix(X ,L)) is valid in IP,γ .

An immediate consequence of Theorem 5.2 is that T -consistency does not suffice to get ∆-2 common
knowledge; we really do need ∆-weak growth. (It is also not hard to construct an explicit example
showing this.)

6 Adding probability to the framework

To give semantics to questions like ‘What is the probability according to agent i that transaction t is in
agent j’s ledger?” at a point (r,m), agent i needs a probability defined on points in Ki(r,m), the points
that i considers possible at (r,m). Agent i’s probability of a formula ϕ at the point (r,m) is then just the
probability of the set of points in Ki(r,m) where ϕ is true.

332 A Knowledge-Based Analysis of the Blockchain Protocol

To define a probability on the points in Ki(r,m), we use the approach suggested by Halpern and
Tuttle [7]. Given a protocol P run in a context γ , ideally, we would have a probability on the runs in
RP,γ . However, it may not be reasonable to assume a single probability on the runs in RP,γ , since that
would require a probability on the adversary’s nondeterministic choices. The first step (quite standard in
distributed computing) is to factor out these choices so that, intuitively, there is only one nondeterministic
choice, and that is made at the first step—the adversary chooses a deterministic or probabilistic protocol.
We then partition the set of runs into a set C of cells, and assume that we have, for each cell C ∈ C , a
probability µC on the runs in cell C. Intuitively, each cell C consists of the set of runs where the adversary
is using a particular probabilistic (or deterministic) protocol. Let C (r) denote the unique cell containing
the run r. We take a probabilistic interpreted system to be a tuple I = (R,π,C ,{µC}C∈C). Given a
probabilistic protocol P and a context γ , we assume that γ determines C and P and γ together determine
{µC}C∈C , so that the probabilistic interpreted system IP,γ is well defined.

We want an analogue of Theorem 5.2 for probabilistic systems. We first define a probabilistic ana-
logue of acceptability.

Definition 6.1: A blockchain protocol P is T -∆-ε–acceptable in context γ , if, for all cells C in IP,γ ,
µC({r ∈ C : r is T -∆–acceptable}) ≥ 1− ε (i.e., no matter what protocol the adversary is using, with
probability at least 1− ε , the probability that a run is T -∆–acceptable is at least 1− ε).

In Definition 6.1, µC is a probability on runs: that is, appropriate properties hold with high probability
taken on runs. But the analogue of Theorem 5.2 that we are interested in considers agents’ beliefs at a
point. It is consistent that a protocol P is T -∆-ε–acceptable, yet an honest agent i gets some information
at a point (r,m) that tells i that P is somehow compromised and r is not T -∆-ε–acceptable. While it is
unlikely that i gets such information, it is not impossible.

We deal with this using an idea that goes back to Moses and Shoham [8]. Let acc be a predicate on
runs; that is, acc(r) is either true or false for each run r. Intuitively, we think of acc(r) as holding exactly
if r is T -∆–acceptable, but we do not need to require this. We will restrict attention to runs that satisfy
acc in all our definitions. We abuse notation and also view acc as a primitive proposition in the language,
and take π to be such that (I ,r,m) |= acc iff acc(r) holds. We say that an interpretation π is acceptable
with respect to RP,γ if π interprets i ∈H and T-prefix(X ,Li) as discussed earlier, and interprets acc so
that it depends only on the run; that is, π(acc,r(m)) = π(acc,r(0)), so that acc is true either at all points
of a run or none of them. Acceptable interpretations can differ only in how they interpret acc.

Define BS ,acc
i ϕ to be an abbreviation of Ki(i ∈ S ∧ acc⇒ ϕ) and Eacc

S ϕ be an abbreviation of
∧i∈S BS ,acc

i ϕ . If Y is a simple operator, let CY,acc
S ϕ be the infinite conjunction ∧n≥1(Y Eacc

S)nϕ .
Finally, add the formula init(Pr(ϕ) ≥ α) to the language, where if I = (R,π,C ,{µC}C∈C), then

(I ,r,m) |= init(Pr(ϕ) ≥ α) if µC(r)({r ∈ C(r) : (I ,r,0) |= 2ϕ}) ≥ α . Intuitively, init(Pr(ϕ) ≥ α) is
true at (r,m) if the prior probability of ϕ being always true is at least α , given the adversary is using the
protocol determined by C(r).

Now essentially the same arguments as those used to prove Lemma 5.1 and Theorem 5.2 can be used
to prove the following analogues of these results.

Lemma 6.2: If i ∈H ∧ψ ∧ acc⇒©∆2Eacc
H (ϕ ∧ψ) is valid for all i ∈H , then so is i ∈H ∧ψ ⇒

C©
∆
2,acc

H ϕ .

Theorem 6.3: The following are equivalent:

(a) P is T -∆-ε-acceptable in context γ;

J. Y. Halpern & R. Pass 333

(b) there is an interpretation π acceptable for RP,γ such that for all i, j ∈A G and ledgers X,

init(Pr(acc)≥ 1− ε)∧ [i ∈H ∧T-prefix(X ,Li)∧acc⇒ (©∆2(j ∈H ⇒ T-prefix(X ,L j)))]

is valid in (RP,γ ,π).

(c) there is an interpretation π acceptable for RP,γ such that for all ledgers X,

init(Pr(acc)≥ 1− ε)∧ [I ∈H ∧T-prefix(X ,L)∧acc⇒©∆2Eacc
H (T-prefix(X ,L)))]

is valid in (RP,γ ,π).

(d) there is an interpretation π acceptable for RP,γ such that for all ledgers X,

init(Pr(acc)≥ 1− ε)∧ [I ∈H ∧T-prefix(X ,L)∧acc⇒C©
∆
2,acc

H (T-prefix(X ,L))]

is valid in (RP,γ ,π).

7 Discussion

Our results provide a characterization of two natural properties of blockchain protocols—T -consistency
[2, 10, 11], and ∆-weak growth [11]—in terms of ∆-common knowledge of a T -prefix of the ledger.
What does this tell us in terms of what we can use a blockchain protocol for?

First, note that neither consistency or growth tell us anything about how player can add content to a
ledger. In [2, 11] an additional property, referred to as ∆′-liveness, is defined, which, roughly speaking,
stipulates that if an honest player wants to add some message to the ledger, it will appear there within
∆′ time. We can easily characterize this property by adding appropriate primitive propositions to the
language.

A more interesting question relates to when ∆-common knowledge suffices for applications such
as, for example, contract signing. Consider a simple game-theoretic model to illustrate some of the
subtleties. We have two players, and a third entity, the judge. For simplicity, assume that the system
is synchronous. (We can easily extend these ideas to asynchronous systems, but there are a number of
minor subtleties that are orthogonal to the main points we want to present, so we stick to synchronous
systems here.) In each round, each player observes the contents of her ledger and either signs the contract
or waits.

The utility of the players is defined as follows:

• If event E happens on some T -prefix of the judge’s ledger (where, formally, an event E is just a set
of prefixes of ledgers, and E happens on a T -prefix L′ if L′ ∈ E) and both players sign the contract
within ∆̃≥ 2∆ steps of E happening (on the judge’s ledger) for the first time, then both players get
some “high” utility.

• If one player signs and the other does not, the signing player gets utility −∞, and the non-signer
gets utility 0. If nobody ever signs the contract, both players get utility 0.

• Finally, a player who signs the contract without event E happening on a T -prefix of the judge’s
ledger within ∆̃ steps gets utility −∞.

334 A Knowledge-Based Analysis of the Blockchain Protocol

Intuitively, the game models a situation where, based on the content of a ledger (and in particular, whether
the event E happens on a T -prefix of the ledger), players both want to sign a contract, but only if 1) the
event actually happened, and 2) both players actually sign fast enough after the event happening.

If this game is played in the presence of a blockchain protocol that satisfies T -consistency and ∆-
growth, then it is clearly a Nash equilibrium for players to sign the contract whenever E happens on some
T -prefix of their ledger: by ∆-weak growth, the ledger of the other player will be at least as long within ∆

time, so by T -consistency, E will also hold in his T -prefix; finally, by ∆-weak growth and T -consistency,
this could have happened at most ∆ time ago for the judge. Thus, both players will sign within ∆ time of
each other and this must happen within 2∆-steps of when E first happens on some T -prefix of the judge’s
ledger. The key point is that when E first happens on the judge’s ledger, it is ∆̃-common knowledge that
it has happened and that, within at most ∆̃, it will be on some T -prefix of the judge’s ledger. It is easy to
check that this property suffices to guarantee that signing when they know that E has happened will give
both players high utility. There is a sense in which this condition is necessary. Suppose that we build a
contract-signing protocol on top of another protocol that handles knowledge dissemination (which, for
us, is a blockchain protocol). Roughly speaking, this means that the contract-signing protocol does not
affect the agents’ knowledge about E. Then, if we assume that if E has not yet happened, then both
players assign positive probability to E never happening, the knowledge-dissemination protocol has to
guarantee this level of knowledge for the contract-signing protocol to be able to guarantee the agents
high utility when E does happen. (We make this precise in the full paper.)

Note that in this game, the “actions” (i.e., whether to sign) in the game are external to the blockchain
protocol and utilities are defined based on these external actions. If we had used a blockchain protocol
that also satisfies ∆′-liveness, we could have defined utility only as a function of the judge’s ledger:
instead of playing the action S, the players get to interact with the ledger and can add content to it;
“signing a contract” now means adding a digitally signed version of the contract to the ledger. The judge
gives both players high utility if versions of the contract digitally signed by each of them appear on the
judge’s ledger within some appropriate time ∆̃′ after E first happens on some T -prefix of the judge’s
ledger.

An alternative way to model this game would be to instead require the digital signatures to arrive on
the judge’s ledger within some T ′ blocks after event E first happens. If a blockchain protocol satisfies
an additional property referred to as the chain-growth upper bound [11], which stipulates that length of
a ledger cannot grow too fast (so that the signed contract will not be prevented from appearing on the
judge’s ledger within T ′ blocks by being “crowded out” by other transactions), then the same argument
also applies to such situations. (It is straightforward to also characterize this chain-growth upper bound
property in a logic with appropriate primitive propositions.)

An appealing feature of the final model is that whether the contract is deemed “successfully signed”
is now itself a property of the (judge’s) ledger, and thus, by our result, whenever the successful signing
happens, it becomes ∆-common knowledge, independent of the signing strategy; in particular, there is no
longer a need for the judge! One other point worth making: although we have considered a system with
only two agents, we may further want to require that if other (honest) agents enter the system, they will
also agree that the contract has been signed (and the original two agents get −∞ if this is not the case).
In that case, we need ∆-2 common knowledge, not just ∆-common knowledge.

As this discussion shows, consistency and growth are themselves not sufficient for applications of
blockchain protocols to contracts. Once we add appropriate additional properties (such as liveness and a
chain-growth upper bound), we can use our characterization for non-trivial applications within contract
signing. We leave open the question of better understanding the properties needed for different types of
contracts being executed using a blockchain protocol.

J. Y. Halpern & R. Pass 335

Acknowledgements

We thank Ron van der Meyden for useful comments. Halpern was supported in part by NSF grant CCF-
1214844, AFOSR grant FA9550-12-1-0040, and ARO grants W911NF-14-1-0017 and W911NF-16-1-
0397. Pass was supported in part by a Microsoft Research Faculty Fellowship, NSF CAREER Award
CCF-0746990, NSF grant CCF-1214844, AFOSR Award FA9550-12-1-0040, and BSF Grant 2006317.

References
[1] R. Fagin, J. Y. Halpern, Y. Moses & M. Y. Vardi (1995): Reasoning About Knowledge. MIT Press, Cam-

bridge, MA. A slightly revised paperback version was published in 2003.
[2] J. Garay, A. Kiayias & N. Leonardos (2015): The bitcoin backbone protocol: Analysis and applications. In:

Advances in Cryptology-EUROCRYPT 2015, Springer, pp. 281–310, doi:10.1007/978-3-662-46803-6 10.
[3] A. J. Grove (1995): Naming and identity in epistemic logic II: a first-order logic for naming. Artificial

Intelligence 74(2), pp. 311–350, doi:10.1016/0004-3702(95)98593-D.
[4] A. J. Grove & J. Y. Halpern (1993): Naming and identity in epistemic logics, Part I: the propositional case.

Journal of Logic and Computation 3(4), pp. 345–378, doi:10.1093/logcom/3.4.345.
[5] J. Y. Halpern & Y. Moses (1990): Knowledge and common knowledge in a distributed environment. Journal

of the ACM 37(3), pp. 549–587, doi:10.1145/79147.79161.
[6] J. Y. Halpern, Y. Moses & O. Waarts (2001): A characterization of eventual Byzantine agreement. SIAM

Journal on Computing 31(3), pp. 838–865, doi:10.1137/S0097539798340217.
[7] J. Y. Halpern & M. R. Tuttle (1993): Knowledge, probability, and adversaries. Journal of the ACM 40(4),

pp. 917–962, doi:10.1145/153724.153770.
[8] Y. Moses & Y. Shoham (1993): Belief as defeasible knowledge. Artificial Intelligence 64(2), pp. 299–322,

doi:10.1016/0004-3702(93)90107-M.
[9] Y. Moses & M. R. Tuttle (1988): Programming simultaneous actions using common knowledge. Algorithmica

3, pp. 121–169, doi:10.1007/BF01762112.
[10] S. Nakamoto (2008): Bitcoin: A peer-to-peer electronic cash system. Http://www.bitcoin.org/bitcoin.pdf.
[11] R. Pass, L. Seeman & A. Shelat (2017): Analysis of the blockchain protocol in asynchronous networks. In:

Eurocrypt, pp. 643–673, doi:10.1007/978-3-319-56614-6 22.
[12] R. Pass & E. Shi (2016): FruitChains: a fair blockchain. Cryptology ePrint Archive, Report 2016/916.

http://eprint.iacr.org/2016/916.
[13] R. Pass & E. Shi (2016): Hybrid consensus. http://eprint.iacr.org/2016/917.

http://dx.doi.org/10.1007/978-3-662-46803-6_10
http://dx.doi.org/10.1016/0004-3702(95)98593-D
http://dx.doi.org/10.1093/logcom/3.4.345
http://dx.doi.org/10.1145/79147.79161
http://dx.doi.org/10.1137/S0097539798340217
http://dx.doi.org/10.1145/153724.153770
http://dx.doi.org/10.1016/0004-3702(93)90107-M
http://dx.doi.org/10.1007/BF01762112
http://dx.doi.org/10.1007/978-3-319-56614-6_22
http://eprint.iacr.org/2016/916
http://eprint.iacr.org/2016/917

	1 Introduction
	2 Runs, systems, and knowledge: a review
	3 Blockchain properties
	4 A temporal characterization of blockchain protocols
	5 —common knowledge and indexical sets
	6 Adding probability to the framework
	7 Discussion

