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Categorization systems are widely studied in psychology, sociology, and organization theory as

information-structuring devices which are critical to decision-making processes. In the present paper,

we introduce a sound and complete epistemic logic of categories and agents’ categorical perception.

The Kripke-style semantics of this logic is given in terms of data structures based on two domains:

one domain representing objects (e.g. market products) and one domain representing the features of

the objects which are relevant to the agents’ decision-making. We use this framework to discuss

and propose logic-based formalizations of some core concepts from psychological, sociological, and

organizational research in categorization theory.

1 Introduction

Categories (understood as types of collective identities for broad classes of objects or of agents) are the

most basic cognitive tools, and are key to the use of language, the construction of knowledge and iden-

tity, and the formation of agents’ evaluations and decisions. The literature on categorization is expanding

rapidly, motivated by–and in connection with–the theories and methodologies of a wide range of fields

in the social sciences and AI. For instance, in linguistics, categories are central to the mechanisms of

grammar generation [7]; in AI, classification techniques are core to pattern recognition, data mining,

text mining and knowledge discovery in databases; in sociology, categories are used to explain the con-

struction of social identity [21]; in management science, categories are used to predict how products and

producers will be perceived and evaluated by consumers and investors [20, 24, 37, 31, 1].

In [4], we proposed the framework of a positive (i.e. negation-free and implication-free) normal

multi-modal logic as an epistemic logic of categories and agents’ categorical perception, and discussed

its algebraic and Kripke-style semantics. In the present paper, we introduce a simpler and more general

framework than [4], in which the (rather technical) restrictions on the Kripke-style models of [4] are

dropped. We use this logical framework to formalize core notions developed and applied in the fields
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mentioned above, with a focus on those relevant to management science, as a step towards building

systematic connections between modern categorization theory and epistemic logic.

Structure of the paper. In Section 2, we briefly review the main views on the foundations of catego-

rization theory together with the formal approaches inspired by some of these views. In Section 3, we

discuss the basic framework of the epistemic logic of categories. We introduce its refined Kripke-style

semantics and axiomatization, together with two language enrichments involving a common knowledge-

type construction and hybrid-style nominal (and co-nominal) variables, respectively. In Section 4, we

discuss a number of core categorization-theoretic notions from business science and our proposed for-

malizations of them. In Section 5, we discuss further directions. In the appendix (Section A), we discuss

the soundness and completeness of the logics introduced in Section 3.

2 Categorization: foundations and formal approaches

In the present section we review the main views, insights, and approaches to the foundations of catego-

rization theory and to the formal models capturing these. Our account is necessarily incomplete. We

refer the reader to [2] for an exhaustive overview.

2.1 Extant foundational approaches

The literature on the foundations of categorization theory displays a variety of definitions, theories,

models, and methods, each of which capturing some key facets of categorization. The classical theory

of categorization [35] goes back to Aristotle, and is based on the insight that all members of a category

share some fundamental features which define their membership. Accordingly, categorization is viewed

as a deductive process of reasoning with necessary and sufficient conditions, resulting in categories with

sharp boundaries, which are represented equally well by any of their members. The classical view has

inspired influential approaches in machine learning such as conceptual clustering [11]. However, this

view runs into difficulties when trying to accommodate a new object or entity which would intuitively

be part of a given category but does not share all the defining features of the category. Other difficulties,

e.g. providing an exhaustive list of defining features, unclear cases, and the existence of members of

given categories which are judged to be better representatives of the whole class than others, motivated

the introduction of prototype theory [26, 34]. This theory regards categorization as the inductive process

of finding the best match between the features of an object and those of the closest prototype(s). Prototype

theory addresses the above mentioned problems of the classical theory by relaxing the requirement that

membership be decided through the satisfaction of an exhaustive list of features. It allows for unclear

cases and embraces the empirically verified intuition that people regard membership in most categories

as a matter of degrees, with certain members being more central (or prototypical) than others. (For

instance, robins are regarded as prototypical birds, while penguins are not.) To account for how an ex-

ante prototype is generated in the mind of agents, the exemplar theory [36] was proposed, according

to which individuals make category judgments by comparing new stimuli with instances already stored

in memory (the “exemplars”). However, the existence of instances or prototypes of a given category

presupposes that this category has already been defined. Hence, both the prototype and the exemplar

view run into a circularity problem. Moreover, it has been argued that similarity-based theories of cate-

gorization (such as the prototype and the exemplar view) fail to address the problem of explaining ‘why

we have the categories we have’, or, in other words, why certain categories seem to be more cogent and
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coherent than others. Even more fundamentally, similarity might be imposed rather than discovered (do

things belong in the same category because they are similar, or are they similar because they belong

in the same category?), i.e. similarity might be the effect of conceptual coherence rather than its cause.

Pivoting on the notion of coherence for category-formation, the theory-based view on categorization

[29] posits that categories arise in connection with theories (broadly understood so as to include also

informal explanations). For instance, ice, water and steam can be grouped together in the same category

on the basis of the theory of phases in physical chemistry. The coherence of categories proceeds from

the coherence of the theories on which they are based. This view of categorization allows one to group

together entities which would be scored as dissimilar using different methods; for instance, it allows to

group together a gold watch, the school report of one’s grandfather, and the ownership of a piece of land

in the category of “things one wants one’s children to inherit”, which is based on one’s theory of what

family is. However, the theory-based view does not account for the intuition that categories themselves

are the building blocks of theory-formation, which again results in a circularity problem. Summing up,

the extant views on categorization (the classical [35], prototype [26, 34], exemplar [36], and theory-

based [29]) are difficult to reconcile and merge into a satisfactory overarching theory accommodating all

the insights into categorization that researchers in the different fields have been separately developing.

The present paper is one of the first steps of a research program aimed at clarifying notions developed

independently, and at developing a common ground which can hopefully facilitate the build-up of such

a theory.

2.2 Extant formal approaches

Conceptual spaces. The formal approach to the representation of categories and concepts which is

perhaps the most widely adopted in social science and management science is the one introduced by

Gärdenfors, which is based on conceptual spaces [15]. These are multi-dimensional geometric struc-

tures, the components of which (the quality dimensions) are intended to represent basic features –

e.g. colour, pitch, temperature, weight, time, price – by which objects (represented as points in the

product space of these dimensions) can be meaningfully compared. Each dimension is endowed with

its appropriate geometric (e.g. metric, topological) structure. Concept-formation in conceptual spaces is

modelled according to a similarity-based view of concepts. Specifically, if each dimension of a concep-

tual space has a metric, these metrics translate in a notion of distance between the objects represented

in the space, which models their similarity, so that the closer their distance, the more similar they are.

Concepts (i.e. formal categories) are represented as convex sets of the conceptual space1. The geometric

center of any such concept is a natural interpretation of the prototype of that concept.

Formal Concept Analysis. A very different approach, Formal Concept Analysis (FCA) [14], is a

method of data analysis based on Birkhoff’s representation theory of complete lattices [8]. In FCA,

databases are represented as formal contexts, i.e. structures (A,X , I) such that A and X are sets, and

I ⊆ A×X is a binary relation. Intuitively, A is understood as a collection of objects, X as a collection of

features, and for any object a and feature x, the tuple (a,x) belongs to I exactly when object a has feature

x. Every formal context (A,X , I) can be associated with the collection of its formal concepts, i.e. the

tuples (B,Y ) such that B ⊆ A, Y ⊆ X , and B×Y is a maximal rectangle included in I. The set B is the

extent of the formal concept (B,Y ), and Y is its intent. Because of maximality, the extent of a formal

1A subset is convex if it includes the segments between any two of its points. In the Euclidian plane, squares are convex

while stars are not.
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concept uniquely identifies and is identified by its intent. Formal concepts can be partially ordered;

namely, (B,Y ) is a subconcept of (C,Z) exactly when B⊆C, or equivalently, when Z ⊆Y . Ordered in this

way, the concepts of a formal context form a complete lattice (i.e., the least upper bound and the greatest

lower bound of every collection of formal concepts exist), and by Birkhoff’s theorem, every complete

lattice is isomorphic to some concept lattice. The link established by FCA between complete lattices

and the formalization of concepts (or categories) captures an aspect of categories which is very much

highlighted in the categorization theory literature. Namely, categories never occur in isolation; rather,

they arise in the context of categorization systems (e.g. taxonomies), which are typically organized in

hierarchies of super- (i.e. less specified) and sub- (i.e. more specified) categories. While most approaches

identify concepts with their extent, in FCA, intent and extent of a concept are treated on a par, i.e., the

intent of a concept is just as essential as its extent. While FCA has tried to connect itself with various

cognitive and philosophical theories of concept-formation, it is most akin to the classical view.

Formal concepts as modal models. In [4], we first established a connection between FCA and modal

logic, based on the idea that (enriched) formal contexts can be taken as models of an epistemic modal

logic of categories/concepts. Formulas of this logic are constructed out of a set of atomic variables us-

ing the standard positive propositional connectives ∧,∨,⊤,⊥, and modal operators �i associated with

each agent i ∈ Ag. The formulas so generated do not denote states of affairs (to which a truth-value can

be assigned), but categories or concepts. In this modal language, as usual, it is easy to distinguish the

‘objective’ or factual information (stored in the database), encoded in the formulas of the modal-free frag-

ment of the language, and the agents’ subjective interpretation of the ‘objective’ information, encoded

in formulas in which modal operators occur. In this language, we can talk about e.g. the category that

according to Alice is the category that according to Bob is the category of Western movies. This makes

it possible to define fixed points of these regressions, similarly to the way in which common knowledge

is defined in classical epistemic logic [10]. Intuitively, these fixed points represent the stabilization of a

process of social interaction; for instance, the consensus reached by a group of agents regarding a given

category.

Models for this logic are formal contexts (A,X , I) enriched with an extra relation Ri ⊆ A×X for each

agent (intuitively, for every object a ∈ A and every feature x ∈ X , we read aRix as ‘object a has feature

x according to agent i’. Hence, while the relation I represents reality as is recorded in the database

represented by the formal context (A,X , I), each relation Ri represents as usual the subjective view of the

corresponding agent i about objects and their features, and is used to interpret �i-formulas.

This logic arises and has been studied in the context of unified correspondence theory [5], and allows

one to relate, via Sahlqvist-type results, sentences in the first-order language of enriched formal contexts

(expressing low-level, concrete conditions about objects and features) with inequalities ϕ ≤ ψ , where

ϕ and ψ are formulas in the modal language above, expressing high-level, abstract relations about cate-

gories and how they are perceived and understood by different agents. In the next section, we expand on

the relevant definitions and background facts about this logic.

3 Epistemic logic of categories

Basic logic and intended meaning. Let Prop be a (countable or finite) set of atomic propositions and

Ag be a finite set (of agents). The basic language L of the epistemic logic of categories is

ϕ :=⊥ | ⊤ | p | ϕ ∧ϕ | ϕ ∨ϕ |�iϕ ,
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where p ∈ Prop. As mentioned above, formulas in this language are terms denoting categories (or

concepts). Atomic propositions provide a vocabulary of category labels, such as music genres (e.g. jazz,

rock, rap), movie genres (e.g. western, drama, horror), supermarket products (e.g. milk, dairy products,

fresh herbs). Compound formulas ϕ ∧ϕ and ϕ ∨ψ respectively denote the greatest common subcategory

and the smallest common supercategory of ϕ and ψ . For a given agent i ∈ Ag, the formula �iϕ denotes

the category ϕ , according to i. At this stage we are deliberately vague as to the precise meaning of

‘according to’. Depending on the properties of �i, the formula �iϕ might denote the category known, or

perceived, or believed to be ϕ by agent i. The basic, or minimal normal L -logic is a set L of sequents

ϕ ⊢ ψ (which intuitively read “ϕ is a subcategory of ψ”) with ϕ ,ψ ∈ L , containing the following

axioms:

• Sequents for propositional connectives:

p ⊢ p, ⊥ ⊢ p, p ⊢ ⊤,

p ⊢ p∨q, q ⊢ p∨q, p∧q ⊢ p, p∧q ⊢ q,

• Sequents for modal operators:

⊤ ⊢�i⊤ �i p∧�iq ⊢�i (p∧q)

and closed under the following inference rules:

ϕ ⊢ χ χ ⊢ ψ

ϕ ⊢ ψ

ϕ ⊢ ψ

ϕ (χ/p) ⊢ ψ (χ/p)

χ ⊢ ϕ χ ⊢ ψ

χ ⊢ ϕ ∧ψ

ϕ ⊢ χ ψ ⊢ χ

ϕ ∨ψ ⊢ χ

ϕ ⊢ ψ

�iϕ ⊢�iψ

Thus, the modal fragment of L incorporates the viewpoints of individual agents into the syllogistic rea-

soning supported by the propositional fragment of L. By an L -logic, we understand any extension of L

with L -axioms ϕ ⊢ ψ .

Interpretation in enriched formal contexts. Let us discuss the structures which play the role of

Kripke frames.2 An enriched formal context is a tuple

F= (P,{Ri | i ∈ Ag})

such that P= (A,X , I) is a formal context, and Ri ⊆ A×X for every i ∈ Ag, satisfying certain additional

properties which guarantee that their associated modal operators are well defined (cf. Definition 2). As

mentioned above, formal contexts represent databases of market products (the elements of the set A),

relevant features (the elements of the set X ), and an incidence relation I ⊆ A×X (so that aIx reads:

“market product a has feature x”). In addition, enriched formal contexts contain information about the

epistemic attitudes of individual agents, so that aRix reads: “market product a has feature x according

to agent i”, for any i ∈ Ag. A valuation on F is a map V : Prop → P (A)×P (B), with the restriction

that V (p) is a formal concept of P= (A,X , I), i.e., every p ∈ Prop is mapped to V (p) = (B,Y ) such that

B ⊆ A, Y ⊆ X , and B×Y is maximal rectangle contained in I. For example, if p is the category-label

denoting western movies, and P is a given database of movies (stored in A) and movie-features (stored in

X ), then V interprets the category-label p in the model M = (F,V ) as the formal concept (i.e. semantic

category) V (p) = (B,Y ), specified by the set of movies B (i.e. the set of western movies of the database)

2Details can be found in Section A.
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and by the set of movie-features Y (i.e. the set of features which all western movies have). The elements

of B are the members of category p in M; the elements of Y describe category p in M. The set B (resp. Y )

is the extension (resp. the description) of p in M, and sometimes we will denote it [[p]]M (resp. ([p])M) or

[[p]] (resp. ([p])) when it does not cause confusion. Alternatively, we write:

M,a  p iff a ∈ [[p]]M
M,x ≻ p iff x ∈ ([p])M

and we read M,a  p as “a is a member of p”, and M,x ≻ p as “x describes p”. The interpretation of

atomic propositions can be extended to propositional L -formulas as follows:

M,a ⊤ always

M,x ≻⊤ iff aIx for all a ∈ A

M,x ≻⊥ always

M,a ⊥ iff aIx for all x ∈ X

M,a  ϕ ∧ψ iff M,a  ϕ and M,a  ψ
M,x ≻ ϕ ∧ψ iff for all a ∈ A, if M,a  ϕ ∧ψ , then aIx

M,x ≻ ϕ ∨ψ iff M,x ≻ ϕ and M,x ≻ ψ
M,a  ϕ ∨ψ iff for all x ∈ X , if M,x ≻ ϕ ∨ψ , then aIx

Hence, in each model, ⊤ is interpreted as the category generated by the set A of all objects, i.e. the

widest category and hence the one with the laxest (possibly empty) description; ⊥ is interpreted as the

category generated by the set X of all features, i.e. the smallest (possibly empty) category and hence

the one with the most restrictive description; ϕ ∧ψ is interpreted as the semantic category generated

by the intersection of the extensions of ϕ and ψ (hence, the description of ϕ ∧ψ certainly includes

([ϕ ])∪ ([ψ ]) but is possibly larger). Likewise, ϕ ∨ψ is interpreted as the semantic category generated

by the intersection of the intensions of ϕ and ψ (hence, objects in [[ϕ ]]∪ [[ψ ]] are certainly members of

ϕ ∨ψ but there might be others). As to the interpretation of modal formulas:

M,a �iϕ iff for all x ∈ X , if M,x ≻ ϕ , then aRix

M,x ≻�iϕ iff for all a ∈ A, if M,a �ϕ , then aIx.

Thus, in each model, �iϕ is interpreted as the category whose members are those objects to which agent

i attributes every feature in the description of ϕ . Finally, as to the interpretation of sequents:

M |= ϕ ⊢ ψ iff for all a ∈ A, if M,a  ϕ , then M,a  ψ .

Adding ‘common knowledge’. In [4], we observed that the environment described above is naturally

suited to capture not only the factual information and the epistemic attitudes of individual agents, but also

the outcome of social interaction. To this effect, we introduce an expansion LC of L with a common

knowledge-type operator C. Given Prop and Ag as above, the language LC of the epistemic logic of

categories with ‘common knowledge’ is:

ϕ :=⊥ | ⊤ | p | ϕ ∧ϕ | ϕ ∨ϕ |�iϕ |C (ϕ) .

C-formulas are interpreted in models as follows:

M,a C (ϕ) iff for all x ∈ X , if M,x ≻ ϕ , then aRCx

M,x ≻C (ϕ) iff for all a ∈ A, if M,a C (ϕ), then aIx,

where RC ⊆ A×X is defined as RC =
⋂

s∈S Rs, and Rs ⊆ A×X is the relation associated with the modal

operator �s := �i1 · · ·�in for any element s = i1 · · · in in the set S of finite sequences of elements of Ag

(cf. Section A.2).
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The basic logic of categories with ‘common knowledge’ is a set LC of sequents ϕ ⊢ ψ , with ϕ ,ψ ∈
LC, which contains the axioms and is closed under the rules of L, and in addition contains the following

axioms:

⊤ ⊢C (⊤) C (p)∧C (q) ⊢C (p∧q) C (p) ⊢
∧

{�i p∧�iC (p) | i ∈ Ag}

and is closed under the following inference rules:

ϕ ⊢ ψ

C (ϕ) ⊢C (ψ)

χ ⊢
∧

i∈Ag�iϕ {χ ⊢�iχ | i ∈ Ag}

χ ⊢C (ϕ)

Hybrid expansions of the basic language. In several settings, it is useful to be able to talk about

given objects (market-products) or given features. To this purpose, the languages L or LC can be

further enriched with dedicated sets of variables in the style of hybrid logic. Let Prop be a (countable

or finite) set of atomic propositions and Ag be a finite set (of agents). Given Prop and Ag as above, and

(countable or finite) sets Nom and Cnom (of nominals and conominals respectively), the language LH

of the hybrid logic of categories is:

ϕ :=⊥ | ⊤ | p | a | x | ϕ ∧ϕ | ϕ ∨ϕ |�iϕ ,

where i ∈ Ag, p ∈ Prop, a ∈ Nom and x ∈ Cnom. A hybrid valuation on an enriched formal concept

F maps atomic propositions to formal concepts, nominal variables to the formal concepts generated by

single elements of the object domain A, and conominal variables to formal concepts generated by single

elements of the feature domain X . If V (a) is the semantic category generated by a ∈ A, and V (x) is the

semantic category generated by x ∈ X , then nominal and co-nominal variables are interpreted as follows:

M,y ≻ a iff aIy,

M,b  a iff for all y ∈ X , if aIy then bIy

M,b  x iff bIx

M,y ≻ x iff for all b ∈ A, if bIx then bIy.

4 Core concepts and proposed formalizations

In the present section, we use the languages L , LH and LC discussed in the previous section to capture

some core notions and properties about categories, appearing and used in the literature in management

science, which we discuss in the next subsection.

4.1 Core concepts

A core issue in management science is how to predict the success of a new market-product, or of a

given firm over its competitors. Success clearly depends on whether the agents in the relevant audiences

decide to buy the product or become clients of the firm, and a key factor in this decision is how each

agent resolves a categorization problem. The ease with which products or firms are categorized affects

in itself the decision-making, because the more difficult it is to categorize a product or a firm, the higher

the cognitive burden and the perceived risk of the decision. This is why research has focused on the

performances of category-spanning products or firms (i.e. products or firms which are members of more

than one category). While being a member of more than one category can increase visibility and aware-

ness, because audiences interested in any of these categories may pay attention to something which is
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also in that category, it usually lowers the success. However, the actual effects of spanning categories

will depend on the properties of the categories that are spanned. The core concepts of categorization

theory denote characteristics of categories or of the relation between categories that can be understood

to decrease or increase the effects of spanning categories with these particular characteristics.

Typicality. The issue of whether an object a is a typical member of a given category ϕ , or to which

extent a is typical of ϕ , is core to the similarity-based views of category-formation [26, 34, 36]. As

mentioned in Section 2.2, in conceptual spaces, the prototype of a formal concept is defined as the

geometric center of that concept, so that the closer (i.e. more similar) any other object is to the prototype,

the stronger its typicality. While this formalization is visually very appealing, it does not shed much light

on the role of the agents in establishing the typicality of an object relative to a category.

Distance. The distance between two categories can be defined in different ways. One approach [23]

is to express it as a negative exponential function of the categories’ similarity, where the categories’

similarity is calculated using a Jaccard index, i.e., cardinality of the intersection over cardinality of the

union. Another approach [33] is to take the Hausdorff distance between the sets in feature space that

correspond to the categories. The Hausdorff distance is the maximum of the two minimal point-to-set

distances.

Contrast. Contrast is defined as the extent to which a category stands out from other categories in the

same domain. It is a function of the mean typicality of objects in the category. In a high-contrast category,

objects tend to be either very typical members of the category or not members at all [18]. Objects in a

high-contrast category tend to be more recognizable to agents and more positively valued [30]. Category

spanning leads to greater penalties if the spanned categories have higher contrast [22].

Leniency. By definition of contrast, members of a low-contrast category ϕ have on average low typ-

icality in that category. This situation is compatible with each of the following alternatives: (a) there

are many categories which (according to agents) have members in common with ϕ , (b) there are not

many categories which (according to agents) have members in common with ϕ . The notion of leniency

clarifies this issue. The leniency of ϕ is defined as the extent to which the members of ϕ are (recognized

as) only members of ϕ (and of the other logically unavoidable categories), and not of other categories

[32].

4.2 Formalizations

The following proposals are not equivalent to the definitions discussed in the previous subsection, but try

to capture their purely qualitative content.

Typicality. The interpretation of C-formulas on models indicates that, for every category ϕ , the mem-

bers of C(ϕ) are those objects which are members of ϕ according to every agent, and moreover, ac-

cording to every agent, are attributed membership in ϕ by every (other) agent, and so on. This provides

justification for our proposal to regard the members of C(ϕ) as the (proto)typical members of ϕ . The

main feature of this proposal is that it is explicitly based on the agents’ viewpoints. This feature is com-

patible with empirical methodologies adopted to establish graded membership (cf. [19]). Notice that

there is a hierarchy of reasons why a given object fails to be a typical member of ϕ , the most severe
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being that some agents do not recognize its membership in ϕ , followed by some agents not recognizing

that any other agent would recognize it as a member of ϕ , and so on. This observation provides a purely

qualitative route to encode the gradedness of (the recognition of) category-membership. That is, two

non-typical objects3 a and b can be compared in terms of the minimum number of ‘epistemic iterations’

needed for their typicality test to fail, so that b is more atypical than a if fewer rounds are needed for b

than for a. This definition can be readily adapted so as to say that b is a more atypical member of ψ than

a is of ϕ .

Distance. For four categories ϕ ,ψ ,χ ,ξ , we can say that ϕ is closer to ψ than χ is to ξ by means of the

sequent ϕ∨ψ ⊢ ξ ∨χ , the sequent ξ ∧χ ⊢ϕ∧ψ , or by requiring the two sequents to hold simultaneously.

The first sequent says that ϕ and ψ have more features in common than ξ and χ have; the second sequent

says that ϕ and ψ have more common members than ξ and χ have. Notice that neither the first sequent

implies or is implied by the second. This is why it might be useful to consider the information encoded

in both sequents. When instantiated to ϕ = ξ , these conditions can be used to express that ϕ is closer to

ψ than to χ .

Contrast. If ϕ ⊢ C(ϕ) holds for a category ϕ , every member of ϕ is a typical member of ϕ , in the

sense discussed above, and hence ϕ has maximal contrast. Using the formalizations of typicality and

distance discussed above, we say that ϕ has equal or higher contrast than ψ if ϕ is closer to C(ϕ) than

ψ is to C(ψ).4

Leniency. A category ϕ has no leniency if its members do not simultaneously belong to other cate-

gories. This property can be captured by the following condition: for any ψ and χ , if ψ ⊢ ϕ and ψ ⊢ χ ,

then either ϕ ⊢ χ or χ ⊢ ϕ . To understand this condition, let us instantiate ψ as the nominal category a

(the category generated by one object). Then a ⊢ ϕ expresses that the generator of a is a member of ϕ .

The no-leniency of ϕ would require the generator a of a to not belong to other categories. However, the

nature of the present formalization constrains a to be a member of every χ such that ϕ ⊢ χ , so a must

belong to these categories at least. Also, all the categories χ such that a ⊢ χ ⊢ ϕ cannot be excluded

either, since the possibility that ‘in-between’ categories exist does not depend purely on a and ϕ alone,

but depends on the context of other objects and features. Hence, we can understand no-leniency as the

requirement that no other categories have a as a member than those of this minimal set of categories

which cannot be excluded.

For two categories ϕ and ψ , we say that ϕ has greater or equal leniency than ψ if, for every nominal

a, if a ⊢ ψ and a ⊢ χ for some χ such that χ 0 ψ and ψ 0 χ , then a ⊢ ϕ and moreover, a ⊢ ξ for some

category ξ such that ξ 0 ϕ and ϕ 0 ξ . Variants of these conditions can be given also in terms of the

features (using conominal variables), and also in terms of the modal operators.

5 Conclusions and further directions

In this paper, we have introduced a basic epistemic logic of categories, expanded it with ‘common

knowledge’-type and ‘hybrid logic’-type constructs, and used the resulting framework to capture core

3represented in the language LH as nominal variables.
4That is, by either requiring that ϕ ∨C(ϕ) ⊢ ψ ∨C(ψ), or by requiring that ψ ∨C(ψ) ⊢ ϕ ∨C(ϕ), or by requiring both

sequents to hold.
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notions in categorization theory, as developed in management science. The logical formalizations pro-

posed in Section 4.2 try to capture the purely qualitative content of the original definitions. The essential

features of this logical framework make it particularly suitable to emphasize the different perspectives

of individual agents, and how these perspectives interact. The propositional base of these logics is the

positive (i.e. negation-free and implication-free) fragment of classical propositional logic (without dis-

tributivity laws). The Kripke-style semantics of this logic is given by structures known as formal contexts

in Formal Concept Analysis [14], which we have enriched with binary relations to account for the (epis-

temic) interpretation of the modal operators. One fundamental difference between this semantics and

the classical Kripke semantics for epistemic logics is that the relations directly encode the actual view-

point of the individual agents, and not their uncertainty or ignorance (aRix reads ‘object a has feature x

according to agent i).

This paper is still very much a first step, but it already shows how logic can contribute to the vast

interdisciplinary area of categorization theory, especially with regard to the analysis of various types of

social interaction (e.g. epistemic, dynamic, strategic). Interestingly, the prospective contributions involve

both technical aspects (some of which we discuss below) and conceptual aspects (since, as discussed in

Section 2, there is no single foundational theory or view which exhaustively accounts for all the relevant

aspects of categorization).

From RS-frames to arbitrary contexts. The present paper refines previous work [4], which provides

a conceptually independent explanation of the (rather technical) definition of the interpretation clauses

of L -formulas on certain enriched formal contexts. These clauses were obtainable as the outcome of

mechanical computations (cf. [6, Section 2.1.1], [4, Section A]) the soundness of which was guaranteed

by certain facts pertaining to the duality for perfect lattices (cf. [9, 16]). The treatment in Section 3

adapts these interpretation clauses to the more general and intuitively more natural category of arbitrary

(enriched) formal contexts and their morphisms [28].

Fixed points. One of the most interesting aspects of the present proposal is that typicality has been

captured with a ‘common knowledge’ operator. This operator is semantically equivalent to the usual

greatest fixed point construction (cf. Section A). This paves the way to the use of languages expanded

with fixed point operators to capture: for instance, as discussed in [3, Example 4], the formula νX .�i(X ∧
p) denotes the category obtained as the limit of a process of “introspection” (in which the agent reflects

on her perception of a given category p, and on her perception of her perception, and so on). A systematic

exploration of this direction is work in progress.

Proof calculi. The present framework makes it possible to blend together syllogistic and epistemic

reasoning. To further explore those aspects connected with reasoning and deduction in L and LC, specif-

ically designed proof calculi will be needed. These calculi will be useful tools to explore the computa-

tional properties of these logics; moreover, the conclusions of formal inferences can provide the basis

for the development of testable hypotheses. A proof-theoretic account of the basic logic L can be readily

achieved by augmenting the calculus developed in [17] for the propositional base with suitable rules for

the modal operators, so as to fall into the general theory of [12]. However, the proof theory of LC needs

to be investigated. The omega rules introduced in [13] might provide a template.

Dynamic epistemic logic of categories. An adequate formal account of the dynamic nature of cate-

gories is a core challenge facing modern categorization theory. Categories are cognitive tools that agents
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use as long as they are useful, which is why some categories have existed for millennia and others quickly

fade away. Categories shape and are shaped by social interaction. This bidirectional causality is essen-

tial to what categories are and do, and this is why the most important and challenging further direction

concerns how categories impact on social interaction and how social interaction changes agents’ catego-

rizations. One natural step in this direction is to expand the present framework with dynamic modalities,

and extend the construction of dynamic updates to models based on enriched formal contexts, as done

e.g. in [27, 25].
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Michal Zawidzki Andrzej Indrzejczak, Janusz Kaczmarek, editor: Trends in Logic XIII, Lodź University
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A Soundness and completeness

In Section A.1, we define I-compatible relations and give their properties. In Section A.2, we prove that

composition of I compatible relations is associative and that the interpretation of C is well-defined. In

Section A.3, we prove the soundness of the axioms given in Section 3. In Section A.4, we prove the

week completeness of the logics L and LC defined in Section 3.

A.1 I-compatible relations

In what follows, we fix two sets A and X , and use a,b (resp. x,y) for elements of A (resp. X ), and B,C,A j

(resp. Y,W,X j) for subsets of A (resp. of X ) throughout this section. For any relation S ⊆ A×X , let

S↑[B] := {x | ∀a(a ∈ B ⇒ aSx)} S↓[Y ] := {a | ∀x(x ∈ Y ⇒ aSx)}.

Well known properties of this construction (cf. [8, Sections 7.22-7.29]) are stated in the following lemma.

Lemma 1. 1. B ⊆C implies S↑[C]⊆ S↑[B], and Y ⊆W implies S↓[W ]⊆ S↓[Y ].

2. B ⊆ S↓[S↑[B]] and Y ⊆ S↑[S↓[Y ]].

3. S↑[B] = S↑[S↓[S↑[B]]] and S↓[Y ] = S↓[S↑[S↓[Y ]]].

4. S↓[
⋃

Y ] =
⋂

Y∈Y S↓[Y ] and S↑[
⋃

B] =
⋂

B∈B S↑[B].

For any formal context P = (A,X , I), we sometimes use B↑ for I↑[B], and Y ↓ for I↓[Y ], and say that

B (resp. Y ) is Galois-stable if B = B↑↓ (resp. Y = Y ↓↑). When B = {a} (resp. Y = {x}) we write a↑↓

for {a}↑↓ (resp. x↓↑ for {x}↓↑). Galois-stable sets are the projections of some maximal rectangle (formal

concept) of P. The following lemma collects more well known facts (cf. [8, Sections 7.22-7.29]):

Lemma 2. 1. B↑ and Y ↓ are Galois-stable.

2. B =
⋃

a∈B a↑↓ and Y =
⋃

y∈Y y↓↑ for any Galois-stable B and Y .

3. Galois-stable sets are closed under arbitrary intersections.

Proof. For item 2, since a↑↓ ⊇ {a}, we have that B ⊆
⋃

a∈B a↑↓. For the other direction, if {a} ⊆ B then

a↑↓ ⊆ B↑↓. Since B is Galois-stable, we have that B = B↑↓. Hence a↑↓ ⊆ B for any a ∈ B, which implies

that
⋃

a∈B a↑↓ ⊆ B. The proof for Y is analogous.

Definition 1. For any P = (A,X , I), any R ⊆ A×X is I-compatible if R↓[x] and R↑[a] are Galois-stable

for all x and a.

By Lemma 1 (3), I is an I-compatible relation.

Lemma 3. If R ⊆ A×X is I-compatible, then R↓[Y ] = R↓[Y ↓↑] and R↑[B] = R↑[B↑↓].

Proof. By Lemma 1 (2), we have Y ⊆ Y ↓↑, which implies R↓[Y ↓↑]⊆ R↓[Y ] by Lemma 1 (1). Conversely,

if a ∈R↓[Y ], i.e. Y ⊆ R↑[a], then Y ↓↑ ⊆ (R↑[a])↓↑ = R↑[a], the last identity holding since R is I-compatible.

Hence, a ∈ R↓[Y ↓↑], as required. The proof of the second identity is similar.

http://dx.doi.org/10.1016/j.scaman.2011.04.001
http://dx.doi.org/10.1016/j.scaman.2011.04.001
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Lemma 4. If R is I-compatible and Y is Galois-stable, then R↓[Y ] is Galois-stable.

Proof. Since Y =
⋃

y∈Y{y}, by Lemma 1 (4),

R↓[Y ] = R↓[
⋃

y∈Y

{y}] =
⋂

y∈Y

R↓[{y}] =
⋂

y∈Y

R↓[y]. (1)

By the I-compatibility of R, the last term is an intersection of Galois-stable sets, which is Galois-stable

(cf. Lemma 2 (3)).

The lemma above ensures that the interpretation of L -formulas on enriched formal contexts defines

a compositional semantics on formal concepts if the relations Ri are I-compatible. Indeed, for every

enriched formal context F= (P,{Ri | i ∈ Ag}), every valuation V on F extends to an interpretation map

of L -formulas defined as follows:

V (p) = ([[p]],([p])) V (ϕ ∧ψ) = ([[ϕ ]]∩ [[ψ ]],([[ϕ ]]∩ [[ψ ]])↑)
V (⊤) = (A,A↑) V (ϕ ∨ψ) = ((([ϕ ])∩ ([ψ ]))↓,([ϕ ])∩ ([ψ ]))

V (⊥) = (X↓,X) V (�iϕ) = (R↓
i [([ϕ ])],(R↓

i [([ϕ ])])↑)

By Lemma 4, if V (ϕ) is a formal concept, then so is V (�iϕ).

Definition 2. An enriched formal context F = (P,{Ri | i ∈ Ag}) is compositional if Ri is I-compatible

(cf. Definition 1) for every i ∈ Ag. A model M= (F,V ) is compositional if so is F.

A.2 The interpretation of C is well defined

For any formal context P = (A,X , I) the I-product of the relations Rs,Rt ⊆ A×X is the relation Rst ⊆
A×X defined as follows:

a ∈ R
↓
st [x] iff a ∈ R↓

s

[

I↑
[

R
↓
t [x

↓↑]
]]

.

Lemma 5. If Rs and Rt are I-compatible, then Rst is I-compatible.

Proof. R
↓
st [x] being Galois-stable follows from the definition of Rst , Lemma 4, and the I-compatibility of

Rs and Rt . To show that R
↑
st [a] is Galois-stable, i.e. (R↑

st [a])
↓↑ ⊆ R

↑
st [a], by Lemma 2 (2), it is enough to

show that if y ∈ R
↑
st [a] then y↓↑ ⊆ R

↑
st [a]. Let y ∈ R

↑
st [a], i.e. a ∈ R

↓
st [y] = R

↓
s

[

I↑
[

R
↓
t [y

↓↑]
]]

. If x ∈ y↓↑, then

x↓↑ ⊆ y↓↑, which implies, by the antitonicity of R
↓
s , I↑ and R

↓
t (cf. Lemma 1 (1)), that R

↓
s

[

I↑
[

R
↓
t [y

↓↑]
]]

⊆

R
↓
s

[

I↑
[

R
↓
t [x

↓↑]
]]

. Hence, a ∈ R
↓
st [x], i.e. x ∈ R

↑
st [a], as required.

The definition of I-product serves to characterize semantically the relation associated with the modal

operators �s :=�i1 · · ·�in for any finite nonempty sequence s := i1 · · · in ∈ S of elements of Ag, in terms

of the relations associated with each primitive modal operator. For any such s, let Rs be defined recur-

sively as follows:

• If s = i, then Rs = Ri;

• If s = it, then R
↓
s [x] = R

↓
i

[

I↑
[

R
↓
t

[

x↓↑
]

]]

.

Lemma 5 immediately implies that

Corollary 1. For every s ∈ S, the relation Rs is I-compatible.

Lemma 6. If Y is Galois-stable and Rs,Rt are I-compatible, then R
↓
st [Y ] = R

↓
s [I

↑[R↓
t [Y ]]].
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Proof.

R
↓
s [I

↑[R↓
t [Y ]]] = R

↓
s [I

↑[R↓
t [
⋃

x∈Y x↓↑]]] Lemma 2 (2)

= R
↓
s [I

↑[
⋂

x∈Y R
↓
t [x

↓↑]]] Lemma 1 (4)

= R
↓
s [I↑[

⋂

x∈Y I↓[I↑[R↓
t [x

↓↑]]]]] R
↓
t [x

↓↑] Galois-stable

= R
↓
s [I

↑[I↓[
⋃

x∈Y I↑[R↓
t [x

↓↑]]]]] Lemma 1 (4)

= R
↓
s [
⋃

x∈Y I↑[R↓
t [x

↓↑]]] Lemma 3

=
⋂

x∈Y R
↓
s [I↑[R

↓
t [x

↓↑]]] Lemma 1 (4)

=
⋂

x∈Y R
↓
st [x] Definition of Rst

= R
↓
st [
⋃

x∈Y x] Lemma 1 (4)

= R
↓
st [Y ] Y =

⋃

x∈Y x

Lemma 7. If Rs,Rt ,Rw are I-compatible, Rs(tw) = R(st)w.

Proof. for any x,

R
↓
s(tw)[x] = R

↓
s [I

↑[R↓
tw[x

↓↑]]] definition of I-product

= R
↓
s [I

↑[R↓
t [I

↑[R↓
w[x

↓↑]]]]] Lemma 6

= R
↓
st [I

↑[R↓
w[x↓↑]]]. Lemma 6

= R
↓
(st)w[x] definition of I-product

Let s = i1 · · · in ∈ S, and let �s :=�i1 · · ·�in .

Lemma 8. For any model M= (F,V ),

M,a �sϕ iff for all x ∈ X, if M,x ≻ ϕ , then aRsx

M,x ≻�sϕ iff for all a ∈ A, if M,a �sϕ , then aIx.

Proof. By induction on the length of s. The base case is immediate. Let s = it. Then [[�i�tϕ]] =

R
↓
i [([�tϕ])] = R

↓
i [I

↑[[[�tϕ]]]] = R
↓
i [I

↑[R↓
t [([ϕ ])]]] = R

↓
s [([ϕ ])]. The last equality holds by Lemma 6. The

second equivalence is trivially true.

Lemma 9. For any family R of I-compatible relations,

1.
⋂

R is an I-compatible relation.

2. (
⋂

R)↓[Y ] =
⋂

T∈R T ↓[Y ] for any Y ⊆ X.

Proof. Let R =
⋂

R. Then R↓[x] =
⋂

T∈R T ↓[x] and R↑[a] =
⋂

T∈R T ↑[a]. Then the statement follows

from Lemma 2 (3). As to item (2),
⋂

T∈R T ↓[Y ] =
⋂

T∈R T ↓[
⋃

y∈Y y] Y =
⋃

y∈Y y

=
⋂

T∈R

⋂

y∈Y T ↓[y] Lemma 1 (4)

=
⋂

y∈Y

⋂

T∈R T ↓[y] associativity, commutativity of
⋂

=
⋂

y∈Y (
⋂

R)↓[y] definition of (·)↓

= (
⋂

R)↓[
⋃

y∈Y y] Lemma 1 (4)

= (
⋂

R)↓[Y ]. Y =
⋃

y∈Y y



182 Toward an Epistemic-Logical Theory of Categorization

The lemmas above ensure that, in enriched formal contexts in which the relations Ri are I-compatible,

the relation RC :=
⋂

s∈S Rs is I-compatible, and hence the interpretation of LC-formulas on the model

based on these enriched formal contexts defines a compositional semantics on formal concepts. Indeed,

for every such enriched formal context F = (P,{Ri | i ∈ Ag}), every valuation V on F extends to an

interpretation map of C-formulas as follows:

V (C(ϕ)) = (R↓
C[([ϕ ])],(R↓

C[([ϕ ])])↑)

so that if V (ϕ) is a formal concept, then so is V (�iϕ). Moreover, the following identity is semantically

supported:

C(ϕ) =
∧

s∈S

�sϕ ,

where s := i1 · · · in is any finite nonempty string of elements of Ag, and �s :=�i1 · · ·�in .

A.3 Soundness

Proposition 1. For any compositional model M and any i ∈ Ag,

1. if M |= ϕ ⊢ ψ , then M |=�iϕ ⊢�iψ;

2. M |=⊤ ⊢�i⊤;

3. M |=�iϕ ∧�iψ ⊢�i(ϕ ∧ψ).

Proof. By Lemma 1 (1), if [[ϕ ]]⊆ [[ψ ]] then

[[�iϕ]] = R
↓
i [I

↑[[[ϕ ]]]]⊆ R
↓
i [I

↑[[[ψ ]]]] = [[�iψ ]],

which proves item (1). As to item (2), it is enough to show that [[�i⊤]] = A. By definition, [[�i⊤]] =

R
↓
i [([⊤])] =R

↓
i [A

↑], hence it is enough to show that R
↓
i [A

↑] =A. The assumption of I-compatibility implies

that R
↑
i [a] is Galois-stable for every a ∈A, and hence A↑ ⊆ R

↑
i [a]. Thus by adjunction a ∈R

↓
i [A

↑] for every

a ∈ A, which implies that R
↓
i [A

↑] = A, as required. As to item (3),

[[�(ϕ)∧�(ψ)]] = R↓[([ϕ ])]∩R↓[([ψ ])] definition of [[·]]
= R↓[([ϕ ])∪ ([ψ ])] Lemma 1 (4)

= R↓[I↑[I↓[([ϕ ])∪ ([ψ ])]]] Lemma 3

= R↓[I↑[I↓[([ϕ ])]∩ I↓[([ψ ])]]] Lemma 1 (4)

= R↓[I↑[[[ϕ ]]∩ [[ψ ]]]] V (ϕ),V (ϕ) formal concepts

= R↓[I↑[[[ϕ ∧ψ ]]]] definition of [[·]]
= [[�(ϕ ∧ψ)]]. definition of [[·]]

Proposition 2. For any compositional model M,

1. M |=C(ϕ) ⊢
∧

{�iϕ ∧�iC(ϕ) | i ∈ Ag};

2. if M |= χ ⊢
∧

i∈Ag�iϕ and M |= χ ⊢
∧

i∈Ag�iχ , then M |= χ ⊢C(ϕ).

Proof. By definition and Lemma 9 (2), [[C(ϕ)]] = R
↓
C[([ϕ ])] =

⋂

s∈S R
↓
s [([ϕ ])] ⊆

⋂

i∈Ag R
↓
i [([ϕ ])], which

proves M |= C(ϕ) ⊢
∧

{�iϕ | i ∈ Ag}. Let i ∈ Ag. The following chain of (in)equalities completes the

proof of item (1):
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[[�iC(ϕ)]] = R
↓
i [I

↑[R↓
C[([ϕ ])]]] definition of [[·]]

= R
↓
i [I

↑[
⋂

s∈S R
↓
s [([ϕ ])]]] Lemma 9 (2)

= R
↓
i [I

↑[
⋂

s∈S I↓[I↑[R↓
s [([ϕ ])]]]]] R

↓
s [([ϕ ])] Galois-stable

= R
↓
i [I

↑[I↓[
⋃

s∈S I↑[R↓
s [([ϕ ])]]]]] Lemma 1 (4)

= R
↓
i [
⋃

s∈S I↑[R↓
s [([ϕ ])]]] Lemma 3

=
⋂

s∈S R
↓
i [I

↑[R↓
s [([ϕ ])]]] Lemma 1 (4)

=
⋂

s∈S R
↓
is[([ϕ ])] Lemma 6

⊇
⋂

s∈S R
↓
s [([ϕ ])] {is | s ∈ S} ⊆ S

= [[C(ϕ)]]. Lemma 9 (2)

As to item (2), using Proposition 1 (1) and the assumptions, one can show that M |= χ ⊢�sϕ for every

s ∈ S. Hence, [[χ ]]⊆
⋂

s∈S R
↓
s [([ϕ ])] = R

↓
C[([ϕ ])] = [[C(ϕ)]], as required.

A.4 Completeness

The completeness of L can be proven via a standard canonical model construction. For any lattice L

with normal operators �i, let FL = (PL,{Ri | i ∈ Ag}) be defined as follows: PL = (A,X , I) where A

(resp. X ) is the set of lattice filters (resp. ideals) of L, and aIx iff a ∩ x 6= ∅. For every i ∈ Ag, let

Ri ⊆ A×X be defined by aRix iff if �iu ∈ a for some u ∈ L such that u ∈ x. In what follows, for any

a ∈ A and x ∈ X , we let �ix := {�iu ∈ L | u ∈ x} and �
−1
i a := {u ∈ L |�iu ∈ a}. Hence by definition,

R
↓
i [x] = {a | a∩�ix 6=∅} for any x ∈ X , and R

↑
i [a] = {x | x∩�

−1
i a 6=∅} for any a ∈ A. Notice also that

�i⊤=⊤ implies that �−1
i a = 6=∅ for every a ∈ A.

Lemma 10. For FL as above, and any a ∈ A, x ∈ X and i ∈ Ag,

1. I↑[R↓
i [x]] = {y ∈ X |�ix ⊆ y};

2. I↓[Ri[a]] = {b ∈ A |�−1
i a ⊆ b};

3. I↓[I↑[R↓
i [x]]] = {b ∈ A |�ix∩b 6=∅}= R

↓
i [x];

4. I↑[I↓[R↑
i [a]]] = {y ∈ X |�−1

i a∩ y 6=∅}= R
↑
i [a].

Proof. Items (1) and (2) immediately follow from the definitions of �ix and �
−1
i a. As to items (3)

and (4), from the previous items it immediately follows that I↓[I↑[R↓
i [x]]] = {b ∈ A | ⌈�ix⌉ ∩ b 6= ∅}

and I↑[I↓[R↑
i [a]]] = {y ∈ X | ⌊�−1

i a⌋ ∩ y 6= ∅}, where ⌈�ix⌉ and ⌊�−1
i a⌋ respectively denote the ideal

generated �ix and the filter generated by �
−1
i a. Then, using the monotonicity of �i, one can show that

{b ∈ A | ⌈�ix⌉∩ b 6= ∅} = {b ∈ A | �ix∩ b 6= ∅} = R
↓
i [x], and using the meet preservation of �i, one

can show that {y ∈ X | ⌊�−1
i a⌋∩ y 6=∅}= {y ∈ X |�−1

i a∩ y 6=∅}= R
↑
i [a], as required. Notice that the

last equality holds for every a ∈ A under the assumption that �−1
i a 6= ∅, which, as remarked above, is

guaranteed by �i being normal.

Items (3) and (4) of the lemma above immediately imply that:

Lemma 11. FL is a compositional enriched formal context (cf. Definition 2).

Recall that S is the set of nonempty finite sequences of elements of Ag.

Lemma 12. If x is the ideal generated by some u ∈ L, then, for every s ∈ S, R
↓
s [x] = {a |�su ∈ a}.
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Proof. By induction on the length of s ∈ S. If s = i then aRix iff a ∈ R
↓
i [x] iff a∩�ix 6= ∅. Since

x is the ideal generated by u, we have that u is the greatest element of x; hence, the monotonicity of

�i implies that �iu is the greatest element of �ix. Since a is a filter, and hence is upward-closed,

a∩�ix 6= ∅ is equivalent to �iu ∈ a, which completes the proof of the base case. Let us assume that

R
↓
s [x] = {b ∈ A | �su ∈ b}, and show that R

↓
is[x] = {b ∈ A | �isu ∈ b}. By Lemma 10 (3) and (4), and

Lemma 5, Rs is I-compatible for every s ∈ S. Let z be the ideal generated by �su. Hence:

R
↓
is[x] = R

↓
i [I

↑[R↓
s [x]]] Lemmas 3 and 6

= R
↓
i [({b ∈ A |�su ∈ b})↑] induction hypothesis

= R
↓
i [{y ∈ X |�su ∈ y}] (∗)

= R
↓
i [z] definition of z

= {a |�i�su ∈ a} base case

= {a |�isu ∈ a}. definition of �is

The identity marked with (∗) follows from the fact that the filter generated by �su is the smallest element

of R
↓
s [x].

The canonical enriched formal context is defined by instantiating the construction above to the

Lindembaum-Tarski algebra of L. In this case, let V be the valuation such that [[p]] (resp. ([p])) is the

set of the filters (resp. ideals) to which p belongs, and let M= (FL,V ) be the canonical model. Then the

following holds for M:

Lemma 13 (Truth lemma). For every ϕ ∈ L ,

1. M,a  ϕ iff ϕ ∈ a;

2. M,x ≻ ϕ iff ϕ ∈ x.

Proof. By induction on ϕ . We only show the inductive step for ϕ := �iσ .

M,a �iσ iff a ∈ R
↓
i [([σ ])]

iff a ∈ R
↓
i [{x | σ ∈ x}] induction hypothesis

iff a ∈ {b ∈ A |�iσ ∈ b} definition of Ri

iff �iσ ∈ a.

M,x ≻�iσ iff x ∈ ([�iσ ])
iff x ∈ [[�iσ ]]↑

iff x ∈ {a ∈ A |�iσ ∈ a}↑ proof above

iff �iσ ∈ x.

The weak completeness of L follows from the lemma above with the usual argument.

Proposition 3 (Completeness). If ϕ ⊢ ψ is an L -sequent which is not derivable in L, then M 6|= ϕ ⊢ ψ .

The weak completeness for LC is proved along the lines of [10, Theorem 3.3.1]. Namely, for any LC-

sequent ϕ ⊢ ψ that is not derivable in LC, we will construct a finite model Mϕ ,ψ such that Mϕ ,ψ 6|= ϕ ⊢ψ .

Let Φ0 be the set the elements of which are ⊤, ⊥ and all the subformulas of ϕ and ψ . Let

Φ1 := Φ0 ∪
⋃

i∈Ag

{�iσ | σ ∈ Φ0} and Φ := {
∧

Ψ | Ψ ⊆ Φ1}.
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By construction, Φ is finite. Consider the canonical model M defined above, and the following equiva-

lence relations on A and X :

a ≡Φ b iff a∩Φ = b∩Φ and x ≡Φ y iff x∩Φ = y∩Φ.

Since Φ is finite, these equivalence relations induce finitely many equivalence classes on A and X . In

particular, considering ⊢ as a preorder on Φ, each element a of A/≡Φ is uniquely identified by some Φ-

filter, i.e. a ⊢-upward closed subset of Φ which is also closed under existing conjunctions. Analogously,

each x ∈ X/≡Φ is uniquely identified by some Φ-ideal, i.e. a ⊢-downward closed subset of Φ which

is also closed under existing disjunctions. In addition, since Φ is closed under conjunctions, the Φ-

filter corresponding to each a is principal, i.e. for each a ∈ A/≡Φ some τa ∈ Φ exists such that a can be

identified with the set of the formulas σ ∈Φ such that τa ⊢ σ is an LC-derivable sequent. In what follows,

we abuse notation and let a and x respectively denote the principal Φ-filter and the Φ-ideal with which a

and x can be identified, as discussed above. With this convention, we can write �∗
i x := {�iσ | σ ∈ x}∩Φ

and (�−1
i )∗a := {τ ∈ Φ |�iτ ∈ a}. As a consequence of ⊥,⊤∈ Φ0 and �i⊤=⊤ we have that �∗

i x and

(�−1
i )∗a are always non-empty. Let us define:

Mϕ ,ψ = (A/≡Φ,X/≡Φ, Iϕ ,ψ ,R
ϕ ,ψ
i ,Vϕ ,ψ),

where

aIϕ ,ψx iff a∩ x 6=∅ iff τa ∈ x

aR
ϕ ,ψ
i x iff �

∗
i x∩a 6=∅

iff τa ⊢�iτ is LC-derivable for some τ ∈ x,

and Vϕ ,ψ is any valuation such that [[p]] = {a | p ∈ a} and ([p]) = {x | p ∈ x} for all p ∈ Prop∩Φ. In

what follows, we often abbreviate Iϕ ,ψ as I. It readily follows from the definition that [[p]]↑↓ = [[p]] and

([p])↓↑ = ([p]) for any p ∈ Prop∩Φ; moreover, (R
ϕ ,ψ
i )↓[x] = {a | a∩�

∗
i x 6= ∅}, and (R

ϕ ,ψ
i )↑[a] = {x |

x∩ (�−1
i )∗a 6=∅}. From this, similarly to Lemma 10, it immediately follows that:

Lemma 14. For any a, x and i ∈ Ag,

1. I
↑
ϕ ,ψ [(R

ϕ ,ψ
i )↓[x]] = {y |�∗

i x ⊆ y};

2. I
↓
ϕ ,ψ [(R

ϕ ,ψ
i )↑[a]] = {b ∈ A | (�−1

i )∗a ⊆ b};

3. I
↓
ϕ ,ψ [I

↑
ϕ ,ψ [(R

ϕ ,ψ
i )↓[x]]] = {b |�∗

i x∩b 6=∅}= (R
ϕ ,ψ
i )↓[x];

4. I
↑
ϕ ,ψ [I

↓
ϕ ,ψ [(R

ϕ ,ψ
i )↑[a]]] = {y | (�−1

i )∗a∩ y 6=∅}= R
↑
i [a].

Items (3) and (4) of the lemma above immediately imply that:

Lemma 15. R
ϕ ,ψ
i is Iϕ ,ψ -compatible for any i ∈ Ag.

The following is key to the proof of the Truth Lemma.

Lemma 16. If C(σ) ∈ Φ, then the following is an LC-derivable sequent for any i ∈ Ag:

∨

a∈[[C(σ)]]

τa ⊢ �i(
∨

a∈[[C(σ)]]

τa).

Proof. Fix i ∈ Ag and a ∈ [[C(σ)]]. Since �i is monotone, it is enough to show that some τ ∈ Φ exists

such that

τa ⊢ �iτ and τ ⊢
∨

a∈[[C(σ)]]

τa.
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By definition of R
ϕ ,ψ
i , this is equivalent to showing that aR

ϕ ,ψ
i y, where y is the Φ-ideal generated by

∨

a∈[[C(σ)]] τa. Notice that ([C(σ)]) = [[C(σ)]]↑ is the collection of all the Φ-ideals x such that τb ∈ x for

every b ∈ [[C(σ)]]. Hence, y ∈ ([C(σ)]) (and is in fact the smallest element in ([C(σ)])). Thus, to prove

that aR
ϕ ,ψ
i y, it is enough to show that [[C(σ)]] ⊆ (R

ϕ ,ψ
s )↓[([C(σ)])]. This immediately follows from the

fact that (R
ϕ ,ψ
s )↓[([C(σ)])] = [[�iC(σ)]], that C(σ) ⊢�iC(σ) is an LC-derivable sequent, that LC is sound

w.r.t. compositional models (cf. Proposition 2), and Mϕ ,ψ is a compositional model (cf. Lemma 15).

Lemma 17 (Truth lemma). For every τ ∈ Φ0,

1. Mϕ ,ψ ,a  τ iff τ ∈ a;

2. Mϕ ,ψ ,x ≻ τ iff τ ∈ x.

Proof. We only show the inductive step for τ := C(σ) for some σ ∈ Φ0. If Mϕ ,ψ ,a  C(σ), i.e. a ∈
[[C(σ)]] =

⋂

s∈S(R
ϕ ,ψ
s )↓[([σ ])], then a ∈ (R

ϕ ,ψ
i )↓[([σ ])] = [[�iσ ]] for any i ∈ Ag. By definition, σ ∈ Φ0

implies that �iσ ∈ Φ. Moreover:

a ∈ [[�iσ ]] iff a ∈ (R
ϕ ,ψ
i )↓[([σ ])]

iff a ∈ (R
ϕ ,ψ
i )↓[{x | σ ∈ x}] induction hypothesis

iff a ∈ {b |�iσ ∈ b} definition of R
ϕ ,ψ
i

iff �iσ ∈ a.

This implies that τa ⊢
∧

i∈Ag�iσ . By Lemma 16 and the fact that LC is closed under the following rule:

χ ⊢
∧

i∈Ag�iϕ {χ ⊢�iχ | i ∈ Ag}

χ ⊢C (ϕ)

we conclude that τa ⊢C(σ), i.e. C(σ) ∈ a.

For the converse direction, let b be the principal Φ-filter generated by C(σ). Let us show, by induction

on the length of s, that b ∈ (R
ϕ ,ψ
s )↓[([σ ])] for all s ∈ S. Indeed, for the base case, �iσ ∈ Φ and C(σ) ⊢

�iσ being an LC-derivable sequent imply that �iσ ∈ b, which implies that b ∈ (R
ϕ ,ψ
i )↓[([σ ])]. For the

inductive step, assume that b ∈ (R
ϕ ,ψ
s )↓[([σ ])]. Then every element of I↑[(R

ϕ ,ψ
s )↓[([σ ])]] contains C(σ).

Moreover, �iC(σ) ∈ b, because �iC(σ) ∈ Φ and C(σ) ⊢�iC(σ) is an LC-derivable sequent. Hence, by

Lemma 6,

b ∈ (R
ϕ ,ψ
i )↓[I↑[(Rϕ ,ψ

s )↓[([σ ])]]] = (R
ϕ ,ψ
is )↓[([σ ])],

which concludes the proof that b ∈ (R
ϕ ,ψ
s )↓[([σ ])] for all s ∈ S. To finish the proof, for any a, if C(σ)∈ a,

then b ⊆ a, which implies, since (R
ϕ ,ψ
s )↓[([σ ])] is Galois-stable for any s ∈ S, that a ∈ (R

ϕ ,ψ
s )↓[([σ ])] for

every s ∈ S. This shows that Mϕ ,ψ ,a C(σ). As to item (2),

Mϕ ,ψ ,x ≻C(σ) iff x ∈ [[C(σ)]]↑

iff x∩a 6=∅ for all a ∈ [[C(σ)]]
iff C(σ) ∈ x.

The weak completeness of LC follows from the lemma above with the usual argument.

Proposition 4 (Completeness). If ϕ ⊢ ψ is an LC-sequent which is not derivable in LC, then Mϕ ,ψ 6|=
ϕ ⊢ ψ .


	1 Introduction
	2 Categorization: foundations and formal approaches
	2.1 Extant foundational approaches
	2.2 Extant formal approaches

	3 Epistemic logic of categories
	4 Core concepts and proposed formalizations
	4.1 Core concepts
	4.2 Formalizations

	5 Conclusions and further directions
	A Soundness and completeness
	A.1 I-compatible relations
	A.2 The interpretation of C is well defined
	A.3 Soundness
	A.4 Completeness


