
R. Ramanujam (Ed.): TARK 2015
EPTCS 215, 2016, pp. 51–66, doi:10.4204/EPTCS.215.5

c© K. Apt, D. Grossi & W. van der Hoek
This work is licensed under the
Creative Commons Attribution License.

Epistemic Protocols for Distributed Gossiping

Krzysztof R. Apt
Centrum Wiskunde Informatica

Amsterdam, The Netherlands

k.r.apt@cwi.nl

Davide Grossi Wiebe van der Hoek
University of Liverpool

Liverpool, UK

d.grossi@liv.ac.uk wiebe@liv.ac.uk

Gossip protocols aim at arriving, by means of point-to-point or group communications, at a situation
in which all the agents know each other’s secrets. We consider distributed gossip protocols which are
expressed by means of epistemic logic. We provide an operational semantics of such protocols and
set up an appropriate framework to argue about their correctness. Then we analyze specific protocols
for complete graphs and for directed rings.

1 Introduction

In the gossip problem ([18, 4], see also [10] for an overview)a numbern of agents, each one knowing
a piece of information (asecret) unknown to the others, communicate by one-to-one interactions (e.g.,
telephone calls). The result of each call is that the two agents involved in it learn all secrets the other agent
knows at the time of the call. The problem consists in finding asequence of calls which disseminates all
the secrets among the agents in the group. It sparked a large literature in the 70s and 80s [18, 4, 9, 5,
17] typically focusing on establishing—in the above and other variants of the problem—the minimum
number of calls to achieve dissemination of all the secrets.This number has been proven to be 2n−4,
wheren, the number of agents, is at least 4.

The above literature assumes a centralized perspective on the gossip problem: a planner schedules
agents’ calls. In this paper we pursue a line of research firstput forth in [3] by developing a decentralized
theory of the gossip problem, where agents perform calls notaccording to a centralized schedule, but
following individual epistemic protocols they run in a distributed fashion. These protocols tell the agents
which calls to execute depending on what they know, or do not know, about the information state of the
agents in the group. We call the resulting distributed programs(epistemic) gossip protocols.

Contribution of the paper and outline The paper introduces a formal framework for specifying epis-
temic gossip protocols and for studying their computationsin terms of correctness, termination, and fair
termination (Section 2). It then defines and studies two natural protocols in which the interactions are
unconstrained (Section 3) and four example gossip protocols in which agents are positioned on a directed
ring and calls can happen only between neighbours (Section 4). Proofs are collected in the appendix.

From a methodological point of view, the paper integrates concepts and techniques from the dis-
tributed computing, see, e.g., [1, Chapter 11] and the epistemic logic literature [8, 15] in the tradition of
[16, 14, 7].

2 Gossip protocols

We introduce first the syntax and semantics of gossip protocols.

http://dx.doi.org/10.4204/EPTCS.215.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

52 Epistemic Protocols for Distributed Gossip

2.1 Syntax

We loosely use the syntax of the language CSP (CommunicatingSequential Processes) of [11] that
extends the guarded command language of [6] by disjoint parallel composition and commands for syn-
chronous communication. CSP was realized in the distributed programming language OCCAM (see
INMOS [12]).

The main difference is that we use as guards epistemic formulas and as communication primitives
calls that do not require synchronization. Also, the syntaxof our distributed programs is very limited. In
order to define gossip protocols we introduce in turn calls and epistemic guards.

Throughout the paper we assume a fixed finite setA of at least threeagents. We assume that each
agent holds exactly onesecret and that there exists a bijection between the set of agents and the set of
secrets. We denote byP the set of all secrets (forpropositions). Furthermore, it is assumed that each
secret carries information identifying the agent to whom that secret belongs.

2.1.1 Calls

Eachcall concerns two agents, thecaller (a below) and theagent called(b). We distinguish threemodes
of communication of a call:

push-pull, written asab or (a,b). During this call the caller and the called agent learn each other’s
secrets,

push, written asa⊲b. After this call the called agent learns all the secrets heldby the caller,

pull, written asa⊳b. After this call the caller learns all the secrets held by thecalled agent.

Variables for calls are denoted byc, d. Abusing notation we writea∈ c to denote that agenta is one of
the two agents involved in the callc (e.g., forc := abwe havea∈ c andb∈ c). Calls in which agenta is
involved are denoted byca.

2.1.2 Epistemic guards

Epistemic guards are defined as formulas in a simple modal language with the following grammar:

φ ::= Fap | ¬φ | φ ∧φ | Kaφ ,

wherep∈ P anda∈ A. Each secret is viewed as a distinct symbol. We denote the secret of agenta by A,
the secret of agentb by B and so on. We denote the set of so defined formulas byL and we refer to its
members as epistemic formulas or epistemic guards. We readFap as ‘agenta is familiar with the secret
p’ (or ‘ p belongs to the set of secretsa knows about’) andKaφ as ‘agenta knows that formulaφ is true’.
So this language is an epistemic language where atoms consist of ‘knowing whether’ statements about
propositional atoms, if we view secrets as Boolean variables.

Atomic expressions inL concern only who knows what secrets. As a consequence the language
cannot express formally the truth of a secretp. This level of abstraction suffices for the purposes of the
current paper. However, expressionsFap could be given a more explicit epistemic reading in terms of
‘knowing whether’. That is, ‘a is familiar with p’ can be interpreted (on a suitable Kripke model) as ‘a
knows whether the secretp is true or not’. This link is established in [3].

K. Apt, D. Grossi & W. van der Hoek 53

2.1.3 Gossip protocols

Before specifying what a program for agenta is, let us first define the languageLa with the following
grammar:

ψ ::= Kaφ | ¬ψ | ψ ∧ψ

with φ ∈ L .1

By a component program, in short aprogram, for an agenta we mean a statement of the form

∗[[]mj=1 ψ j → c j],

wherem> 0 and eachψ j → c j is such thatψ j ∈ La anda is the caller inc j .
Given an epistemic formulaψ ∈ La and a callc, we call the constructψ → c a rule and refer in this

context toψ as aguard.
We denote the set of rules{ψ1 → c1, . . .,ψk → ck} as [[]kj=1 ψ j → c j] and abbreviate a set of rules

{ψ1 → c, . . .,ψk → c} with the same call to a single rule
∨k

i=1ψi → c.
Intuitively, ∗ denotes a repeated execution of the rules, one at a time, where each time a rule is

selected whose guard is true.
Finally, by adistributed epistemic gossip protocol, in short agossip protocol, we mean a parallel

composition of component programs, one for each agent. In order not to complicate matters we assume
that each gossip protocol uses only one mode of communication.

Of special interest for this paper are gossip protocols thatare symmetric. By this we mean that the
protocol is a composition of the component programs that areidentical modulo the names of the agents.
Formally, consider a statementπ(x), wherex is a variable ranging over the setA of agents and such that
for each agenta ∈ A, π(a) is a component program for agenta. Then the parallel composition of the
π(a) programs, wherea∈ A, is called asymmetric gossip protocol.

Gossip protocols are syntactically extremely simple. Therefore it would seem that little can be ex-
pressed using them. However, this is not the case. In Sections 3 and 4 we consider gossip protocols that
can exhibit complex behaviour.

2.2 Semantics

We now move on to provide a formal semantics of epistemic guards, and then describe the computations
of gossip protocols.

2.2.1 Gossip situations and calls

A gossip situation is a sequences = (Qa)a∈A, whereQa⊆P for each agenta. Intuitively, Qa is the set
of secretsa is familiar with in situations. Theinitial gossip situation is the one in which eachQa equals
{A} and is denoted byroot. The set of all gossip situations is denoted byS. We say that an agenta is an
expert in a gossip situations if he is familiar in s with all the secrets, i.e., ifQa = P. The initial gossip
situation reflects the fact that initially each agent is familiar only with his own secret, although it is not
assumed this is common knowledge among the agents. In fact, in the introduced language we have no
means to express the concept of common knowledge.

1Alternatively,La could be defined as the fragment ofL consisting of the formulae of formKaψ. In logic S5, it is easy to
prove that eachψ ∈ La is logically equivalent to a formulaKaφ ∈ L .

54 Epistemic Protocols for Distributed Gossip

We will use the following concise notation for gossip situations. Sets of secrets will be written
down as lists. e.g., the set{A,B,C} will be written asABC. Gossip situations will be written down as
lists of lists of secrets separated by dots. E.g., if there are three agents,root = A.B.C and the situation
({A,B},{A,B},{C}) will be written asAB.AB.C.

Each call transforms the current gossip situation by modifying the set of secrets the agents involved
in the call are familiar with. More precisely, the application of a call to a situation is defined as follows.

Definition 2.1 (Effects of calls) A call is a functionc : S−→ S, so defined, fors := (Qa)a∈A:

c= ab c(s) = (Q′
a)a∈A, whereQ′

a = Q′
b = Qa∪Qb, Q′

c = Qc, for c 6= a,b;

c= a⊲b c(s) = (Q′
a)a∈A, whereQ′

b = Qa∪Qb, Q′
a = Qa, Q′

c = Qc, for c 6= a,b;

c= a⊳b c(s) = (Q′
a)a∈A, whereQ′

a = Qa∪Qb, Q′
b = Qb, Q′

c = Qc, for c 6= a,b.

The definition formalizes the modes of communications we introduced earlier. Depending on the mode,
secrets are either shared between caller and callee (ab), they are pushed from the caller to the callee
(a⊲b), or they are retrieved by the caller from the callee (a⊳b).

2.2.2 Call sequences

A call sequence is a (possibly infinite) sequence of calls, in symbols(c1,c2, . . . ,cn, . . .), all being of the
same communication mode. The empty sequence is denoted byε . We usec to denote a call sequence
andC to denote the set of all call sequences. The set of all finite call sequences is denotedC<ω . Given a
finite call sequencec and a callc we denote byc.c the prepending ofc with c, and byc.c the postpending
of c with c.

The result of applying a call sequence to a situations is defined by induction using Definition 2.1, as
follows:
[Base]ε(s) := s,
[Step](c.c)(s) := c(c(s)).

Example 2.2 Let the set of agents be{a,b,c}.

ab ca ab

A.B.C AB.AB.C ABC.AB.ABC ABC.ABC.ABC

The top row lists the call sequence(ab,ca,ab), while the bottom row lists the successive gossip situations
obtained from the initial situationA.B.C by applying the calls in the sequence: firstab, thencaand finally
ab. ✷

By applying an infinite call sequencec = (c1,c2, . . . ,cn, . . .) to a gossip situations one obtains
therefore an infinite sequencec0(s),c1(s), . . . ,cn(s), . . . of gossip situations, where eachck is sequence
c1,c2, . . . ,ck. A call sequencec is said toconverge if for all input gossip situationss the generated se-
quence of gossip situations reaches a limit, that is, there exists n < ω such that for allm≥ n cm(s) =
cm+1(s). Since the set of secrets is finite and calls never make agentsforget secrets they are familiar with,
it is easy to see the following.

Fact 2.3 All infinite call sequences converge.

However, as we shall see, this does not imply that all gossip protocols terminate. In the remainder
of the paper, unless stated otherwise, we will assume the push-pull mode of communication. The reader
can easily adapt our presentation to the other modes.

K. Apt, D. Grossi & W. van der Hoek 55

2.2.3 Gossip models

The setS of all gossip situations is the set of all possible combinations of secret distributions among the
agents. As calls progress in sequence from the initial situation, agents may be uncertain about which one
of such secrets distributions is the actual one. This uncertainty is precisely the object of the epistemic
language for guards we introduced earlier.

Definition 2.4 A gossip model(for a given setA) is a tupleM = (C<ω ,{∼a}a∈A), where each∼a⊆
C<ω ×C<ω is the smallest relation satisfying the following inductive conditions (assume the mode of
communication is push-pull):

[Base]ε ∼a ε ;

[Step]Supposec∼a d.

(i) If a 6∈ c, thenc.c∼a d andc∼a d.c.
(ii) If there exists b∈ A andc,d ∈ {ab,ba} such thatc.c(root)a = d.d(root)a, thenc.c∼a d.d.

A gossip model with a designated finite call sequence is called a pointed gossip model.
For the push, respectively pull, modes of communication clause (ii) needs to be modified by requiring

that for some b∈ A, c= d= a⊲b or c= d= a⊳b, respectively.

For instance, by(i) we haveab,bc∼a ab,bd. But we do not havebc,ab∼a bd,absince(bc,ab)(root)a

= ABC 6= ABD= (bd,ab)(root)a.
Let us flesh out the intuitions behind the above definition. Gossip models are needed in order to inter-

pret the epistemic guards of gossip protocols. Since such guards are relevant only after finite sequences
of calls, the domain of a gossip model is taken to consist onlyof finite sequences. Intuitively, those are
the finite sequences that can be generated by a gossip protocol. Let us turn now to the∼a relation. This
is defined with the following intuitions in mind. First of all, no agent can distinguish the empty call
sequence from itself—this is the base of the induction. Next, if two call sequences are indistinguishable
for a, then the same is the case if(i) we extend one of these sequences by a call in whicha is not involved
or if (ii) we extend each of these sequences by a call ofa with the same agent (agenta may be the caller
or the callee), provideda is familiar with exactly the same secrets after each of the new sequences has
taken place—this is the induction step.2

The above intuitions are based on the following assumptionson the form of communication we
presuppose: (i) At the initial situation, as communicationstarts, each agent knows only her own secret
but considers it possible that the others may be familiar with all other secrets. In other words there is
no such thing as common knowledge of the fact that ‘everybodyknows exactly her own secret’. (ii) In
general, each agent always considers it possible that call sequences (of any length) take place that do not
involve her. These assumptions are weaker than the ones analyzed in [3].

We state without proof the following simple fact.
Fact 2.5

(i) Each∼a is an equivalence relation;

(ii) For all c,d ∈ C if c∼a d, thenc(root)a = d(root)a, but not vice versa.

This prompts us to note also that according to Definition 2.4 sequences which makea learn the same
set of secrets may well be distinguishable fora, such as, for instance,ab,bc,ab andab,bc,ac. In the
first onea comes to know thatb knowsa is familiar with all secrets, while in the second one, she comes
to know thatc knowsa is familiar with all secrets. Relation∼a is so defined as to capture this sort of
‘higher-order’ knowledge.

2Notice that the definition requires a designated initial situation, which we assume to beroot.

56 Epistemic Protocols for Distributed Gossip

2.2.4 Truth conditions for epistemic guards

Everything is now in place to define the truth of the considered formulas.

Definition 2.6 Let(M ,c) be a pointed gossip model withM = (C<ω ,(∼a)a∈A) andc∈C<ω . We define
the satisfaction relation|= inductively as follows (clauses for Boolean connectives are omitted):

(M ,c) |= Fap iff p∈ c(root)a,

(M ,c) |= Kaφ iff ∀d s.t. c∼a d, (M ,d) |= φ .

So formulaFap is true (in a pointed gossip model) whenever secretp belongs to the set of secrets agent
a is familiar with in the situation generated by the designated call sequencec applied to the initial situa-
tion root. The knowledge operator is interpreted as customary in epistemic logic using the equivalence
relations∼a.

2.2.5 Computations

Assume a gossip protocolP that is a parallel composition of the component programs∗[[]ma
j=1 ψa

j → ca
j],

one for each agenta∈ A.
Given the gossip modelM = (C<ω ,{∼a}a∈A) we define thecomputation tree CP ⊆ C<ω of P as

the smallest set of sequences satisfying the following inductive conditions:

[Base]ε ∈ CP;

[Step] If c∈ CP and(M ,c) |= ψa
j thenc.ca

j ∈ CP. In this case we say that atransition has taken place
betweenc andc.ca

j , in symbols,c→ c.ca
j .

SoCP is a (possibly infinite) set of finite call sequences that is iteratively obtained by performing a ‘legal’
call (according to protocolP) from a ‘legal’ (according to protocolP) call sequence.

A path in the computation tree ofP is a (possibly infinite) sequence of elements ofCP, denoted by
ξ = (c0,c1, . . . ,cn, . . .), wherec0 = ε and eachci+1 = ci .c for some callc andi ≥ 0. A computation of P
is a maximal rooted path in the computation tree ofP.3

The above definition implies that a call sequencec is a leaf of the computation tree if and only if

(M ,c) |=
∧

a∈A

ma∧

j=1

¬ψa
j .

We call the formula
∧

a∈A

ma∧

j=1

¬ψa
j

theexit condition of the gossip protocolP.

Obviously computation trees can be infinite, though they arealways finitely branching. Further,
note that this semantics for gossip protocols abstracts away from some implementation details of the
calls. More specifically, we assume that the caller always succeeds in his call and does not require to
synchronize with the called agent. In reality, the called agent might be busy, being engaged in another

3Note that while the sequences that are elements of the computation tree of a protocol are always finite (although possibly
infinite in number), computations can be infinite sequences (of finite call sequences).

K. Apt, D. Grossi & W. van der Hoek 57

call. To take care of this one could modify each call by replacing it by a ‘call protocol’ that implements
the actual call using some lower level primitives. We do not elaborate further on this topic.

Let us fix some more terminology. Forc∈ CP, an agenta is enabled in c if (M ,c) |=
∨ma

j=1 ψa
j and

is disabled otherwise. So an agent is enabled if it can perform a call. An agenta is selected in c if it is
the caller in the call that for somec′ determines the transitionc→ c′ in ξ . Finally, a computationξ is
called afair computation if it is finite or each agent that is enabled in infinitely many sequences inξ is
selected in infinitely many sequences inξ .

We note in passing that various alternative definitions of fairness are possible; we just focus on one of
them. An interested reader may consult [2], where several fairness definitions (for instance one focusing
on actions and not on agents) for distributed programs were considered and compared.

We conclude this section by observing the following. Our definition of computation tree for protocol
P presupposes that guardsψa

j are interpreted over the gossip modelM = (C<ω ,{∼a}a∈A). This means
that when evaluating guards, agents consider as possible call sequences that cannot be generated byP. In
other words, agents do not know the protocol. To model commonknowledge of the considered protocol
in the gossip model one should take as the domain of the gossipmodelM the underlying computation
tree. However, the computation tree is defined by means of theunderlying gossip model. To handle such
a circularity an appropriate fixpoint definition is needed. We leave this topic for future work.

2.3 Correctness

We are interested in proving the correctness of gossip protocols. Assume a gossip protocolP that is a
parallel composition of the component programs∗[[]ma

j=1 ψa
j → ca

j].
We say thatP is partially correct, in shortcorrect, if in all situations sequencesc that are leaves of

the computation tree ofP, for each agenta

(M ,c) |=
∧

b∈A

FaB,

i.e., if for all situations sequencesc that are leaves of the computation tree ofP, each agent is an expert
in the gossip situationc(root).

We say furthermore thatP terminates if all its computations are finite and thatP fairly terminates if
all its fair computations are finite.

In the next section we provide examples showing that partialcorrectness and termination of the
considered protocols can depend on the assumed mode of communication and on the number of agents.
In what follows we study various gossip protocols and their correctness. We begin with the following
obvious observation.

Fact 2.7 For each protocol P the following implications (⇒) hold, where TP(x) stands for its termination
and FTP(x) for its fair termination in a communication mode x:

TP(x)⇒ FTP(x).

Protocol R3 given in Section 4 shows that none of these implications can be reversed. Moreover, it
is not the case either that for each protocolP:

TP(⊲)⇒ TP(push-pull),

TP(⊳)⇒ TP(push-pull).

58 Epistemic Protocols for Distributed Gossip

Example 2.8 LetA= {a,b,c} and define the following expression:

A ⊂ C :=
∧

I∈{A,B,C}

(FaI → FcI)∧
∨

I∈{A,B,C}

(FcI ∧¬FaI)

ExpressionB ⊂ C is defined analogously. Note that we denote byI the secret of agenti. Intuitively,
A ⊂ C means that agentc is familiar with all the secrets that agenta is familiar with, but not vice
versa. Soc is familiar with a strict superset of the secretsa is familiar with. Further, letExpj stand for∧

I∈{A,B,C} Fj I .
Consider now the following component programs:

• for agenta: ∗[¬Ka(A ⊂ C)∧¬KaExpa → a⊲c],

• for agentb: ∗[¬Kb(B ⊂ C)∧¬KbExpb → b⊲c],

• for agentc: ∗[¬KcExpa∧KcExpc → c⊲a[]¬KcExpb∧KcExpc → c⊲b].

This protocol is correct. Indeed, initially no agent is an expert, hence both guards ofc are false. On
the other hand, we have(M ,ε) |=¬(A ⊂C) and(M ,ε) |=¬(B ⊂C), so both(M ,ε) |=¬Ka(A ⊂C)
and(M ,ε) |= ¬Kb(B ⊂ C). Consequently, initially botha andb are enabled. If the first call is granted
to a, this agent will callc yielding the gossip situationA.B.AC. Now the guard ofa is false (sincea is still
familiar only with his own secretA, while c is familiar with at leastA andC anda knows this). The guard
of c is still false. So now onlyb is enabled. After his call ofc this yields the gossip situationA.B.ABC.
At this stage, only agentc is enabled and after he calls botha andb all guards become false. Moreover,
this protocol terminates. Indeed, the only computations are the ones in which first the callsa⊲c andb⊲c
take place, in any order, followed by the callsc⊲a andc⊲b, also performed in any order.

However, if we use the push-pull direction type instead of push, then the situation changes. Indeed,
after an arbitrary number of callsac the formula¬(A ⊂ C) is still true and hence¬Ka(A ⊂ C) is true,
as well. Consequently, this call can be indefinitely repeated, so the protocol does not terminate. ✷

3 Two symmetric protocols

In this section we consider protocols for the case when the agents form a complete graph. We study
two protocols. We present them first for the communication mode push-pull. (Partial) correctness of the
considered protocols does not depend on the assumed mode of communication.

Learn new secrets protocol (LNS) Consider the following program for agenti:

∗[[] j∈A¬FiJ → (i, j)].

Informally, agenti calls agentj if i is not familiar with j ’s secret. Note that the guards of this protocol
do not use the epistemic operatorKi, but they are equivalent to the ones that do, as¬FiJ is equivalent to
Ki¬FiJ.

This protocol was introduced in [3] and studied with respectto the push-pull mode, assuming asyn-
chronous communication. As noted there this protocol is clearly correct. Also, it always terminates since
after each call(i, j) the size of{(i, j) ∈ A×A | ¬FiJ} decreases. The same argument shows termination
if the communication mode is pull.

However, if the communication mode is push, the protocol mayfail to terminate, even fairly. To see it
fix an agenta and consider a sequence of calls in which each agent callsa. At the end of this sequencea

K. Apt, D. Grossi & W. van der Hoek 59

becomes an expert but nobody is familiar with his secret. So any extension of this sequence is an infinite
computation.

Let us consider now the possible call sequences generated bythe computations of this protocol.
Assume that there aren ≥ 4 agents. By the result mentioned in the introduction in eachterminating
computation at least 2n−4 calls are made.

The LNS protocol can generate such shortest sequences (among others). Indeed, letA = {a,b,c,d,
i1, . . ., in−4} be the set of agents. Then the following sequence of 2n−4 calls

(a, i1),(a, i2), . . .,(a, in−4),
(a,b),(c,d),(a,c),(b,d),
(i1,b),(i2,b), . . .,(in−4,b)

(1)

corresponds to a terminating computation.
The guards used in this protocol entail that after a call(i, j) neither the call(j, i) nor another call

(i, j) can take place, that is between each pair of agents at most onecall can take place. Consequently,
the longest possible sequence contains at mostn(n−1)

2 calls. Such a worst case can be generated by means
of the following sequence of calls:

[2], [3], [4], . . ., [n],

where for a natural numberk, [k] stands for the sequence(1,k), (2,k), . . ., (k−1,k).4

Hear my secret protocol (HMS) Next, we consider a protocol with the following program for agenti:

∗[[] j∈A¬KiFj I → (i, j)].

Informally, agenti calls agentj if he (agenti) does not know whetherj is familiar with his secret. To
prove correctness of this protocol it suffices to note that its exit condition

∧

i, j∈A

KiFj I

implies
∧

i, j∈A Fj I . To prove termination it suffices to note that after each call(i, j) the size of the set
{(i, j) | ¬KiFj I} decreases.

If the communication mode is push, then the termination argument remains valid, since after the call
i ⊲ j agent j still learns all the secrets agenti is familiar with.

However, if the communication mode is pull, then the protocol may fail to terminate, even fairly. To
see it fix an agentj and consider the callsi ⊳ j, wherei ranges overA\{ j}, arbitrarily ordered. Denote
this sequence byc. Consider now an infinite sequence of calls resulting from repeatingc indefinitely. It
is straightforward to check that such a sequence corresponds to a possible computation. Indeed, in this
sequence agentj never calls and hence never learns any new secret. So for eachi 6= j the formula¬KiFj I
remains true and hence each agenti 6= j remains enabled. Moreover, after the calls fromc took place
agent j is not anymore enabled. Hence the resulting infinite computation is fair.

4Other longest sequences are obviously possible, for instance: 12,13, ...,1n,23,24, ...,2n,34,35, ..,3n, ...,(n−1)n.

60 Epistemic Protocols for Distributed Gossip

4 Protocols over directed rings

In this section we consider the case when the agents are arranged in a directed ring, wheren≥ 3. For
convenience we take the set of agents to be{1,2, . . .,n}. For i ∈ {1, . . .,n}, let i ⊕ 1 andi ⊖ 1 denote
respectively the successor and predecessor of agenti. That is, fori ∈ {1, . . .,n−1}, i⊕1= i+1, n⊕1=
1, for i ∈ {2, . . .,n}, i ⊖1= i −1, and 1⊖1= n. Fork> 1 we definei ⊕k andi ⊖k by induction in the
expected way. Again, when reasoning about the protocols we denote the secret of agenti ∈ {1, . . .,n}
by I . We consider four different protocols and study them with respect to their correctness and (fair)
termination.

In this set up, a call sequence over a directed ring is a (possibly infinite) sequence of calls, all being of
the same communication mode, and all involving an agenti andi⊕1. As before, we usec to denote such
a call sequence andCDR to denote the set of all call sequences over a directed ring. In this section, unless
stated otherwise, by a call sequence we mean a sequence over adirected ring. The set of all such finite
call sequences is denotedC<ω

DR . A gossip model for a directed ring is a tupleMDR = (C<ω
DR ,{∼a}a∈A),

where each∼a⊆ C<ω
DR ×C<ω

DR is as in Definition 2.4. The truth definition is as before, and the notion of a
computation tree for directed rings CP

DR ⊆ C<ω
DR of a ring protocolP is analogous to the notion defined

before. Note that by restricting the domain inMDR to C<ω
DR , the ring network—and hence who is the

successor of whom—becomes common knowledge.
When presenting the protocols we use the fact thatFiJ is equivalent toKiFiJ.

Ring protocol R1 Consider first a gossip protocol with the following program for i:

∗[
n∨

j=1

(FiJ∧Ki¬Fi⊕1J)→ i✸i ⊕1],

where✸ denotes the mode of communication, so⊲, ⊳ or push-pull.
Informally, agenti calls his successor, agenti⊕1, if i is familiar with some secret and he knows that

his successor is not familiar with it.

Proposition 4.1 Let✸= ⊲. Protocol R1 terminates and is correct.

Termination and correctness do not both hold for the other communication modes. Consider first
the pull communication mode, i.e.,✸ = ⊳. Then the protocol does not always terminate. Indeed, each
call i ⊳ i ⊕1 can be repeated. Next, consider the push-pull communication mode. We show that then the
protocol is not correct. Indeed, take

c= (1,2), (2,3), . . .,(n−1,n).

We claim that after the sequence of callsc the exit condition of the protocol is true. To this end we
consider each agent in turn.

After c each agenti, wherei 6= n is familiar the secrets of the agents 1,2, . . ., i+1. Moreover, because
of the call(i, i +1) agenti knows that agenti +1 is familiar with these secrets. So the exit condition of
agenti is true.

To deal with agentn note thatc∼n c.(n−2,n−1).(n−3,n−2).. . .(2,3).(1,2). After the latter call
sequence agent 1 becomes an expert. So afterc agentn cannot know that agent 1 is not familiar with
some secret. Consequently, afterc the exit condition of agentn is true, as well. However, afterc agent 1
is not an expert, so the protocol is indeed not correct.

In what follows we initially present the protocols assumingthe push-pull mode of communication.

K. Apt, D. Grossi & W. van der Hoek 61

Ring protocol R2 Consider now a gossip protocol with the following program for agenti:

∗[¬KiFi⊕1I ⊖1→ (i, i ⊕1)],

where (recall)I ⊖ 1 denotes the secret of agenti ⊖ 1. Informally, agenti calls his successor, which is
agenti ⊕1, if i does not know that his successor is familiar with the secret of i’s predecessor, i.e., agent
i ⊖1.

Proposition 4.2 If |A| ∈ {3,4} then protocol R2 is correct.

However, this protocol is not correct for five or more agents.To see it consider the sequence of calls

(1,2), (2,3), . . .,(n−1,n), (n,1), (1,2)

wheren≥ 5. After it the exit condition of the protocol is true. However, agent 3 is not familiar with the
secret of agent 5.

Note that the same argument shows that the protocol in which we use¬KiFi⊕1I ∨¬KiFi⊕1I ⊖1 instead
of ¬KiFi⊕1I ⊖1 is incorrect, as well.

Moreover, this protocol does not always terminate. Indeed,one possible computation consists of an
agenti repeatedly calling his successori ⊕1.

Ring protocol R3 Next, consider the following modification of protocol R2 in which we use the fol-
lowing program for agenti:

∗[(¬
n∧

j=1

FiJ)∨¬KiFi⊕1I ⊖1→ (i, i ⊕1)].

Informally, agenti calls his successor, agenti ⊕ 1, if i is not familiar with all the secrets ori does not
know that his successor is familiar with the secret of his predecessor, agenti ⊖1.

This gossip protocol is obviously correct thanks to the factthat
∧n

i=1
∧n

j=1FiJ is part of the exit
condition. However, it does not always terminate for the same reason as the previous one.

On the other hand, the following holds.

Proposition 4.3 Protocol R3 fairly terminates.

The same conclusions concerning non termination and fair termination can be drawn for the push
and the pull modes of communication. Indeed, for push it suffices to consider the sequence of calls
i ⊲ i ⊕1, i ⊕1⊲ i ⊕2, . . ., i ⊖1⊲ i after which agenti ⊖1 becomes disabled, and for pull the sequence of
calls i ⊳ i ⊕1, i ⊖1⊳ i, . . ., i ⊕2⊳ i ⊕3 after which agenti ⊕2 becomes disabled.

Ring protocol R4 Finally, we consider a protocol that is both correct and terminates for the push-pull
mode. Consider the following program fori:

∗[
n∨

j=1

(FiJ∧¬KiFi⊕1J)→ (i, i ⊕1)].

Informally, agenti calls his successor, agenti ⊕1, if i is familiar with some secret and he does not know
whether his successor is familiar with it. Note the similarity with protocol R1.

Proposition 4.4 Protocol R4 terminates and is correct.

62 Epistemic Protocols for Distributed Gossip

Protocol T FT T for⊲ FT for ⊲ T for ⊳ FT for ⊳
LNS yes yes no no yes yes
HMS yes yes yes yes no no
R3 no yes no yes no yes
R4 yes yes yes yes no yes

Table 1: Summary of termination results.

If the communication mode is push, then the termination argument remains valid, since after the
call i ⊲ i ⊕ 1 agenti ⊕ 1 still learns all the secrets that agenti is familiar with and hence the above set
{(i, j) | ¬KiFi⊕1J} decreases.

If the communication mode is pull, then the protocol may failto terminate, because after the first
call i ⊳ i ⊕ 1 agenti ⊕ 1 does not learn the secret of agenti and consequently the call can be repeated.
However, the situation changes when fairness is assumed.

Proposition 4.5 For the pull communication mode protocol R4 fairly terminates.

Table 1 summarizes the termination properties of the protocols considered in the paper.

5 Conclusions

The aim of this paper was to introduce distributed gossip protocols, to set up a formal framework to
reason about them, and to illustrate it by means of an analysis of selected protocols.

Our results open up several avenues for further research. First, our correctness arguments were given
in plain English with occasional references to epistemic tautologies, such asKiφ → φ , but it should be
possible to formalize them in a customized epistemic logic.Such a logic should have a protocol inde-
pendent component that would consist of the customary S5 axioms and a protocol dependent component
that would provide axioms that depend on the mode of communication and the protocol in question.
An example of such an axiom is the formulaKiFi⊕1I ⊖1→ FiI ⊕1 that we used when reasoning about
protocol R2. To prove the validity of the latter axioms one would need to develop a proof system that
allows us to compute the effect of the calls, much like the computation of the strongest postconditions
in Hoare logics. Once such a logic is provided the next step will be to study formally its properties,
including decidability. Then we could clarify whether the provided correctness proofs could be carried
out automatically.

Second, generalizing further the ideas we introduced by considering directed rings, gossip protocols
could be studied in interface with network theory (see [13] for a textbook presentation). Calls can be
assumed to be constrained by a network, much like in the literature on ‘centralized’ gossip (cf. [10]) or
even have probabilistic results (i.e., secrets are passed with given probabilities). More complex properties
of gossip protocols could then be studied involving higher-order knowledge or forms of group knowledge
among neighbors (e.g., “it is common knowledge amonga and her neighbors that they are all experts”),
or their stochastic behavior (e.g., “at some point in the future all agents are experts with probabilityp”).

Third, it will be interesting to analyze the protocols for the types of calls considered in [3]. They
presuppose some form of knowledge that a call took place (forinstance that given a call betweena andb
each agentc 6= a,b noted the call but did not learn its content). Another optionis to consider multicasting
(calling several agents at the same time).

K. Apt, D. Grossi & W. van der Hoek 63

Finally, many assumptions of the current setup could be lifted. Different initial and final situations
could be considered, for instance common knowledge of protocols could be assumed, or common knowl-
edge of the familiarity of all agents with all the secrets upon termination could be required. Finally, to
make the protocols more efficient passing of tokens could be allowed instead of just the transmission of
secrets by means of calls.

Acknowledgments

We would like to thank Hans van Ditmarsch and the referees forhelpful comments and Rahim Rameza-
nian for useful comments about Example 2.8. This work resulted from a research visit by Krzysztof Apt
to Davide Grossi and Wiebe van der Hoek, sponsored by the 2014Visiting Fellowship Scheme of the De-
partment of Computer Science of the University of Liverpool. The first author is also a Visiting Professor
at the University of Warsaw. He was partially supported by the NCN grant nr 2014/13/B/ST6/01807.

References

[1] K. R. Apt, F. R. de Boer & E. R. Olderog (2009):Verification of Sequential and Concurrent Programs.
Springer, doi:10.1007/978-1-84882-745-5.

[2] K. R. Apt, N. Francez & S. Katz (1988):Appraising fairness in distributed languages. Distributed Computing
2(4), pp. 226–241, doi:10.1007/BF01872848.

[3] M. Attamah, H. van Ditmarsch, D. Grossi & W. Van der Hoek (2014): Knowledge and gossip. In: Proceed-
ings of ECAI’14, IOS Press, pp. 21–26.

[4] B. Baker & R. Shostak (1972):Gossips and Telephones. Discrete Mathematics2, pp. 197–193,
doi:10.1016/0012-365X(72)90001-5.

[5] R. Bumby (1981):A Problem with Telephones. SIAM Journal of Algorithms and Discrete Methods2, pp.
13–18, doi:10.1137/0602002.

[6] E. W. Dijkstra (1975):Guarded commands, nondeterminacy and formal derivation ofprograms. Communi-
cations of the ACM18, pp. 453–457, doi:10.1145/360933.360975.

[7] R. Fagin, J. Halpern, Y. Moses & M. Vardi (1997):Knowledge-Based Programs. Distributed Computing10,
pp. 199–225, doi:10.1007/s004460050038.

[8] Ronald Fagin, Joseph Y. Halpern, Yoram Moses & Moshe Y. Vardi (1995):Reasoning about knowledge. The
MIT Press, Cambridge.

[9] A. Hajnal, E. C. Milner & E. Szemeredi (1972):A Cure for the Telephone Disease. Canadian Mathematical
Bulletin 15, pp. 447–450, doi:10.4153/CMB-1972-081-0.

[10] S. M. Hedetniemi, S. T. Hedetniemi & A. L. Liestman (1988): A survey of gossiping and broadcasting in
communication networks. Networks18(4), pp. 319–349, doi:10.1002/net.3230180406.

[11] C. A. R. Hoare (1978):Communicating sequential processes. Communications of the ACM21, pp. 666–677,
doi:10.1145/359576.359585.

[12] INMOS Limited (1984):Occam Programming Manual. Prentice-Hall International.

[13] M. O. Jackson (2008):Social and Economic Networks.Princeton University Press.

[14] R. Kurki-Suonio (1986):Towards programming with Knowledge Expressions. In: Proceedings of POPL’86,
pp. 140–149, doi:10.1145/512644.512657.

[15] J.-J. Ch. Meyer & W. van der Hoek (1995):Epistemic Logic for AI and Computer Science. Cambridge Tracts
in Theoretical Computer Science41, Cambridge University Press, doi:10.1017/CBO9780511569852.

http://dx.doi.org/10.1007/978-1-84882-745-5
http://dx.doi.org/10.1007/BF01872848
http://dx.doi.org/10.1016/0012-365X(72)90001-5
http://dx.doi.org/10.1137/0602002
http://dx.doi.org/10.1145/360933.360975
http://dx.doi.org/10.1007/s004460050038
http://dx.doi.org/10.4153/CMB-1972-081-0
http://dx.doi.org/10.1002/net.3230180406
http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1145/512644.512657
http://dx.doi.org/10.1017/CBO9780511569852

64 Epistemic Protocols for Distributed Gossip

[16] R. Parikh & R. Ramanujam (1985):Distributed Processing and the Logic of Knowledge. In: Logic of
Programs, LNCS 193, Springer, pp. 256–268, doi:10.1007/3-540-15648-8. Similar toJoLLI 12: 453–467,
2003.

[17] Á Seress (1986):Quick Gossiping without Duplicate Transmissions. Graphs and Combinatorics2, pp. 363–
383, doi:10.1007/BF01788111.

[18] R. Tijdeman (1971):On a telephone problem. Nieuw Archief voor Wiskunde3(XIX), pp. 188–192.

Proof (of Proposition 4.1)
Termination Given a call sequencec define the set

Inf (c) := {(i, j) | i, j ∈ {1, . . .,n} and(MDR,c) |= FiJ}.

After each enabled calli ⊲ i ⊕1 in c, the setInf (c) increases, which ensures termination since each set
Inf (·) has at mostn2 elements.
CorrectnessConsider a leaf of the computation tree. Then the exit condition

n∧

i=1

n∧

j=1

(¬FiJ∨¬Ki¬Fi⊕1J)

is true. We proceed by induction to show that then eachFiJ is true, wherei, j ∈ {1, . . .,n}, and where the
pairs(i, j) are ordered as follows:

(1,1),(2,1), . . .,(n,1),

(2,2),(3,2), . . .,(1,2),

. . .,

(n,n),(1,n), . . .,(n−1,n).

So theith row lists the pairs(j, i) with j ∈ {1, . . .,n} ranging clockwise, starting ati.
Take a pair(i, j). If i = j, thenFiJ is true by assumption. Ifi 6= j, then consider the pair that precedes

it in the above ordering. It is then of the form(i1, j), wherei = i1⊕1. By the induction hypothesisFi1J
is true, so by the exit condition¬Ki1¬FiJ is true.

Suppose now towards a contradiction that¬Fi1⊕1J is true. Theni1⊕1 6= j. Hence by virtue of the
considered communication mode and Definition 2.4 it followsthat agenti i knows that¬Fi1⊕1J is true
since the only way fori1⊕1 to become familiar withJ is by means of a call fromi1. SoKi1¬FiJ is true.
This yields a contradiction. HenceFiJ is true.

So we showed, as desired, that
∧n

i=1
∧n

j=1FiJ is true in the considered leaf. �

Proof (of Proposition 4.2) To start with,
∧n

i=1 FiI is true in every node of the computation tree. Suppose
the exit condition

∧n
i=1 KiFi⊕1I ⊖ 1 is true at a node of the computation tree (in short, true). Itimplies

that
∧n

i=1Fi⊕1I ⊖ 1 is true. Fixi ∈ {1, . . .,n}. By the aboveFiI ⊖ 2 is true. Further, the implication
KiFi⊕1I ⊖1→ FiI ⊖1 is true in every node of the computation tree (remember, theagents are positioned
on a directed ring). Ifn= 3, this proves that

∧n
j=1 FiJ is true.

If n= 4, we note thatKiFi⊕1I ⊖1 implies that agenti⊕1 learnedI ⊖1 through a call of agenti and hence
the implicationKiFi⊕1I ⊖1→ FiI ⊕1 is true in every node of the computation tree, as well (remember
that the mode is push-pull). We conclude that

∧n
j=1FiJ is true. �

http://dx.doi.org/10.1007/3-540-15648-8
http://dx.doi.org/10.1007/BF01788111

K. Apt, D. Grossi & W. van der Hoek 65

Proof (of Proposition 4.3) First, note that the following three statements are equivalent for each nodec
of an arbitrary computationξ and each agenti:

• i is disabled atc,

• (MDR,c) |= (
∧n

j=1FiJ)∧KiFi⊕1I ⊖1,

• a sequence of calls(i ⊕2, i ⊕3), (i ⊕3, i ⊕4), . . .,(i, i ⊕1) (possibly interspersed with other calls)
has taken place inξ beforec.

Suppose now towards a contradiction that an infinite fair computationξ exists. We proceed by case
distinction.
Case 1Some agent becomes disabled inξ .

We claim that if an agenti becomes disabled inξ , then also agenti ⊕1 becomes disabled inξ . Indeed,
otherwise by fairness at some point inξ after whichi becomes disabled, agenti ⊕1 calls his successor,
i ⊕2, and by the above sequence of equivalences in turn becomes disabled.

We conclude by induction that at some point inξ all agents become disabled and henceξ terminates,
which yields a contradiction.
Case 2No agent becomes disabled inξ .

By fairness each agent calls inξ infinitely often his successor. So for every agenti there exists inξ
the sequence of calls(i ⊕2, i ⊕3), (i ⊕3, i ⊕4), . . .,(i, i ⊕1) (possibly interspersed with other calls). By
the above sequence of equivalences after this sequence of calls agenti becomes disabled, which yields a
contradiction. �

Proof (of Proposition 4.4)
Termination It suffices to note that after each call(i, i ⊕1) the size of the set

{(i, j) ∈ A×A | ¬KiFi⊕1J}

decreases.
CorrectnessConsider a leaf of the computation tree. Then the exit condition

n∧

i=1

n∧

j=1

(¬FiJ∨KiFi⊕1J)

is true. As in the case of protocol R1 we prove that it implies eachFiJ is true by induction on the pairs
(i, j), wherei, j ∈ {1, . . .,n}, ordered as follows:

(1,1),(2,1), . . .,(n,1),

(2,2),(3,2), . . .,(1,2),

. . .,

(n,n),(1,n), . . .,(n−1,n).

Take a pair(i, j). If i = j, thenFiJ is true by assumption. Ifi 6= j, then consider the pair that precedes it
in the above ordering, so(i1, j), wherei = i1⊕1. By the induction hypothesisFi1J is true, so by the exit
conditionKi1FiJ is true and henceFiJ is true. �

Proof (of Proposition 4.5) Consider the following sequence of statements:

(i) i is disabled atc,

66 Epistemic Protocols for Distributed Gossip

(ii) (MDR,c) |=
∧n

j=1(FiJ → KiFi⊕1J),

(iii) (MDR,c) |= KiFi⊕1,

(iv) a sequence of callsi⊖1⊳ i, i⊖2⊳ i⊖1, . . ., i ⊳ i⊕1 (possibly interspersed with other calls) has taken
place inξ beforec.

It is easy to verify that these statements are logically related in the following way:

(i) ⇔ (ii) ⇒ (iii) ⇒ (iv) ⇒ (ii)

for each nodec of an arbitrary computationξ and each agenti. They are therefore equivalent. Suppose
now towards a contradiction that an infinite fair computation ξ exists. As in the proof of Proposition 4.3
we proceed by case distinction.
Case 1Some agent becomes disabled inξ .

We claim that if an agenti becomes disabled inξ , then alsoi ⊖ 1 becomes disabled inξ . Indeed,
otherwise by fairness at some point inξ after which j becomes disabled, agenti ⊖1 calls his successor,
i, and by the above sequence of equivalences in turn becomes disabled.

We conclude by induction that at some point inξ all agents become disabled and henceξ terminates,
which yields a contradiction.
Case 2No agent becomes disabled inξ .

By fairness each agent calls inξ infinitely often his successor. So for every agenti there exists inξ
a sequence of callsi ⊖ 1⊳ i, i ⊖ 2⊳ i ⊖ 1, . . ., i ⊳ i ⊕ 1 (possibly interspersed with other calls). By the
above sequence of equivalences, after this sequence of calls agenti becomes disabled, which yields a
contradiction. �

	1 Introduction
	2 Gossip protocols
	2.1 Syntax
	2.1.1 Calls
	2.1.2 Epistemic guards
	2.1.3 Gossip protocols

	2.2 Semantics
	2.2.1 Gossip situations and calls
	2.2.2 Call sequences
	2.2.3 Gossip models
	2.2.4 Truth conditions for epistemic guards
	2.2.5 Computations

	2.3 Correctness

	3 Two symmetric protocols
	4 Protocols over directed rings
	5 Conclusions

