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In this paper we introduce a computational-level model of theory of mind (ToM) based on dynamic
epistemic logic (DEL), and we analyze its computational complexity. The model is a special case of
DEL model checking. We provide a parameterized complexity analysis, considering several aspects
of DEL (e.g., number of agents, size of preconditions, etc.)as parameters. We show that model
checking for DEL is PSPACE-hard, also when restricted to single-pointed models and S5 relations,
thereby solving an open problem in the literature. Our approach is aimed at formalizing current
intractability claims in the cognitive science literatureregarding computational models of ToM.

1 Introduction

Imagine that you are in love. You find yourself at your desk, but you cannot stop your mind from
wandering off. What is she thinking about right now? And moreimportantly, is she thinking about you
and does she know that you are thinking about her? Reasoning about other people’s knowledge, belief
and desires, we do it all the time. For instance, in trying to conquer the love of one’s life, to stay one step
ahead of one’s enemies, or when we lose our friend in a crowdedplace and we find them by imagining
where they would look for us. This capacity is known as theoryof mind (ToM) and it is widely studied
in various fields (see, e.g., [8, 11, 23, 34, 36, 38, 47, 48]).

We seem to use ToM on a daily basis and many cognitive scientists consider it to be ubiquitous in
social interaction [1]. At the same time, however, it is alsowidely believed that computational cognitive
models of ToM are intractable, i.e., that ToM involves solving problems that humans are not capable of
solving (cf. [1, 27, 31, 50]). This seems to imply a contradiction between theory and practice: on the one
hand we seem to be capable of ToM, while on the other hand, our theories tell us that this is impossible.
Dissolving this paradox is a critical step in enhancing theoretical understanding of ToM.

The question arises what it means for a computational-levelmodel1 of cognition to be intractable.
When looking more closely at these intractability claims regarding ToM, it is not clear what these re-
searchers mean exactly, nor whether they mean the same thing. In theoretical computer science and logic
there are a variety of tools to make precise claims about the level of complexity of a certain problem. In
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cognitive science, however, this is a different story. Withthe exception of a few researchers, cognitive
scientists do not tend to specify formally what it means for atheory to be intractable. This makes it
often very difficult to assess the validity of the various claims in the literature about which theories are
tractable and which are not.

In this paper we adopt theTractable-cognition thesis(see [42]) that states that people have limited
resources for cognitive processing and human cognitive capacities are confined to those that can be
realized using a realistic amount of time.2 More specifically we adopt theFPT-cognition thesis[42]
that states that computationally plausible computational-level cognitive theories are limited to the class
of input-output mappings that are fixed-parameter tractable for one or more input-parameters that can
be assumed to be small in practice. To be able to make more precise claims about the (in)tractability
of ToM we introduce a computational-level model of ToM basedon dynamic epistemic logic (DEL),
and we analyze its computational complexity. The model we present is a special case of DEL model
checking. Here we include an informal description of the model.3 The kind of situation that we want
to be able to model, is that of an observer that observes one ormore agents in an initial situation. The
observer then witnesses actions that change the situation and the observer updates their knowledge about
the mental states of the agents in the new situation. Such a set up is often found in experimental tasks,
where subjects are asked to reason about the mental states ofagents in a situation that they are presented.

DBU (informal) – DYNAMIC BELIEF UPDATE

Instance:A representation of an initial situation, a sequence of actions – observed by an ob-
server – and a (belief) statementϕ of interest.
Question:Is the (belief) statementϕ true in the situation resulting from the initial situation and
the observed actions?

We prove that DBU is PSPACE-complete. PSPACE-completenesswas already shown by Aucher
and Schwarzentruber [3] for DEL model checking in general. They considered unrestricted relations
and multi-pointed event models. Since their proof does not hold for the special case of DEL model
checking that we consider, we propose an alternative proof.Our proof solves positively the open ques-
tion in [3] whether model checking for DEL restricted to S5 relations and single-pointed models is
PSPACE-complete. Bolander, Jensen and Schwarzentruber [10] independently considered an almost
identical special case of DEL model checking (there called the plan verification problem). They also
prove PSPACE-completeness for the case restricted to single-pointed models, but their proof does not
settle whether hardness holds even when the problem is restricted to S5 models.

Furthermore, we investigate how the different aspects (or parameters, see Table 1) of our model
influence its complexity. We prove that for most combinations of parameters DBU is fp-intractable and
for one case we prove fp-tractability. See Figure 2 for an overview of the results.

Besides the parameterized complexity results for DEL modelchecking that we present, the main
conceptual contribution of this paper is that it bridges cognitive science and logic, by using DEL to
model ToM (cf. [28, 47]). By doing so, the paper provides the means to make more precise statements
about the (in)tractability of ToM.

2There is general consensus in the cognitive science community that computational intractability is a undesirable feature of
cognitive computational models, putting the cognitive plausibility of such models into question [13, 24, 26, 42, 46]. There are
diverging opinions about how cognitive science should dealwith this issue (see, e.g., [12, 26, 41, 43]). It is beyond thescope
of this paper to discuss this in detail. In this paper we adoptthe parameterized complexity approach as described in [42].

3 We pose the model in the form of a decision problem, as this is convenient for purposes of our complexity analysis. Even
though ToM may be more intuitively modeled by a search problem, the complexity of the decision problem gives us lower
bounds on the complexity of such a search problem, and therefore suffices for the purposes of our paper.



248 Parameterized Complexity Results for a Model of Theory of Mind Based on DEL

The paper is structured as follows. In Section 2 we introducebasic definitions from dynamic epis-
temic logic and parameterized complexity theory. Then, in Section 3 we introduce a formal description
of our computational-level model and we discuss the particular choices that we make. Next, in Section 4
we present our (parameterized) complexity results. Finally, in Section 5 we discuss the implications of
our results for the understanding of ToM.

2 Preliminaries

2.1 Dynamic Epistemic Logic

Dynamic epistemic logic is a particular kind of modal logic (see [16, 6]), where the modal operators are
interpreted in terms of belief or knowledge. First, we defineepistemic models, which are Kripke models
with an accessibility relation for every agenta∈ A , instead of just one accessibility relation.

DEFINITION 2.1 (Epistemic model).Given a finite setA of agents and a finite set P of propositions, an
epistemic model is a tuple(W,R,V) where

- W is a non-empty set of worlds;

- R is a function that assigns to every agent a∈ A a binary relation Ra on W; and

- V is a valuation function from W×P into{0,1}.

The accessibility relationsRa can be read as follows: for worldsw,v∈W, wRav means “in worldw,
agenta considers worldv possible.”

DEFINITION 2.2 ((Multi and single-)pointed epistemic model).A pair (M,Wd) consisting of an epistemic
model M= (W,R,V) and a non-empty set of designated worlds Wd ⊆ W is called a pointed epistemic
model. A pair(M,Wd) is called a single-pointed model when Wd is a singleton, and a multi-pointed
epistemic model when|Wd|> 1. By a slight abuse of notation, for(M,{w}), we also write (M,w).

We consider the usual restrictions on relations in epistemic models and event models, such as KD45
and S5 (see [16]). In KD45 models, all relations are transitive, Euclidean and serial, and in S5 models
all relations are transitive, reflexive and symmetric.

We define the following language for epistemic models. We usethe modal belief operatorB, where
for each agenta∈ A , Baϕ is interpreted as “agenta believes (that)ϕ”.

DEFINITION 2.3 (Epistemic language).The languageLB overA and P is given by the following defi-
nition, where a ranges overA and p over P:

ϕ ::= p | ¬ϕ | (ϕ ∧ϕ) | Baϕ .

We will use the following standard abbreviations,⊤ := p∨¬p,⊥ := ¬⊤,ϕ ∨ψ := ¬(¬ϕ ∧¬ψ), ϕ →
ψ := ¬ϕ ∨ψ , B̂a := ¬Ba¬ϕ .

The semantics for this language is defined as follows.

DEFINITION 2.4 (Truth in a (single-pointed) epistemic model).Let M = (W,R,V) be an epistemic
model, w∈W, a∈ A , andϕ ,ψ ∈ LB. We define M,w |= ϕ inductively as follows:

M,w |= p iff V(w, p) = 1
M,w |= ¬ϕ iff not M,w |= ϕ
M,w |= (ϕ ∧ψ) iff M ,w |= ϕ and M,w |= ψ
M,w |= Baϕ iff for all v with wRav: M,v |= ϕ
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When M,w |= ϕ , we say thatϕ is true in w orϕ is satisfied in w.

DEFINITION 2.5 (Truth in a multi-pointed epistemic model).Let (M,Wd) be a multi-pointed epistemic
model, a∈ A , andϕ ∈ LB. M,Wd |= ϕ is defined as follows:

M,Wd |= ϕ iff M ,w |= ϕ for all w ∈Wd

Next we define event models.

DEFINITION 2.6 (Event model).An event model is a tupleE = (E,Q,pre,post), where E is a non-empty
finite set of events; Q is a function that assigns to every agent a∈ A a binary relation Ra on W; pre is
a function from E intoLB that assigns to each event a precondition, which can be any formula in LB;
and post is a function from E intoLB that assigns to each event a postcondition. Postconditionsare
conjunctions of propositions and their negations (including⊤ and⊥).

DEFINITION 2.7 ((Multi and single-)pointed event model / action).A pair (E ,Ed) consisting of an event
modelE = (E,Q,pre,post) and a non-empty set of designated events Ed ⊆ E is called a pointed event
model. A pair(E ,Ed) is called a single-pointed event model when Ed is a singleton, and a multi-pointed
event model when|Ed|> 1. We will also refer to(E ,Ed) as an action.

We define the notion of a product update, that is used to updateepistemic models with actions [4].

DEFINITION 2.8 (Product update).The product update of the state(M,Wd) with the action(E ,Ed) is
defined as the state(M,Wd)⊗ (E ,Ed) = ((W′,R′,V ′),W′

d) where

- W′ = {(w,e) ∈W×E ; M,w |= pre(e)};

- R′
a = {((w,e),(v, f )) ∈W′×W′ ; wRav and eQa f};

- V ′(p) = 1 iff either (M,w |= p and post(e) 6|= ¬p) or post(e) |= p; and

- W′
d = {(w,e) ∈W′ ; w∈Wd and e∈ Ed}.

Finally, we define when actions are applicable in a state.

DEFINITION 2.9 (Applicability). An action(E ,Ed) is applicable in state(M,Wd) if there is some e∈ Ed

and some w∈Wd such that M,w |= pre(e). We define applicability for a sequence of actions inductively.
The empty sequence, consisting of no actions, is always applicable. A sequence a1, . . . ,ak of actions is
applicable in a state(M,Wd) if (1) the sequence a1, . . . ,ak−1 is applicable in(M,Wd) and (2) the action
ak is applicable in the state(M,Wd)⊗a1⊗·· ·⊗ak−1.

2.2 Parameterized Complexity Theory

We introduce some basic concepts of parameterized complexity theory. For a more detailed introduction
we refer to textbooks on the topic [17, 18, 22, 35].

DEFINITION 2.10 (Parameterized problem).Let Σ be a finite alphabet. Aparameterized problemL
(overΣ) is a subset ofΣ∗×N. For an instance(x,k), we call x themain partand k theparameter.

The complexity class FPT, which stands for fixed-parameter tractable, is the direct analogue of the
class P in classical complexity. Problems in this class are considered efficiently solvable, because the
non-polynomial-time complexity inherent in the problem isconfined to the parameter and in effect the
problem is efficiently solvable even for large input sizes, provided that the value of the parameter is
relatively small.

DEFINITION 2.11 (Fixed-parameter tractable / the class FPT).Let Σ be a finite alphabet.
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1. An algorithmA with input (x,k) ∈ Σ×N runs in fpt-time if there exists a computable function f
and a polynomial p such that for all(x,k) ∈ Σ×N, the running time ofA on (x,k) is at most

f (k) · p(|x|).

Algorithms that run in fpt-time are calledfpt-algorithms.

2. A parameterized problem L isfixed-parameter tractableif there is an fpt-algorithm that decides L.
FPTdenotes the class of all fixed-parameter tractable problems.

Similarly to classical complexity, parameterized complexity also offers a hardness framework to
give evidence that (parameterized) problems are not fixed-parameter tractable. The following notion of
reductions plays an important role in this framework.

DEFINITION 2.12 (Fpt-reduction).Let L⊆ Σ×N and L′ ⊆ Σ′×N be two parameterized problems. An
fpt-reductionfrom L to L′ is a mapping R: Σ×N→ Σ′×N from instances of L to instances of L′ such
that there is a computable function g: N→ N such that for all(x,k) ∈ Σ×N:

1. (x′,k′) = R(x,k) is a yes-instance of L′ if and only if(x,k) is a yes-instance of L;

2. R is computable in fpt-time; and

3. k′ ≤ g(k).

Another important part of the hardness framework is the parameterized intractability class W[1]. To
characterize this class, we consider the following parameterized problem.

{k}-WSAT[2CNF]
Instance:A 2CNF propositional formulaϕ and an integerk.
Parameter: k.
Question: Is there an assignmentα : var(ϕ) → {0,1}, that setsk variables invar(ϕ) to true,
that satisfiesϕ?

The class W[1] consists of all parameterized problems that can be fpt-reduced to{k}-WSAT[2CNF].
A parameterized problem is hard for W[1] if all problems in W[1] can be fpt-reduced to it. It is widely
believed that W[1]-hard problems are not fixed-parameter tractable [18]. Another parameterized in-
tractability class, that can be used in a similar way, is the class para-NP. The class para-NP consists of
all parameterized problems that can be solved by a nondeterministic fpt-algorithm. To show para-NP-
hardness, it suffices to show that DBU is NP-hard for a constant value of the parameters [21]. Problems
that are para-NP-hard are not fixed-parameter tractable, unless P= NP [22, Theorem 2.14].

3 Computational-level Model of Theory of Mind

Next we present a formal description of our computational-level model. Our aim is to capture, in a
qualitative way, the kind of reasoning that is necessary to be able to engage in ToM. Arguably, the
essence of ToM is the attribution of mental states to anotherperson, based on observed behavior, and
to predict and explain this behavior in terms of those mentalstates. The aspect of ToM that we aim to
formalize with our model is the attribution of mental states. There is a wide range of different kinds of
mental states such as epistemic, emotional and motivational states. In our model we focus on epistemic
states, in particular on belief.
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To be cognitively plausible, our model needs to be able to capture a wide range of (dynamic) sit-
uations, where all kinds of actions can occur, not just actions that change beliefs (epistemic actions),
but also actions that change the state of the world (ontic actions). This is why, following Bolander and
Andersen [9], we use postconditions in the product update ofDEL (in addition to preconditions).

Furthermore, we want to model the (internal) perspective ofthe observer (on the situation). There-
fore, the god perspective, also called the perfect externalapproach by Aucher [2] – that is inherent to
single-pointed epistemic models – will not suffice for all cases that we want to be able to model. This
perfect external approach supposes that the modeler is an omniscient observer that is perfectly aware of
the actual state of the world and the epistemic situation (what is going on in the minds of the agents). The
cognitively plausible observers that we are interested in here will not have infallible knowledge in many
situations. They are often not able to distinguish the actual world from other possible worlds, because
they are uncertain about the facts in the world and the mentalstates of the agent(s) that they observe.
That is why, again following Bolander and Andersen [9], we allow for multi-pointed epistemic models
(in addition to single-pointed models), which can model theuncertainty of an observer, by representing
their perspective as a set of worlds. How to represent the internal or fallible perspective of an agent in
epistemic models is a conceptual problem that has not been settled yet in the DEL-literature. There have
been several proposals to deal with this (see, e.g., [2, 15, 25]).

Also, since we do not assume that agents are perfectly knowledgeable, we allow the possibility of
modeling false beliefs of the observers and agents, by usingKD45 models (rather than S5 models).
Even though KD45 models present an idealized form of belief (with perfect introspection and logical
omniscience), we argue that at least to some extent they are cognitively plausible, and that therefore, for
the purpose of this paper, it suffices to focus on KD45 models.Our complexity results (which we present
in the next section) do not depend on this choice; they hold for DBU restricted to KD45 models and
restricted to S5 models, and also for the unrestricted case.

We define our computational-level model of ToM as follows.

DBU (formal) – DYNAMIC BELIEF UPDATE

Instance: A set of propositions P, and set of AgentsA . An initial stateso, whereso =
((W,V,R),Wd) is a pointed epistemic model. An applicable sequence of actions a1, ...,ak,
wherea j = ((E,Q, pre, post),Ed) is a pointed event model. A formulaϕ ∈ LB.
Question:Doesso⊗a1⊗ ...⊗ak |= ϕ?

The model can be naturally used to formalize ToM tasks that are employed in psychological exper-
iments. The classical ToM task that is used by (developmental) psychologists is the false belief task
[5, 49]. The DEL-based formalization of the false belief task by Bolander [8] can be seen as an instance
of DBU. For more details on how DBU can be used to model ToM tasks, we refer to [37].

4 Complexity Results

4.1 PSPACE-completeness

We show that DBU is PSPACE-complete. For this, we consider the decision problem TQBF. This
problem is PSPACE-complete [45].
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TQBF
Instance:A quantified Boolean formulaϕ = Q1x1Q2x2 . . .Qmxm.ψ .
Question:Is ϕ true?

THEOREM 1. DBU is PSPACE-hard.

PROOF. To show PSPACE-hardness we specify a polynomial-time reduction R from TQBF to DBU.
Let ψ be a Boolean formula. First, we sketch the general idea behind the reduction. We use the reduction
to list all possible assignments tovar(ψ). To do this we use groups of worlds (which areRa-equivalence
classes) to represent particular truth assignments. Each group consists of a string of worlds that are fully
connected by equivalence relationRa. Except for the first world in the string, all worlds represent a true
variablexi (under a particular assignment).

We give an example of such a group of worlds that represents assignmentα = {x1 7→ T,x2 7→ F,x3 7→
T,x4 7→ T,x5 7→ F,x6 7→ T}. Each world has a reflexive loop for every agent, which we leave out for the
sake of presentation. More generally, in all our drawings wereplace each relationRa with a minimalR′

a
whose transitive reflexive closure is equal toRa. marks the designated world. Since all relations are
reflexive, we draw relations as lines (leaving out arrows at the end).

w1

y

w2

y

w3

y

w4

y

a a
1

a
3 4

a
6

We refer to worldsw1, . . . ,w4 as thebottom worldsof this group. If a bottom world has anRi relation
to a world that makes propositiony true, we say that it represents variablexi .

The reduction makes sure that in the final updated model (the model that results from updating the
initial state with the actions – which are specified by the reduction) each possible truth assignment to the
variables inψ will be represented by a group of worlds. Between the different groups, there are noRa-
relations (onlyRi-relations for 1≤ i ≤ m). By ‘jumping’ from one group (representing a particular truth
assignment) to another group with relationRi, the truth value of variablexi can be set to true or false. We
can now translate a quantified Boolean formula into a corresponding formula ofLB by mapping every
universal quantifierQi to Bi and every existential quantifierQ j to B̂ j .

To illustrate how this reduction works, we give an example. Figure 1 shows the final updated model
for a quantified Boolean formula with variablesx1 andx2. In this model there are four groups of worlds:
{w1,w2,w3}, {w4,w5}, {w6,w7} and{w8}. Worldsw1, . . . ,w8 are what we refer to as the bottom worlds.
The gray worlds and edges can be considered a byproduct of thereduction; they have no particular
function.

We represent variablex1 by B̂1y and variablex2 by B̂2y. Then, in the model above, checking
whether∃x1∀x2.x1∨ x2 is true can be done by checking whether formulaB̂1B2(B̂aB̂1y∨ B̂aB̂2y) is true,
which is indeed the case. Also, checking whether∀x1∀x2.x1 ∨ x2 is true can be done by checking
whetherB1B2(B̂aB̂1y∨ B̂aB̂2y) is true, which is not the case.

Now, we continue with the formal details. Letϕ = Q1x1 . . .Qmxm.ψ be a quantified Boolean for-
mula with quantifiersQ1, . . . ,Qm andvar(ψ) = {x1, . . . ,xm}. We define the following polynomial-time
computable mappings. For 1≤ i ≤ m, let [xi ] = B̂iy, and

[Qi] =

{

Bi if Qi = ∀

B̂i if Qi = ∃.
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1

1
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2

1

1

2
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{x1 7→ T,x2 7→ T} :

{x1 7→ F,x2 7→ T} :

{x1 7→ T,x2 7→ F} :

{x1 7→ F,x2 7→ F} :

Figure 1: Example for the reduction in the proof of Theorem 1;a final updated model for a quantified
Boolean formula with variablesx1 andx2.

Formula [ψ ] is the adaptation of formulaψ where every occurrence ofxi in ψ is replaced
by B̂a[xi ]. Then [ϕ ] = [Q1] . . . [Qm][ψ ]. We formally specify the reductionR. We let R(ϕ) =
(P,A ,s0,a1, . . . ,am, [ϕ ]), where:

- P= {y}, A = {a,1, . . . ,m}

- s0 =

y y

· · ·

y

a a
1

a
2

a
m

All relations in s0,a1, . . . ,am are equivalence relations. Note that all worlds ins0,a1, . . . ,am have
reflexive loops for all agents. We omit all reflexive loops forthe sake of readability.

- a1 = e1 : 〈⊤,⊤〉 e2 : 〈¬B̂1y∨y,⊤〉

1

...

- am = e1 : 〈⊤,⊤〉 e2 : 〈¬B̂my∨y,⊤〉

m

We show thatϕ ∈ TQBF if and only if R(ϕ) ∈ DBU. We prove that for all 1≤ i ≤ m+ 1 the
following claim holds. For any assignmentα to the variablesx1, . . . ,xi−1 and any bottom worldw of a
group that agrees withα , the formulaQixi . . .Qmxm.ψ is true underα if and only if [Qi ] . . . [Qm][ψ ] is
true in worldw. In the case fori = m+1, this refers to the formula[ψ ].

We start with the case fori = m+1. We show that the claim holds. Letα be any assignment to the
variablesx1, . . . ,xm, and letw be any bottom world of a groupγ that representsα . Then, by construction
of [ψ ], we know thatψ is true underα if and only if [ψ ] is true inw.

Assume that the claim holds fori = j +1. We show that then the claim also holds fori = j. Let α be
any assignment to the variablesx1, . . . ,x j−1 and letw be a bottom world of a group that agrees withα .
We show that the formulaQ j . . .Qm.ψ is true underα if and only if [Q j ] . . . [Qm][ψ ] is true inw.
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First, assume thatQ j . . .Qm.ψ is true underα . Consider the case whereQ j = ∀. Then for both
assignmentsα ′ ⊇ α to the variablesx1, . . . ,x j , formulaQ j+1 . . .Qm.ψ is true underα ′. Now, by assump-
tion, we know that for any bottom worldw′ of a group that agrees withα – so in particular for all bottom
worldsw′ that areRj -reachable fromw – formula[Q j+1] . . . [Qm][ψ ] is true inw′. Since[Q j ] = B j , this
means that[Q j ] . . . [Qm][ψ ] is true inw. The case whereQ j = ∃ is analogous.

Next, assume thatQ j . . .Qm.ψ is not true underα . Consider the case whereQ j = ∀. Then there is
some assignmentα ′ ⊇ α to the variablesx1, . . . ,x j , such thatQ j+1 . . .Qm.ψ is not true underα ′. Now,
by assumption, we know that for any bottom worldw′ of a group that agrees withα – so in particular
for some bottom worldw′ that isRj -reachable fromw – formula [Q j+1] . . . [Qm][ψ ] is not true inw′.
Since[Q j ] = B j , this means that[Q j ] . . . [Qm][ψ ] is not true inw. The case whereQ j = ∃ is analogous.

Hence, the claim holds for the case thati = j. Now, by induction, the claim holds for the case
that i = 1, and hence it follows thatϕ ∈ TQBF if and only ifR(ϕ) ∈ DBU. Since this reduction runs in
polynomial time, we can conclude that DBU is PSPACE-hard.

THEOREM 2. DBU is PSPACE-complete.

PROOF. In order to show PSPACE-membership for the problem DBU, we can modify the polynomial-
space algorithm given by Aucher and Schwarzentruber [3]. Their algorithm works for the problem of
checking whether a given (single-pointed) epistemic modelmakes a given DEL-formula true, where the
formula contains event models that can be multi-pointed, but that have no postconditions. In order to
make the algorithm work for multi-pointed epistemic models, we can simply call the algorithm several
times, once for each of the designated worlds. Also, a modification is needed to deal with postconditions.
The algorithm checks the truth of a formula by inductively calling itself for subformulas. In order to deal
with postconditions, only the case where the formula is a propositional variable needs to be modified.
This modification is rather straightforward. For more details, we refer to [37].

4.2 Parameterized Complexity Results

Next, we provide a parameterized complexity analysis of DBU.

4.2.1 Parameters for DBU

We consider the following parameters for DBU. For each subset κ ⊆ {a,c,e, f ,o, p,u} we consider the
parameterized variantκ-DBU of DBU, where the parameter is the sum of the values for the elements
of κ as specified in Table 1. For instance, the problem{a}-DBU is parameterized by the number of
agents. Even though technically speaking there is only one parameter, we will refer to each of the
elements ofκ as parameters.

For the modal depth of a formula we count the maximum number ofnested occurrences of opera-
torsBa. Formally, we define the modal depthd(ϕ) of a formulaϕ (in LB) recursively as follows.

d(ϕ) =



















0 if ϕ = p∈ P is a proposition;

max{d(ϕ1),d(ϕ2)} if ϕ = ϕ1∧ϕ2;

d(ϕ1) if ϕ = ¬ϕ1;

1+d(ϕ1) if ϕ = Baϕ1.
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Param. Description

a number of agents

c maximum size of the preconditions

e maximum number of events in the event models

f size of the formula

o modal depth of the formula,
i.e., the order parameter

p number of propositions inP

u number of actions, i.e., the number of updates

Table 1: Overview of the different parameters for DBU.

For the size of a formula we count the number of occurrences ofpropositions and logical connectives.
Formally, we define the sizes(ϕ) of a formulaϕ (in LB) recursively as follows.

s(ϕ) =



















1 if ϕ = p∈ P is a proposition;

1+s(ϕ1)+s(ϕ2) if ϕ = ϕ1∧ϕ2;

1+s(ϕ1) if ϕ = ¬ϕ1;

1+s(ϕ1) if ϕ = Baϕ1.

4.2.2 Intractability Results

In the following, we show fixed-parameter intractability for several parameterized versions of DBU. We
will mainly use the parameterized complexity classes W[1] and para-NP to show intractability, i.e., we
will show hardness for these classes. Note that we could additionally use the class para-PSPACE [21]
to give stronger intractability results. For instance, theproof of Theorem 1 already shows that{p}-
DBU is para-PSPACE hard, since the reduction in this proof uses a constant number of propositions.
However, since in this paper we are mainly interested in the border between fixed-parameter tractability
and intractability, we will not focus on the subtle differences in the degree of intractability, and restrict
ourselves to showing W[1]-hardness and para-NP-hardness.This is also the reason why we will not
show membership for any of the (parameterized) intractability classes; showing hardness suffices to
indicate intractability. For the following proofs we use the well-known satisfiability problem SAT for
propositional formulas. The problem SAT is NP-complete [14, 30]. Moreover, hardness for SAT holds
even when restricted to propositional formulas that are in 3CNF.

PROPOSITION3. {a,c,e, f ,o}-DBU is para-NP-hard.

PROOF. To show para-NP-hardness, we specify a polynomial-time reduction R from SAT to DBU,
where parametersa, c, e, f , and o have constant values. Letϕ be a propositional formula with
var(ϕ) = {x1, . . . ,xm}. Without loss of generality we assume thatϕ is a 3CNF formula with clauses
c1 to cl .

The general idea behind this reduction is that we use the worlds in the final updated model (that
results from updating the initial state with the actions – which are specified by the reduction) to list all
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possible assignments tovar(ϕ), by setting the propositions (corresponding to the variables invar(ϕ))
to true and false accordingly. Then checking whether formula ϕ is satisfiable can be done by checking
whetherϕ is true in any of the worlds. Actionsa1 to am are used to create a corresponding world for
each possible assignment tovar(ϕ). Furthermore, to keep the formula that we check in the final updated
model of constant size, we sequentially check the truth of each clauseci and encode whether the clauses
are true with an additional variablexm+1. This is done by actionsam+1 to am+l . In the final updated
model, variablexm+1 will only be true in a world, if it makes clausesc1 to cl true, i.e., if it makes
formulaϕ true.

For more details, we refer to [37].

PROPOSITION4. {c,e, f ,o, p}-DBU is para-NP-hard.

PROOF. To show para-NP-hardness, we specify a polynomial-time reduction R from SAT to DBU,
where parametersc, e, f , o, and p have constant values. Letϕ be a propositional formula with
var(ϕ) = {x1, . . . ,xm}. The general idea behind this reduction is similar to the reduction in the proof
of Theorem 1. Again we use groups of worlds to represent particular assignments to the variables in
ϕ . Here, there is only relationRb between the different groups. Furthermore, to keep the formula that
we check in the final updated model of constant size, we sequentially check the truth of each clauseci

and encode whether the clauses are true with an additional variable z. This is done by actionsam+1

to am+l . Action am+ j (corresponding to clausej) marks each group of worlds (which represents a par-
ticular assignment to the variables inϕ) that ‘satisfies’ clauses 1 toj. (This marking happens by means
of an Rc-accessible world wherez is true.) Then, in the final updated model, there will only be such a
marked group if all clauses, and hence the whole formula, is satisfiable.

For more details, we refer to [37].

PROPOSITION5. {a,e, f ,o, p}-DBU is para-NP-hard.

PROOF. To show para-NP-hardness, we specify a polynomial-time reduction R from SAT to DBU,
where parametersa, e, f , o andp have constant values. Letϕ be a propositional formula withvar(ϕ) =
{x1, . . . ,xm}. The reduction is based on the same principle as the one used in the proof of Proposi-
tion 4. To keep the number of agents constant, we use a different construction to represent the variables
in var(ϕ). We encode the variables by a string of worlds that are connected by alternating relationsRa

andRb.

Furthermore, we keep the size of the formula (and consequently the modal depth of the formula)
constant by encoding the satisfiability of the formula with asingle proposition. We do this by adding
an extra actionam+1. Action am+1 makes sure that each group of worlds that represents a satisfying
assignment for the given formula, will have anRc relation from a world that isRb-reachable from the
designated world to a world where propositionz∗ is true.

For more details, we refer to [37].

We consider the following parameterized problem, that we will use in our proof of Proposition 6.
This problem is W[1]-complete [19].
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{k}-MULTICOLORED CLIQUE

Instance:A graphG, and a vertex-coloringc : V(G)→{1,2, . . . ,k} for G.
Parameter: k.
Question:DoesG have a clique of sizek including vertices of allk colors? That is, are there
v1, . . . ,vk ∈V(G) such that for all 1≤ i < j ≤ k : {vi ,v j} ∈ E(G) andc(vi) 6= c(v j)?

PROPOSITION6. {a,c, f ,o,u}-DBU is W[1]-hard.

PROOF. We specify an fpt-reductionR from {k}-MULTICOLORED CLIQUE to {a,c, f ,o,u}-DBU. Let
(G,c) be an instance of{k}-MULTICOLORED CLIQUE, whereG = (N,E). The general idea behind
this reduction is that we use the worlds in the model to list all k-sized subsets of the vertices in the
graph withk different colors, where each individual world represents aparticulark-subset of vertices
in the graph (withk different colors). Then we encode (in the model) the existing edges between these
nodes (with particular color endings), and in the final updated model we check whether there is a world
corresponding to ak-subset of vertices that is pairwise fully connected with edges. This is only the case
whenG has ak-clique withk different colors.

For more details, we refer to [37].

PROPOSITION7. {c,o, p,u}-DBU is W[1]-hard.

PROOF. We specify the following fpt-reductionR from {k}-WSAT[2CNF] to {c,o, p,u}-DBU. We
sketch the general idea behind the reduction. Letϕ be a propositional formula withvar(ϕ) =
{x1, . . . ,xm}. Then letϕ ′ be the formula obtained fromϕ , by replacing each occurrence ofxi with ¬xi.
We note thatϕ is satisfiable by some assignmentα that setsk variables to true if and only ifϕ ′ is sat-
isfiable by some assignmentα ′ that setsm− k variables to true, i.e., that setsk variables to false. We
use the reduction to list all possible assignments tovar(ϕ ′) = var(ϕ) that setm−k variables to true. We
represent each possible assignment tovar(ϕ) that setsm−k variables to true as a group of worlds, like
in the proof of Theorem 1. (In fact, due to the details of the reduction, in the final updated model, there
will be several identical groups of worlds for each of these assignments).

For more details, we refer to [37].

PROPOSITION8. {a, f ,o, p,u}-DBU is W[1]-hard.

PROOF. We specify the following fpt-reductionR from {k}-WSAT[2CNF] to {a, f ,o, p,u}-DBU. We
modify the reduction in the proof of Proposition 7 to keep thevalues of parametersa and f constant.
After these modifications, the value of parameterc will no longer be constant. To keep the number
of agents constant, we use the same strategy as in the reduction in the proof of Proposition 5, where
variablesxi , . . . ,xm are represented by strings of worlds with alternating relationsRb andRa. Just like in
the proof of Proposition 5, the size of the formula (and consequently the modal depth of the formula) is
kept constant by encoding the satisfiability of the formula with a single proposition. Then each group
of worlds that represents a satisfying assignment for the given formula, will have anRc relation from a
world that isRb-reachable from the designated world to a world where proposition z∗ is true.

For more details, we refer to [37].
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4.2.3 Tractability Results

Next, we turn to a case that is fixed-parameter tractable.

THEOREM 9. {e,u}-DBU is fixed-parameter tractable.

PROOF. We present the following fpt-algorithm that runs in timeeu · p(|x|), for some polynomialp,
wheree is the maximum number of events in the actions andu is the number of updates, i.e., the number
of actions.

As a subroutine, the algorithm checks whether a given basic epistemic formulaϕ holds in a given
epistemic modelM, i.e., whetherM |= ϕ . It is well-known that model checking for basic epistemic logic
can be done in time polynomial in the ofM plus the size ofϕ (see e.g. [7]).

Let x = (P,A , i,s0,a1, . . . ,af ,ϕ) be an instance of DBU. First the algorithm computes the final
updated modelsf = s0⊗a1⊗·· ·⊗af by sequentially performing the updates. For eachi, si is defined
as si−1 ⊗ ai . The size of eachsi is upper bounded byO(|s0| · eu), so for each update checking the
preconditions can be done in time polynomial ineu · |x|. This means that computingsf can be done
in fpt-time.

Then, the algorithm decides whetherϕ is true insf . This can be done in time polynomial in the size of
sf plus the size ofϕ . We know that|sf |+ |ϕ | is upper bounded byO(|s0| ·eu)+ |ϕ |, thus upper bounded
by eu · p(|x|), for some polynomialp. Therefore, deciding whetherϕ is true insf is fixed-parameter
tractable. Hence, the algorithm decides whetherx∈ DBU and runs in fpt-time.

4.2.4 Overview of the Results

We showed that DBU is PSPACE-complete, we presented severalparameterized intractability results
(W[1]-hardness and para-NP-hardness) and we presented onefixed-parameter tractable result, namely
for {e,u}-DBU. In Figure 2, we present a graphical overview of our results and the consequent bor-
der between fpt-tractability and fpt-intractability for the problem DBU. We leave{a,c, p}-DBU and
{c, f , p,u}-DBU as open problems for future research.

5 Discussion & Conclusions

We presented the DYNAMIC BELIEF UPDATE model as a computational-level model of ToM and ana-
lyzed its complexity. The aim of our model was to provide a formal approach that can be used to in-
terprete and evaluate the meaning and veridicality of various complexity claims in the cognitive science
and philosophy literature concerning ToM. In this way, we hope to contribute to disentangling debates in
cognitive science and philosophy regarding the complexityof ToM.

In Section 4.1, we proved that DBU is PSPACE-complete. This means that (without additional
constraints), there is no algorithm that computes DBU in a reasonable amount of time. In other words,
without restrictions on its input domain, the model is computationally too hard to serve as a plausible
explanation for human cognition. This may not be surprising, but it is a first formal proof backing up this
claim, whereas so far claims of intractability in the literature remained informal.

Informal claims about what constitutes sources of intractability abound in cognitive science. For
instance, it seems to be folklore that the ‘order’ of ToM reasoning (i.e., that I think that you think that
I think . . . ) is a potential source of intractability. The fact that people have difficulty understanding
higher-order theory of mind [20, 29, 32, 44] is not explainedby the complexity results for parametero –
the modal depth of the formula that is being considered, in other words, the order parameter. Already for
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Figure 2: Overview of the parameterized complexity resultsfor the different parameterizations of DBU,
and the line between fp-tractability and fp-intractability (under the assumption that the cases for{a,c, p}
and{c, f , p,u} are fp-tractable).

a formula with modal depth one, DBU is NP-hard; so{o}-DBU is not fixed-parameter tractable. On the
basis of our results we can only conclude that DBU is fixed-parameter tractable for the order parameter in
combination with parameterseandu. But since DBU is fp-tractable for the smaller parameter set{e,u},
this does not indicate that the order parameter is a source ofcomplexity. This does not mean it may
not be a source of difficulty for human ToM performance. Afterall, tractable problems can be too
resource-demanding for humans for other reasons than computational complexity (e.g., due to stringent
working-memory limitations).

Surprisingly, we only found one (parameterized) tractability result for DBU. We proved that for
parameter set{e,u} – the maximum number of events in an event model and the numberof updates, i.e.,
the number of event models – DBU is fixed-parameter tractable. Given a certain instancex of DBU,
the values of parameterse andu (together with the size of initial states0) determine the size of the final
updated model (that results from applying the event models to the initial state). Small values ofe andu
thus make sure that the final updated model does not blow up toomuch in relation to the size of the initial
model. The result that{e,u}-DBU is fp-tractable indicates that the size of the final updated model can
be a source of intractability (cf. [39, 40]).

The question arises how we can interpret parameterseandu in terms of their cognitive counterparts.
To what aspect of ToM do they correspond, and moreover, can weassume that they have small values
in (many) real-life situations? If this is indeed the case, then restricting the input domain of the model
to those inputs that have sufficiently small values for parameterseandu will render our model tractable,
and we can then argue that (at least in terms of its computational complexity) it is a cognitively plausible
model.



260 Parameterized Complexity Results for a Model of Theory of Mind Based on DEL

In his formalizations of the false belief task Bolander [8] indeed used a limited amount of actions
with a limited amount of events in each action (he used a maximum of 4). This could, however, be
a consequence of the over-simplification (of real-life situations) used in experimental tasks. Whether
these parameters in fact have sufficiently small values in real life, is an empirical hypothesis that can
(in principle) be tested experimentally. However, it is notstraightforward how to interpret these formal
aspects of the model in terms of their cognitive counterparts. The associations that the wordseventand
action trigger with how we often use these words in daily life, mightadequately apply to some degree,
but could also be misleading. A structural way of interpreting these parameters is called for. We think
this is an interesting topic for future research.

Besides the role that our results play in the investigation of (the complexity) of ToM our results are
also of interest in and of themselves. The results in Theorems 1 and 2 resolve an open question in the
literature about the computational complexity of DEL. Aucher and Schwarzentruber [3] already showed
that the model checking problem for DEL, in general, is PSPACE-complete. However, their proof for
PSPACE-hardness does not work when the input domain is restricted to S5 (or KD45) models and their
hardness proof also relies on the use of multi-pointed models (which in their notation is captured by
means of a union operator). With our proof of Theorem 1, we show that DEL model checking is PSPACE-
hard even when restricted to single-pointed S5 models. Furthermore, the novelty of our aproach lies in
the fact that we apply parameterized complexity analysis todynamic epistemic logic, which is still a
rather unexplored area.
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