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Reasoning about security properties involves reasoning about where the information of a system
is located, and how it evolves over time. While most securityanalysis techniques need to cope
with some notions of information locality and knowledge propagation, usually they do not provide
a general language for expressing arbitrary properties involving local knowledge and knowledge
transfer. Building on this observation, we introduce a framework for security protocol analysis based
on dynamic spatial logic specifications. Our computationalmodel is a variant of existingπ-calculi,
while specifications are expressed in a dynamic spatial logic extended with an epistemic operator.
We present the syntax and semantics of the model and logic, and discuss the expressiveness of the
approach, showing it complete for passive attackers. We also prove that generic Dolev-Yao attackers
may be mechanically determined for any deterministic finiteprotocol, and discuss how this result
may be used to reason about security properties of open systems. We also present a model-checking
algorithm for our logic, which has been implemented as an extension to the SLMC system.

1 Introduction

Among the several artifacts in the field of computer security, security protocols are indubitably a fun-
damental subject of study and research [12, 11]. Security protocols serve a variety of purposes, ranging
from secrecy and authentication to forward secrecy and deniable encryption. A common trait of these
protocols is their notoriously difficult design, which often leads to unforeseen vulnerabilities.

Therefore, it becomes essential to develop techniques thatensure the correctness of protocols, with
respect to some specification of the properties they aim to establish. A wide range of language-based
techniques have been proposed to analyze protocols and their correctness, such as type systems, process
calculi or static analysis [3, 6, 2] which in many cases result in successful tools [5, 4, 13, 9].

In this paper we propose a framework for protocol analysis based on process calculus models and
logic specifications. While the usage of process calculi andlogic in this context is not new [14, 8, 2],
our approach stems from the fact that many interesting properties of such systems are often a function
of what information the several parts of a system may or may not obtain. While other frameworks (e.g.,
Avispa [4] and Casper [13]) allow one to efficiently verify a wide range of interesting security properties,
these are not usually stated in this high-level knowledge oriented approach.

Our contribution consists of a dynamic spatial epistemic logic that allows reasoning about systems
(modelled in a variant of the appliedπ-calculus [2]) at three levels: thedynamicsof systems and subsys-
tems, thespatialarrangement of systems and subsystems, and theknowledge(the obtainable information)
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S(pkp,pkq, sks, pks) = c?(h).select { [pkp = getpk(h)].c!(enc_as(pkp,sks)).S(pkp,pkq) ;

[pkq = getpk(h)].c!(enc_as(pkq, sks)).S(pkp,pkq) };

defproc P(skp,hostQ,pks) = c!(hostQ).c?(m).let pkQ = dec_as(m,pks) in

new sK in c!(enc_as(sK,pkQ)).c!(enc(v,sK)).ok!(v);

Q(skq) = c?(m1).let sK = dec_as(m1,skq) in c?(m2).let val = dec(m2,sK) in ok!(val);

defproc Sys = new skp, skq in let pkp = pk(skp) in let pkq = pk(skq)

in let hP = host(pkp) in let hQ = host(pkq)

in (S(pkp,pkq) | P(skp,hQ) | Q(skq));

World = Sys | Attacker(Sys);

prop pqK = eventually (knows v | knows v | not (knows v))

and always (2 | not (knows v));

check World |= pqK;

* Process World satisfies the formula pqK *

Figure 1: A Motivating Example

of systems and subsystems. The goal is to produce an expressive property language with which we can
reason about a protocol by separating it into its different agents (malicious and otherwise), and then rea-
son about the knowledge they can obtain and how it can evolve over time. This enables us to express
interesting security properties in a very direct way (eg. agentsP andQ can obtain valuev, while agents
A andS cannot). To clarify our approach, consider the example of Fig. 1.

We have a systemSys composed of three processes:P, Q and a key distribution serverS. P wishes
to exchange a valuev with Q. To do so, he requestsQ’s public key fromS, which S emits in a signed
message.P then uses it to encrypt a generated symmetric session key andsends the key toQ. Afterwards
P will send v encrypted with the session key and terminate.Q will receive the message, decrypt it to
obtainv and terminate. We further model the system running with a malicious agent, defined through the
primitive Attacker(Sys). This agent consists of a Dolev-Yao attacker which we discuss in Section 4.1.

For this protocol to be correct, it must be the case that the malicious agent interacting with the system
can never knowv. Consider, however, a slightly stronger property:P andQ want to exchangev securely
(with respect to the malicious agent) but they also do not completely trust the serverS. They trust it to
at least distribute the appropriate keys, but want some assurances that even thoughS operates according
to protocol, it doesn’t obtain the valuev by observing the data exchanges betweenP andQ.

This property, while not impossible to state in other frameworks, would usually require some sort of
ad-hocmodification to the model (e.g, internalizing the server in an attacker, which seems like an indirect
strategy at best and may not necessarily yield the correct model). In our framework, the property can be
directly stated by combining our epistemic and spatial operators. A formula that reflects such a property
is pqK: first we state that the system can evolve to a configuration where two of its subsystems (P and
Q) know v, but the remaining parts of the system do not. This illustrates the expressiveness of the logic
in terms of reasoning about the knowledge of several parts ofthe complex system. Secondly, we state
that throughoutall executions of the system, a part of it will never knowv (2 indicates that there must
be two agents running with the part that does not knowv – a precise definition is given in Section 3). By
combining spatial reasoning with epistemic reasoning, we can state rich properties of the knowledge of
agents (and groups of agents) – both adversaries and principals – within a complex system, and how they
can share or restrict that knowledge over time.

While our framework is aimed at reasoning about closed systems, meaningful analyses of security
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protocols must necessarily consider attackers. Traditionally, attackers are modelled by an adversarial
environment which interacts with the protocol. In our closed system approach, we develop a way inter-
nalizing an arbitrary attacker within a closed system byautomatically(or semi-automatically) deriving a
process representation of such an attacker. This representation makes use of special primitives built into
the process calculus to greatly simplify the actual modelling of the attacker, to the extent that even if the
attacker generation is done semi-automatically, itneverrequires us to actually encode specific attacks.
In this work, we show that it is possible toautomaticallyderive an attacker (behaving as a Dolev-Yao
adversarial environment) for any finite protocol. To fully automate our technique (at the implementation
level), further work is needed (as discussed in Section 4.1); the focus of the current paper being essen-
tially on the expressiveness issues. In any case, we alreadyprovide tool support for arbitrary passive
attackers and forboundedDolev-Yao attackers (where the bound concerns the size of generated mes-
sages); this technique can already be used to automaticallyfind attacks, eg., as illustrated in the example
of Section 4.2.

The technical contributions of this work are as follows. We develop a process calculus model for se-
curity protocols (Section 2.2), inspired in existingπ-calculi, supporting explicit modeling of adversarial
agents, at an adequate level of abstraction. We introduce a new dynamic spatial epistemic logic (Section
3), oriented for reasoning about spatial distribution of information. We develop a logic-based theory of
knowledge deduction (Section 3.2) for our models, proved sound, complete and decidable. This presen-
tation was used in our model-checking algorithms. We discuss attacker representations (Section 4.1),
and how it is possible to produce a generic Dolev-Yao attacker for finite protocols. We also show how
to model and verify correspondence assertions (Section 4.2) in our framework. Finally, we implemented
a model-checking algorithm for the logic as an extension to the SLMC tool, producing the first proof of
concept tool aimed at security protocol analysis using spatial logic model checking. The proofs of our
technical results are detailed in [17].

2 Process Model

In this section we introduce our process model, starting with some preliminary notions on terms and
equational theory and then introducing our process calculus.

2.1 Terms and Equational Theories

Data exchanged by processes is modeled by terms of a term algebra. In order to capture cryptographic
operations and data structuring, we will consider term algebras with equational theories (cf. [2]).

We assume an infinite set of variables ranged over byx,y,z, an infinite set of namesΛ ranged over by
m,n and range over terms withs, t,v. Terms are defined from names and variables by applying function
symbols. We thus consider a given term algebra to be defined from a signatureΣ and an equational
theoryE that defines the “semantics” of the function symbols inΣ. An equational theory is a congruence
relation defined by a set of equations of formt = s.

In certain circumstances, an equational theory may give rise to a set of rewrite rules by orienting
each equation to produce the rulet→ s, in such a way that two terms are equal moduloE whenever that
have a common reduct under rewriting. This is the case of subterm convergent equational theories [1],
which are the ones that we will focus on in this work (other equational theories, such as AC theories, can
also be applied in this fashion, however with a slightly different formal treatment as detailed in [1]). A
subterm convergent system is a convergent rewrite system inwhich in every rewrite rule the right-hand
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side is a proper subterm of the left-hand side. In this paper,we will assume a general rewrite theoryR
subject to the conditions above. Given a rewrite rulet→ s, we call the outermost function symbol int a
destructor, since the application of the rule may open the internal structure of inner terms int to produce
the terms. We classify the remaining function symbols, that never occur as a destructor, asconstructors.
For example, for signatureΣ , {enc/2;dec/2} and equational theoryE , {dec(enc(x,y),y) = x}, dec is
a destructor andenc a constructor. We range over constructors withf and destructors withδ.

We denote the set of names of a termT by names(T) and the depth of a term as|T | (the depth is
the length of the longest path in the tree representation of the term). We state that a term is ground
if it does not contain variables. We denote by=E the usual congruence relation induced by the set of
equationsE (which can be decided through term rewriting sinceR is convergent). We writeF(ψ) for
the DY (Dolev-Yao) equational closure of a set of termsψ, that is, the set of all values (destructor-free
terms) generated by terms ofψ through function application, modulo the equational theory. This closure
represents all possible information that may be produced from a set of terms while following the rules
of the equational theory, which if we interpret a set of termsas a set of messages, is the usual notion of
knowledge from the Dolev-Yao model.
Definition 2.1 (Equational Closure) Given a rewrite theoryR, the DY equational closure of a set of
termsψ, notedF(ψ), is the least set of terms such that:

1. ψ ⊆ F(ψ)

2. ∀ f ∈ Σ. if f a constructor and t1, . . . , tk ∈ F(ψ) then f(t1, . . . , tk) ∈ F(ψ)

3. ∀δ ∈ Σ. if δ a destructor and t1, . . . , tk ∈ F(ψ) andδ(t1, . . . , tk)→ t′ then t′ ∈ F(ψ)

When interpreting the DY equational closure of a set of termsas obtainable knowledge, we can state
knowledge derivation through term derivation.
Definition 2.2 (Knowledge Derivation). Given sets of termsψ andφ, we say thatφmay be derived from
ψ (writtenψ |= φ) if and only ifφ ⊆ F(ψ).
The general idea is that one may can derive a piece of information if it can be generated by combining
pieces of information using the rules of the equational theory. Given these basic notions relative to terms,
equational theories, and knowledge derivation, we may now present our process calculus model.

2.2 Process Calculus

It is known that the high level of abstraction of theπ-calculus, convenient from a foundational perspec-
tive, is not suitable for modeling cryptographic techniques as necessary for analyzing security protocols.

We therefore adopt an extension to theπ-calculus that extends the base values of the language with
functional terms (cf. Section 2.1), that can be seen as a fragment of the Appliedπ-calculus [2]. We choose
this calculus over the appliedπ-calculus mainly for simplicity reasons, not requiring active substitutions
nor frames given that our goal is to use our logic to observe terms.

We model cryptographic operations by defining such operations in a term algebra. The calculus is
thus aimed at the explicit modeling of agents involved in security protocols, both principals and adver-
saries. Principals are modeled standardly, using terms to model cryptographic terms. Adversaries are
modeled as processes (cf. Section 4.1) using the attacker output prefix - a non-deterministic output of
terms that can be generated from known values, which enablesreasoning directly about attacker knowl-
edge using our logic.

Definition 2.3 (Processes)Given a signatureΣ, an infinite set of names ranged over by m,n, and an
infinite set of variables ranged over by x,y,z, the set of processes(P,Q), of actionsα and of terms T are
defined in Fig. 2.
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P,Q F 0 (Null Process)
| P | Q (Parallel Composition)
| (νn)P (Name Restriction)
| α.P (Action Prefix)
| P+Q (Choice)
| let x= T in P (Let Construct)

α F m(x) (Input)
| m〈T〉 (Output)
| m〈∗〉 (Attacker Output)
| [T1 = T2] (Test)

T F n (Name)
| x (Variable)
| f (T1, . . . ,Ta) (Function)

Figure 2: Process Calculus Syntax

sub(δ(t1, . . . , tn)) , sub(t1)∪ · · ·∪ sub(tn)
n is a name
sub(n) , n

x is a variable
sub(x) , ∅

∄ti with a variable or a destructor
sub( f (t1, . . . , tn)) , f (t1, . . . , tn)

∃ti with a variable or a destructor
sub( f (t1, . . . , tn)) , sub(t1)∪ · · ·∪ sub(tn)

Figure 3: Relevant Subterms

Before introducing the semantics of our calculus, we present some definitions that pertain to obtain-
ing therelevant termsof a process that are necessary for our semantics.

A destructor function symbol denotes computation at the term level. If such computations are valid
(under the equational theory), then the term containing thedestructor can be rewritten as one that only
has constructors. On the other hand, if such a term cannot be reduced (e.gdec(enc(m,k1),k2)), it has no
interesting meaning and has no place being communicated. Toobtain the values (destructor free normal
forms) of a process, we define a relation⊢k that extracts the set of valuesψ that occur in a process (P⊢k ψ).
However, some care is needed in the definition of⊢k since a term may contain bound names or variables.
For instance, in the processa(x).a〈dec(x,k)〉.0, the termdec(x,k) is not a proper value since it contains
the variablex. In these situations, our extraction has to be such that it will produce a set containingk
but notx (nor dec(x,k)). Similarly, when we consider the terms that are to be the object of our attacker
output, while it is true that outputting a term containing a variable would be senseless, it is correct to
output a term that contains a restricted name, even though the attacker may not be able to use the name
in other messages.

To take all this into account, we define a proceduresub that extracts therelevant subterms(not
containing variables or destructors) of a term, and a procedure↑ used to eliminate terms with restricted
names.

Definition 2.4 (Relevant Subterms)Given a term M we define the set of its relevant subterms, written
sub(M), by the rules of Fig. 3.

Definition 2.5 (Name Occurrence Term Removal)We define the removal of terms from a setψ in
which the name x occurs,ψ ↑ x, as: ψ ↑ x, {t | t ∈ ψ : x< names(t)}.

Definition 2.6 (Relevant Term Extraction) Given a process P, the setψ of relevant terms of P, written
P ⊢k ψ, is defined by the rules of Fig. 4.

For our attacker output we collect all ground terms that occur in the process, which we denote bygt(P).
The semantics of our calculus are defined standardly, moduloα-conversion of bound names and

variables, by a structural congruence relation, labelled transition and reduction, as follows. We denote
by f n(P) and f v(P) the set of free-names and free-variables of processP, respectively.
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P ⊢k ϕ Q ⊢k ψ
P+Q ⊢k (ϕ∪ψ)

P ⊢k ϕ Q ⊢k ψ
P | Q ⊢k (ϕ∪ψ)

P ⊢k ϕ
n(x).P ⊢k ϕ

P{n← M} ⊢k ϕ
let n= M in P ⊢k ϕ∪ sub(M)

0 ⊢k ∅
P ⊢k ϕ

x〈M〉.P ⊢k ϕ∪ sub(M)
P ⊢k ϕ

(νn)P ⊢k ϕ ↑ n
P ⊢k ϕ

[M = N].P ⊢k ϕ∪ sub(M)∪ sub(N)

Figure 4: Relevant Term Extraction

n < f n(P)∪ f v(P)⇒ P | (νn)Q≡ (νn)(P | Q)
(νn)0≡ 0
(νn)(νm)P≡ (νm)(νn)P
M =E M′⇒ let x= M in P≡ let x= M′ in P
M =E M′⇒m〈M〉.P≡m〈M′〉.P
M1 =E M′1⇒ [M1 = M2].P≡ [M′1 = M2].P

P | 0≡ P
P | Q≡ Q | P
P | (Q | R) ≡ (P | Q) | R
P+Q≡ Q+P
P+ (Q+R)≡ (P+Q)+R
[M1 = M2] .P≡ [M2 = M1] .P

Figure 5: Structural Congruence

Definition 2.7 (Structural Congruence) Structural congruence≡ is the least congruence relation on
processes defined by the rules of Fig. 5.

We augment the standard structural congruence laws of theπ-calculus with rules that equate processes
modulo the equality=E of the equational theory. These laws are essential in our semantics because they
allow us to block processes performing actions that use terms that are not values (i.e. terms that contain
destructors).

Our semantics, which we now present, capture thesedestructor freedomconditions. If a process
is attempting to use a term that contains a destructor, we usestructural congruence to rewrite the term
destructor-free and reduction proceeds. If the term cannotbe rewritten destructor-free, reduction halts.
These restrictions ensure that all received terms are actual values, and not some arbitrary erroneous term.
Note the semantics of our attacker output, expressed in theAttackerrule, that enable the output to emit
any message that can be generated by the process, given its ground terms and some fresh values.

Definition 2.8 (Reduction Semantics)The reduction relation P−→ Q over closed processes is defined
as the least relation closed under the rules of Fig. 6.

Definition 2.9 (Labelled Transition Semantics) The labelled transition relation P
α
−→ Q is the least

relation on closed processes closed under the rules of Fig. 7.

Our labelled semantics is not intended to characterize a complete notion of behavioral equivalence as
could be expected, but rather to allow the observation of actions in our logic. Despite not belonging
to the scope of this work, we can point out that our labelled semantics do not allow for a complete
characterization of behavioral equivalence, in the sense that our rules reveal information in a way that
induces a higher discriminative power then that of behavioral equivalence.

3 Logic

Considering it is common to reason about security by reasoning about the knowledge of principals, we
explore key aspects of dynamic spatial logics, such as localreasoning, to develop a logic that can reason
about epistemic, dynamic and spatial properties of agents.

We propose an extension to a dynamic spatial logic [7] to enable reasoning at the term level. Our
extension consists of adding two epistemic modalities:Kφ denotes the ability of an agent to deriveφ
from its knowledge, andSx.A allows us to mention values that are only known by an agent (e.g. secrets).
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M is destructor-free
let x= M in P−→ P{x← M}

(Let)
M is destructor-free

n〈M〉.P+R | n(x).Q+S−→ P | Q{x← M}
(Sync)

M1 and M2 are destructor-free M1 =E M2

[M1 = M2] .P−→ P
(Test)

P−→ Q
P | R−→ Q | R

(Par)
P−→ Q

(νn)P−→ (νn)Q
(Scope)

P≡ P′ P′ −→ Q′ Q′ ≡ Q
P−→ Q

(Cong)
M ∈ F(ct(Q)∪ n̄) n̄ fresh

c(x).P+R | c〈∗〉.Q+S −→ (νn̄)(P{x← M} | Q)
(Attacker)

Figure 6: Reduction Semantics

P−→ Q
(Tau)

P
τ
−→ Q

M is destructor-free
(Out)

n〈M〉.P
n〈M〉
−→ P

M is destructor-free
(Inp)

n(x).P
n(M)
−→ P

M ∈ F(gt(P)∪ s̄) s̄ fresh
(AttackerOut)

n〈∗〉.P
νs̄.n〈M〉
−→ P

P
α
−→ Q ∀n ∈ ū: n < names(α)

(Res)
(νū)P

α
−→ (νū)Q

P
n〈M〉
−→ P′ s̄⊆ names(M) ands̄⊆ ū ū′ = ū\ s̄

(νū)P
νs̄.n〈M〉
−→ (νū′)P′

(BoundOut) P≡ P′ P′
α
−→ Q′ Q′ ≡ Q

P
α
−→ Q

(Cong)

Figure 7: Labelled Transition Semantics

Our intent is to couple the ability to reason about properties of space and behavior with that of reasoning
about derivable information modulo the equational theory.Our notion of knowledge is therefore the
ability of an agent to derive terms from the information it possesses.

3.1 Syntax and Semantics

The syntax and semantics of our logic are presented in Fig. 8.We refer toφ,ψ as knowledge formulas
and ambivalently useφ,ψ to denote both knowledge formulas and finite sets of terms. The boolean
connectives are standard.0 denotes the empty process;A | B denotes a process that can be partitioned in
two components, one satisfyingA and the other satisfyingB; Hx.A allows us to mention restricted names
of processes in formulas;α.A denotes a process can perform actionα and continue as a process satisfying
A; �A and^A denote “always in the future” and “sometime in the future”, respectively.Kφ holds of a
process that has the ability to derive the terms denoted byφ, that is, the ability to knowφ; Sx.A holds of
a process that satisfies propertyA that depends on a value that is secret to a process – a term containing
a restricted name. It is also useful to define an auxiliarycounting predicate(written asn, wheren is
a natural number), that allows us to count the number of sub-processes within a process. For instance,
a process consisting of a single thread would satisfy the formula 1 defined as¬0∧¬(¬0 | ¬0), while a
process consisting of two sub-processes would satisfy the formula2 defined as¬0∧¬1∧¬(¬0 | ¬0 | ¬0),
and so on.

With this logic, we can state properties about the knowledgeof agents (and not only adversarial ones)
over time, such as “it is never the case that the secret key is known by 3 subsystems”:

¬^H key.(K key| K key| K key)

or “it is always the case that 2 agents know the key and one doesnot”: �H key.(K key| K key| ¬K key).
Since the semantics of our logic blur together processes that are structurally congruent (e.g.P | Q and



8 A Spatial-Epistemic Logic for Reasoning about Security Protocols

A,B F T (True)
| ¬A (Negation)
| A∧B (Conjunction)
| 0 (Void)
| A | B (Composition)
| Hx.A (Hidden quantification)
| α.A (Action)
| �A (Always)
| ^A (Eventually)
| @n (Free-name Predicate)
| Kϕ (Knowledge)
| Sx.A (Secret quantification)

φ,ψ F ϕ∧ψ (Conjunction)
| t (Term)
| ⊤ (True)

P |= T , True
P |= ¬A , not P|= A
P |= A∧B , P |= A and P|= B
P |= 0 , P≡ 0
P |= A | B , ∃Q,R.P≡ Q | R and Q|= A and R|= A
P |= Hx.A , ∃Q.P≡ (νn)Q and Q|= A{x← n}

P |= α.A , ∃Q.P
α
→ Q and Q|= A

P |= �A , ∀Q s.tP
τ∗

→ Q then Q|= A

P |= ^A , ∃Q.P
τ∗

→ Q and Q|= A
P |=@n , n ∈ f n(P)
P |= Kφ , P ⊢k ψ andψ |= φ
P |= Sx.A , ∃Q, t.P≡ (νk)Q and Q|= A{x← t}

and Q⊢k φ such that t∈ φ
and k∈ names(t)

Figure 8: Logic Syntax and Semantics

Q | P), we can use the free-name predicate to “tag” specific subsystems and reason about their knowledge
explicitly: �H key.(@tag∧K key|T) which denotes “it is always the case that an agent with the free name
tag knows the key” (this subsumes the need for an indexed knowledge operator such as that in [15]).

Notice how the expressiveness of the logic arises from the ability to combine the three types of
modalities: dynamic (�,^), spatial (H, | ) and epistemic (K). The dynamic connectives allow us to range
over a specific execution or all possible executions, the spatial connectives allow us to mention restricted
names (usually used to model keys and nonces) and to refer to subsystems, and the epistemic connectives
allow us to analyze derivable terms of a process.

The semantics forKφ pose a challenge in the sense that they use the notion of knowledge derivation
from Section 2.1. While this definition is adequate from a semantic perspective, it makes use of the DY
equational closure of a set which is not stable by reduction of terms, and thus doesn’t provide a clear
way of algorithmically determining ifψ |= φ. We approach the problem with a purely logical approach
and characterize knowledge derivation with a structural proof system for knowledge formulas, unlike the
approach of [1].

3.2 Proof System for Knowledge Formulas

Our proof system, formulated as a sequent calculus, is equipped with rules from the equational theory
in order to consider the ability to combine terms to generatenew information. Each rule of our calculus
represents a possible computational step that an agent can perform on terms to produce a new term.
Intuitively, if a sequentΓ ⊢ φ is derivable, the knowledge formulaφ is deducible from the knowledge
represented byΓ.

Definition 3.1 (Proof System K for Knowledge Formulas) The sequent calculus formulation of our
proof system K for knowledge formulas is defined by the rules of Fig. 9.

The rules for identity and conjunction are standard. RulefunRightstates that we are justified in conclud-
ing a complex term if we can derive its subterms. RuleAttLeftstates that all that can be derived from a
complex termf (t1, . . . , tn) can also be derived from its subterms; ruleDestrLeftreflects the equalities of
the equational theory: what can be deduced fromscan also be deduced from terms equal tos under the
equational theory.
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Γ,A ⊢ A
(Id)

Γ,A,B ⊢C
Γ,A∧B ⊢C

(∧: left)
Γ ⊢ A Γ ⊢ B
Γ ⊢ A∧B

(∧: right)

For every constructor function symbolf with arity n, such thatf ∈ Σ:

Γ ⊢ t1 . . .Γ ⊢ tn
Γ ⊢ f (t1, . . . , tn)

(funRight)
Γ, f (t1, . . . , tn) ⊢C
Γ, t1, . . . , tn ⊢C

(AttLeft)

For every equationf (t1, . . . , tn) = s∈ E:

Γ, s⊢C
Γ, f (t1, . . . , tn) ⊢C

(DestrLeft)

Figure 9: Proof System for Knowledge Formulas

For the sequent calculusK, we establish the results ofsoundness, completenessanddecidability.

Theorem 3.2 (Soundness of K)Given a set of terms S and a term A, if S⊢ A then S|= A.
Proof: By induction on the derivation of S⊢ A �

Theorem 3.3 (Completeness of K)Given a set of terms S and a term A, if S|= A then S⊢ A.

Theorem 3.4 (Decidability of K) For any set of terms S and term A, S⊢ A is decidable.

The proofs of completeness and decidability rely on a finite approximation result for the DY equa-
tional closure of a set of terms. More concretely, for each finite set of termsS and equational theory,
it is possible to build a finite setb(S) from which all terms in the DY equational closure ofS may be
determined.

Proposition 3.5 (Approximation of F(S)) Let S be a finite set of terms. We may construct in polyno-
mial time an approximation toF(S), named b(S), a finite set with the following property:

∀M ∈ F(S),∃C, t̄ ∈ b(S) such that M=C[ t̄]

where C[−] is a functional context solely built out of constructors.
Proof: The finite approximation b(S) is built from the terms of S by interpreting the rewrite rulesof
the theory as contexts of a bounded size. Therefore, applying function symbols to terms of S up to the
bound of the context produces a new term by then applying the rewrite rule. This procedure is iterated,
eventually reaching a fix-point, due to the subterm convergency property of the equational theories (the
idea is that each time we produce a new term, the term will be smaller then the terms used to generate
it). The resulting computable set has the property that defines our approximation [17]. �

The approximationb(S) is such that all terms ofF(S) can be built from terms ofb(S) just by applying
constructors, no longer requiring the equations from the theory. Completeness follows from the fact that
our proof system is able to emulate the computation steps required to generate the approximation. Given
a set of termsS, b(S) is generated by applying functions to terms ofS, applying a rewrite rule to the
resulting term and iterating. Thus, our proof system is complete since the computation steps ofb(S) may
be emulated by the rules of proof system K, and we may then apply function symbols to terms ofb(S)
to produce terms ofF(S). The latter is trivial due tofunRightandAttLeft. The former we prove through
the following lemma.

Lemma 3.6 (Completeness of K i.r.t the Approximation). Given a set of terms S ,if t∈ b(S) then S⊢ t.
Proof: Through instances ofAttLeft it is possible to apply functions to terms of S up to the bound of the
context used in b(S). Through an instance ofDestrLeftthe corresponding rewrite rule can applied, and
throughId the new term is derived at the root of the proof tree [17]. �
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To emulate the iteration with the proof system, that is, to perform similar computations withS and the
new term, the auxiliary result of reasoning with cuts is required.

Lemma 3.7 (Cut Admissibility in K). If Γ ⊢ A andΓ,A ⊢C thenΓ ⊢C.
Proof: See [17].

Using Cut, the proof system is able to emulate the iterative procedure by building the previously de-
scribed proof tree that allows the derivation of a new term, and using the new term as the cut formula.
This technique can then be applied to produce any term ofb(S), as required. Since the computation of
b(S) always terminates, Theorem 3.4 holds.

3.3 Model-Checking

We know that model-checking is decidable for the logic without the new modalities [7], for the class of
bounded processes. Therefore, we need only show that our twomodalities preserve decidability.

Proposition 3.8 (Decidability of model-checkingK) Let φ be a finite set of terms. Checking that P|=
Kφ is decidable.

The above proposition holds since for any processP it is possible to collect its set of relevant termsψ
(P ⊢k ψ), compute the finite approximationb(ψ) and check that each term inφ can be constructed from
terms ofb(ψ) by application of constructors.

Proposition 3.9 (Decidability of model-checkingSx.A) Checking that P|= Sx.A is decidable.

Decidability ofSx.A follows from the fact that ifP≡ (νn)Q, it is possible to collect the setψ of relevant
terms of process Q, pick some termt fromψ that contains the namen and check thatQ |= A{x← t}. Given
that model-checking the core logic withK is decidable, it follows that checkingP |= Sx.A is decidable
and therefore model-checking for our logic is decidable forthe class of bounded processes.

Theorem 3.10 (Decidability of Model-Checking)Checking that P|= A is decidable for the class of
bounded processes.

4 Expressiveness and Extensions

Having presented our framework, we discuss some extensionsto our work that can be used to model and
analyze systems. In particular, we discuss the representation of attackers and modeling and verification
of correspondence assertions [18] in our framework.

4.1 Modeling Attackers

To analyze a security protocol one usually needs to considerhow it behaves in any possible environment.
While our logic focuses on the analysis of closed systems, itis possible to verify properties of a system
in an arbitrary environment, by internalizing an arbitraryattacker in the system. The general idea is that,
for any processP, we may determine a processQ (making essential use of the attacker prefix construct)
such thatP|Q reaches some state wheneverP reaches an equivalent state when placed in an arbitrary
environment. While the explicit specification of an attacker for a given protocol may not be easy, our
approach to represent the attacking environment is quite different and general, and may indeed be used
to find attacks (see example in Section 4.2). We can generically model a Dolev-Yao [12] attacker in our
framework by considering the number of message exchanges and the communication channels used in a
protocol.
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A(K) , (νKab,N) c〈enc(pair(Kab,N),K)〉.c(x).[N−1= dec(x,Kab)]
B(K) , c(x).let Kab = fst(dec(x,K)) N = snd(dec(x,K)) in c〈enc(N−1,Kab)〉
S ys , (νK) (A(K) | B(K))

Figure 10: Modeling the Example

Attacker , c(x).c〈∗〉.c(y).c〈∗〉.mem〈x,y〉
World , (S ys| Attacker)
World |= ¬^Hk.(2 | (@mem∧ Kk))

Figure 11: An Attacker for the Example

Considering an arbitrary protocol modeled as a process, therole of an attacker is to intercept all
communications of the principals and be able to inject any message it can produce, given its knowledge
at the time, at any point where a principal expects to receivea message (cf. our attacker output). Thus,
a Dolev-Yao attacker consists of a process that for all outputs of the protocol performs an input (storing
the received message) and for all inputs performs an attacker output. For instance, consider the following
protocol, whereK is a shared key,N a fresh value andKab a session key generated byA:

A→ B : {Kab,N}K
B→ A : {N−1}Kab

In our process model, such a protocol would be represented asdone in Fig. 10 (we omit the signature
and equational theory). An attacker for this protocol, following ourattacker schemais presented in Fig.
11. We can then state that it is never the case that the attacker can know one of the keys used in the
protocol. While some minor effort of representing an attacker is necessary, we can easily represent a
generic attacker for a protocol by following a pre-determined schema.

We currently only consider finite protocols, modeled as processes in our calculus that use a commu-
nication channelc as their communication medium (writtenPc). We have not pursued infinite protocols
as of yet, but we believe it to possible to extend our approachto infinite protocols by defining the attacker
as a recursive process with a parallel store (that is used to store the messages of the protocol). To analyze
such a system, we would then employ recursive formulas by using the fixpoint operators of the logic.

Our attacker for finite protocols is defined as follows: For each output onc, the attacker performs an
input onc (and stores the message). For each input onc, the attacker performs an attacker output.

Definition 4.1 (Attacker Generation Procedure) Given a process Pc that models a finite protocol, the
set S that tracks the attacker memory, an attacker for P can begenerated by procedureAttacker(P,S)
defined in Fig. 12 (x and m are fresh in P and the attacker).

The generation procedure produces the necessary actions byinspection of the process dynamics: if an
output can occur in the process, the attacker intercepts themessage and memorizes it; if an input can
occur in the process, the attacker injects any message it canproduce from its knowledge; in the case
where the protocol has no more actions, we represent the attacker memory with an outputm〈x1, . . . , xn〉,
modeling the attacker’s memory throughout the protocol run. We thus show how an attacker can be
extracted by inspection of the considered protocol. We can show that this attacker is general in our
framework, in the sense that it can simulate the behavior expected from an adversarial medium (c.f.
Dolev-Yao attacker). Note that this result does not yet fully apply to our tool implementation, as we
discuss later in this section.
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proc Attacker(P,S) ≡

if P
α
→ Q ∧ α = input onc then c〈∗〉.Attacker(Q,S) fi

if P
α
→ Q ∧ α = output onc then c(x).Attacker(Q,S∪ x) fi

if P
α
9 then m〈x1, . . . , xn〉 wherexi ∈ S fi.

Figure 12: Attacker Generation

Definition 4.2 (K-Set) Given a process P, we define its K-Set KP, the set of all terms known by P as:
KP , {t | P |= K t }

Theorem 4.3 (Monotonicity of K-Sets under Synchronization) Let Pc and A be a processes such that

Pc
c〈M〉
−→ P′c and A

c(x)
−→ A′. We have that KA′ ⊆ F(KA∪M).

We begin with the K-Set of a process, the set of all terms knownby the process that we observe
in our logic, and we show that the evolution of arbitrary processes’ K-Sets through synchronization is
monotonic: the resulting process’ knowledge will be a subset of the initial process’ knowledge, plus
any received messages. We state a similar property of our generated attacker’s K-Set. Over time, the
attacker’s K-Set captures all messages exchanged in the protocol.

Theorem 4.4 (Monotonicity of Attacker Storage) Let Pc and At be processes such that

At= Attacker(Pc, {},c), P
c〈M〉
−→ P′ and At

c(x)
−→ At′. We have that KAt′ = F(KAt∪M).

Our Attacker Simulation (Lemma 4.5) and Process Knowledge (Lemma 4.6) lemmas provide some
insight on the expressiveness of our attacker. Lemma 4.5 shows that a generated attacker, can obtain as
much knowledge as an arbitrary process interacting with a finite protocol. Lemma 4.6 states a similar
property, regarding the knowledge a finite protocol may obtain while interacting with our attacker.

Lemma 4.5 (Attacker Simulation) Let Pc and A be processes.
If (νn̄)(Pc | A) −→ (νn̄)(P′c | A

′) and At= Attacker(Pc,S) with KA ⊆ KAt then∃At′,S′ such that

(νn̄)(Pc | At)
∗
−→ (νn̄)(P′c | At′) and At′ = Attacker(P′c,S∪S′) and KA′ ⊆ KAt′ .

Lemma 4.6 (Process Knowledge)Let Pc, A be processes andφ a knowledge formula.

If (νn̄)(Pc | A)
∗
−→ (νn̄)(P′c | A

′) and P′c |= Kφ and At= Attacker(Pc,S) with KA ⊆ KAt then∃At′,S′ such

that (νn̄)(Pc | At)
∗
−→ (νn̄)(P′c | At′) and P′c |= Kφ and At′ = Attacker(P′c,S∪S′).

Furthermore, from Lemma 4.6 follows that, in our logic, a finite protocol interacting with an arbitrary
process is indistinguishable from one interacting with ourattacker. Combining these results, we can show
that our attacker can behave as one would expect of an adversarial Dolev-Yao agent.

Theorem 4.7 (Preservation of Satisfaction)Let Pc and A be processes and A any formula. If

(νn̄)(Pc | A)
∗
−→ (νn̄)(P′c | A

′) and P′c |= A and At= Attacker(Pc,S) with KA ⊆ KAt then∃At′,S′ such that

(νn̄)(Pc | At)
∗
−→ (νn̄)(P′c | At′) and P′c |= A and At′ = Attacker(P′c,S∪S′).

Notice that this result follows from the fact that message size for the attacker output prefix is unbounded.
Our implementation currently bounds the generated message, to ensure tractability, and thus sacrificing
completeness. However, as shown in [16], it is possible to compute a finite bound on the message size
required to find an attack. The implementation of this resultwe leave for future work. It is anyway
important to note that our method is alreadysound and completefor passive attackers, even for the case
of non finite processes (eg. we may consider any finite controlsystem, or bounded in the sense of [7]).
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parameter attacker_depth = 2;

defproc A(k) = new N in c!(enc(N,k)).c?(x).[dec(x,k)=h(N)].end!(h(N));

defproc B(k) = c?(x).(begin!(dec(x,k)) | c!(enc(h(dec(x,k)),k)));

defproc Sys = new k in (A(k) | B(k));

defproc Attacker = c?(v).c!(*).s!(v);

defproc World = (Sys | Attacker);

defprop begin = <begin!> true;

defprop end = <end!> true;

defprop corrsp = always (end => begin);

check World |= corrsp;

Processing...

* Process World satisfies the formula corrsp *

Figure 13: Checking Correspondence in a Toy Protocol
...

defproc Sys = new k in (c!(k).(A(k) | B(k)));

defproc Attacker = c?(u).c?(v).c!(*).s!(v,u);

defproc World = (Sys | Attacker);

...

check World |= corrsp;

Processing...

* Process World does not satisfy the formula corrsp *

Figure 14: Checking Correspondence in a Broken Toy Protocol

4.2 Modeling Correspondence Assertions

Correspondence assertions are a technique for verifying authentication properties in protocols [18]. The
idea is that the model of each principal in a protocol is refined with begin/end events, namedcorrespon-
dence assertions, at each stage of an authentication procedure. Authentication will be established if,
for every run of the protocol, all end events for each stage are preceded by a matching begin event. To
illustrate the idea, consider the following protocol:

A→ B : {N}k; B asserts the reception ofN
B→ A : {h(N)}k; A asserts the reception ofh(N)

PrincipalsA andB share a symmetric keyk, N is a fresh value andh is a one-way hash function. When
B receives{N}k it asserts the beginning of the run of the protocol.B sends message{h(N)}k so thatA
can verify the freshness of the run, by comparing the received value with its own hash ofN. If the test
succeeds,A asserts the reception ofh(N) and the end of the run. To check correspondence, one has to
check that every run of the protocol, in the presence of an adversary, would be such thatA’s end assertion
is always preceded byB’s begin assertion, that is,A only ends ifB was involved in the protocol.

Using our framework, we can model correspondence assertions by representing the assertion as an
output on a channel that is irrelevant to the protocol, and then observing the existence of such outputs with
our logic. For instance, our example could be modeled as donein Fig. 13 (note theattacker_depth
parameter set to 2 due to the size of the second message). We can also successfully handle the case
where we consider a faulty system that leaksk to the attacker (and thus correspondence does not hold),
as presented in Fig. 14.

5 Concluding Remarks and Related Work

In this paper we have introduced a dynamic spatial epistemiclogic for a variant of the appliedπ-calculus
aimed at reasoning about security protocols. We explore theapplication of spatial and epistemic rea-
soning to the several agents involved in a security protocol, be they principals or adversaries. In our
work, we can reason about the knowledge of the several agentsof a protocol and how it can evolve over
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time. Model-checking for the logic is shown to be decidable for an interesting class of processes and
cryptographic primitives.

Our framework allows an interesting degree of freedom in theanalyses it can perform, not only
allowing one to reason directly about knowledge of principals and attackers but also enabling reasoning
with correspondence assertions, which is an important addition to the range of available techniques.
Moreover, our internalization of attackers, which does notrequire a complete behavioral specification, is
able to accurately emulate the behavior of a Dolev-Yao attacker, enabling reasoning about the dynamics
and knowledge of such an attacker.

Finally, the decidability result for our logic allowed us toimplement a model-checking algorithm as a
proof of concept extension to the SLMC tool. The main difference between the tool and the theory is that
our attacker outputs are parametrized with a maximum message size, to bound the state space. This is the
main limitation of the current version of our tool, since it does not yet fully capture the expressiveness of
our attacker modeling, given that our results employ a more powerful version of the attacker output.

Overall, we have produced an interesting framework for protocol analysis, the first employing dy-
namic spatial logics. enabling a very natural (yet precise)way of reasoning about security protocols,
all the while allowing reasoning with previously established techniques. Note, however, that our tool is
merely a proof of concept of the developed framework, not aimed to compete with more mature tools
for protocol analysis such as Avispa [4], Scyther [9], Casper [13] or ProVerif [5]. The main point of
divergence of our approach and the ones mentioned before is that instead of mainly focusing on a set of
built-in properties, we focus on a generic property language (our logic) and explore its expressiveness.

In terms of related logics, Kremer et al. [8] have proposed anepistemic logic for the appliedπ-
calculus. However, their logic lacks the ability to reason about spatial properties, which is a key element
in allowing reasoning about individual agents. Their epistemic modalities focus solely on attacker knowl-
edge, not allowing one to state a property such as that of our introductory example where we care about
the knowledge of the attacker but also of the agents within the system.

Another closely related logic is Datta et al.’s PCL [10]. PCLis a well established protocol analysis
logic that allows one to verify properties of protocols modelled in a CCS style calculus by reasoning
about events that occur in traces of the protocol run. While we focus on the combined reasoning about
knowledge and spatial distribution of a protocol, PCL is designed to reason about the composition of
several protocols and thus its analyses are more sophisticated than ours (reasoning about invariants in the
protocol composition interleavings).

Mardare and Priami have also proposed a dynamic epistemic spatial logic [15] without the issues
of security in mind. Their logic is hence substantially different from ours, interpreting knowledge as
the possibility of observing actions of other processes andnot as the ability to know some piece of
information. Being based on CCS, such an approach is not suitable for reasoning about the flow of
messages within a system, which is one of our main goals.

For future work we wish to further study the problem of attacker representations, aiming at an ex-
pressiveness result along the lines of Theorem 4.6 that doesnot require the attacker to be able to produce
a message of an arbitrary size (this should follow from the result of [16]). This result will be key in
removing the previously discussed limitation of our tool.
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[18] Thomas Y. C. Woo & Simon S. Lam (1993):A Semantic Model for Authentication Protocols. In: SP ’93:
Proceedings of the 1993 IEEE Symposium on Security and Privacy, IEEE Computer Society, Washington,
DC, USA, p. 178.

http://dx.doi.org/10.1007/11513988_27

	1 Introduction
	2 Process Model
	2.1 Terms and Equational Theories
	2.2 Process Calculus

	3 Logic
	3.1 Syntax and Semantics
	3.2 Proof System for Knowledge Formulas
	3.3 Model-Checking

	4 Expressiveness and Extensions
	4.1 Modeling Attackers
	4.2 Modeling Correspondence Assertions

	5 Concluding Remarks and Related Work

