A Spatial-Epistemic Logic for
Reasoning about Security Protocols

Bernardo Toninho
CITl and Faculdade de Ciéncias e Tecnologia, Universidimlea de Lisboa
Carnegie Mellon University, Pittsburgh PA, USA

Btoninho@cs.cmu.edu

Luis Caires
CITl and Faculdade de Ciéncias e Tecnologia, Universidimlea de Lisboa

Luis.Caires@fct.unl.pt

Reasoning about security properties involves reasoniogitabherethe information of a system
is located, and how it evolves over time. While most secuaitalysis techniques need to cope
with some notions of information locality and knowledge pagation, usually they do not provide
a general language for expressing arbitrary propertieshiing local knowledge and knowledge
transfer. Building on this observation, we introduce a fearark for security protocol analysis based
on dynamic spatial logic specifications. Our computationatiel is a variant of existing-calculi,
while specifications are expressed in a dynamic spatiat legiended with an epistemic operator.
We present the syntax and semantics of the model and logicdiaonuss the expressiveness of the
approach, showing it complete for passive attackers. \Wepalsve that generic Dolev-Yao attackers
may be mechanically determined for any deterministic fipitetocol, and discuss how this result
may be used to reason about security properties of opemsyste also present a model-checking
algorithm for our logic, which has been implemented as aaresibn to the SLMC system.

1 Introduction

Among the several artifacts in the field of computer secusgcurity protocols are indubitably a fun-
damental subject of study and reseafch [12, 11]. Securitippols serve a variety of purposes, ranging
from secrecy and authentication to forward secrecy andatdémiencryption. A common trait of these
protocols is their notoriously fficult design, which often leads to unforeseen vulneragditi

Therefore, it becomes essential to develop techniquestizatre the correctness of protocols, with
respect to some specification of the properties they aimtabksh. A wide range of language-based
techniques have been proposed to analyze protocols amathetctness, such as type systems, process
calculi or static analysis [8/) 6] 2] which in many cases resutuccessful tools [5,4, 13| 9].

In this paper we propose a framework for protocol analysgetaon process calculus models and
logic specifications. While the usage of process calculilagit in this context is not new [14, 8] 2],
our approach stems from the fact that many interesting ptiegeof such systems are often a function
of what information the several parts of a system may or mayhtain. While other frameworks (e.qg.,
Avispa [4] and Casper [13]) allow one téfieiently verify a wide range of interesting security projest
these are not usually stated in this high-level knowledignted approach.

Our contribution consists of a dynamic spatial epistemgidahat allows reasoning about systems
(modelled in a variant of the appliedcalculus[2]) at three levels: trdynamicsof systems and subsys-
tems, thespatialarrangement of systems and subsystems, arkhihwsledgedthe obtainable information)

K. Chatzikokolakis and V. Cortier (Ed.): 8th InternatioWsbrkshop
on Security Issues in Concurrency (SecCo 2010)
EPTCS 51, 2011, pp. =15, doi:10.42BRTCS.51.1

http://dx.doi.org/10.4204/EPTCS.51.1

2 A Spatial-Epistemic Logic for Reasoning about Securitytétols

S(pkp,pkq, sks, pks) = c?(h).select { [pkp
[pkq

getpk(h)].c!(enc_as(pkp,sks)).S(pkp,pka) ;
getpk(h)].c!(enc_as(pkq, sks)).S(pkp,pkq) };

defproc P(skp,hostQ,pks) = c!(hostQ).c?(m).let pkQ = dec_as(m,pks) in
new sK in c!(enc_as(sK,pkQ)).c! (enc(v,sK)).ok!(v);

Q(skq) = c?(ml).let sK = dec_as(ml,skq) in c?(m2).let val = dec(m2,sK) in ok!(val);
defproc Sys = new skp, skq in let pkp = pk(skp) in let pkq = pk(skq)

in let hP = host(pkp) in let hQ = host(pkq)
in (S(pkp,pkq) | P(skp,h® | Q(ska));

World = Sys | Attacker(Sys);

prop pgK = eventually (knows v | knows v | not (knows v))
and always (2 | not (knows v));

check World |= pgK;

* Process World satisfies the formula pgK *

Figure 1: A Motivating Example

of systems and subsystems. The goal is to produce an exgrgseperty language with which we can
reason about a protocol by separating it into ifsadlent agents (malicious and otherwise), and then rea-
son about the knowledge they can obtain and how it can evaleetome. This enables us to express
interesting security properties in a very direct way (egerdgP andQ can obtain value, while agents

A andS cannot). To clarify our approach, consider the example gfiFi

We have a systerBlys composed of three processé%:Q and a key distribution servé&. P wishes
to exchange a valuewith Q. To do so, he request's public key fromS, which S emits in a signed
messageP then uses it to encrypt a generated symmetric session keseaad the key tQ. Afterwards
P will send v encrypted with the session key and termina@will receive the message, decrypt it to
obtainv and terminate. We further model the system running with agoals agent, defined through the
primitive Attacker (Sys). This agent consists of a Dolev-Yao attacker which we dsauSection 4.11.

For this protocol to be correct, it must be the case that tHeimas agent interacting with the system
can never know. Consider, however, a slightly stronger propeyandQ want to exchange securely
(with respect to the malicious agent) but they also do notaietaly trust the serve®. They trust it to
at least distribute the appropriate keys, but want someasses that even thoughoperates according
to protocol, it doesn’t obtain the valweby observing the data exchanges betwBemdQ.

This property, while not impossible to state in other frarngkg, would usually require some sort of
ad-hocmodification to the model (e.g, internalizing the servemrattacker, which seems like an indirect
strategy at best and may not necessarily yield the corredethdn our framework, the property can be
directly stated by combining our epistemic and spatial afpes. A formula that reflects such a property
is pgK: first we state that the system can evolve to a configuratioerevtwo of its subsystem#® (@nd
Q) know v, but the remaining parts of the system do not. This illuegdhe expressiveness of the logic
in terms of reasoning about the knowledge of several partseo€omplex system. Secondly, we state
that throughoutll executions of the system, a part of it will never kneyW2 indicates that there must
be two agents running with the part that does not knewa precise definition is given in Sectioh 3). By
combining spatial reasoning with epistemic reasoning, arestate rich properties of the knowledge of
agents (and groups of agents) — both adversaries and @iseipvithin a complex system, and how they
can share or restrict that knowledge over time.

While our framework is aimed at reasoning about closed systeneaningful analyses of security

B. Toninho, L. Caires 3

protocols must necessarily consider attackers. Tradilignattackers are modelled by an adversarial
environment which interacts with the protocol. In our ckhsgstem approach, we develop a way inter-
nalizing an arbitrary attacker within a closed systenabtomatically(or semi-automatically) deriving a
process representation of such an attacker. This repeggeninakes use of special primitives built into
the process calculus to greatly simplify the actual modglbf the attacker, to the extent that even if the
attacker generation is done semi-automaticallpeiterrequires us to actually encode specific attacks.
In this work, we show that it is possible smtomaticallyderive an attacker (behaving as a Dolev-Yao
adversarial environment) for any finite protocol. To fuliytemate our technique (at the implementation
level), further work is needed (as discussed in Sectiol th&)focus of the current paper being essen-
tially on the expressiveness issues. In any case, we almadyde tool support for arbitrary passive
attackers and foboundedDolev-Yao attackers (where the bound concerns the size rdrgeed mes-
sages); this technique can already be used to automaticadlnattacks, eg., as illustrated in the example
of Sectiorf 4.P.

The technical contributions of this work are as follows. Vég@lop a process calculus model for se-
curity protocols (Section 2.2), inspired in existingcalculi, supporting explicit modeling of adversarial
agents, at an adequate level of abstraction. We introduegvalynamic spatial epistemic logic (Section
[3), oriented for reasoning about spatial distribution ddimation. We develop a logic-based theory of
knowledge deduction (Sectién 8.2) for our models, provaethdpcomplete and decidable. This presen-
tation was used in our model-checking algorithms. We dis@igacker representations (Secfion 4.1),
and how it is possible to produce a generic Dolev-Yao attaftkefinite protocols. We also show how
to model and verify correspondence assertions (Sectignmdr framework. Finally, we implemented
a model-checking algorithm for the logic as an extensiom&SLMC tool, producing the first proof of
concept tool aimed at security protocol analysis usingiaplaigic model checking. The proofs of our
technical results are detailed in [17].

2 Process Model

In this section we introduce our process model, startindy wdme preliminary notions on terms and
equational theory and then introducing our process cadculu

2.1 Terms and Equational Theories

Data exchanged by processes is modeled by terms of a terbralde order to capture cryptographic
operations and data structuring, we will consider termlaige with equational theories (cfl [2]).

We assume an infinite set of variables ranged ovex, Byz, an infinite set of names ranged over by
m,n and range over terms witht,v. Terms are defined from names and variables by applyingimct
symbols. We thus consider a given term algebra to be defirmed & signatur& and an equational
theoryE that defines the “semantics” of the function symbolX.im\n equational theory is a congruence
relation defined by a set of equations of form s.

In certain circumstances, an equational theory may givetosa set of rewrite rules by orienting
each equation to produce the rtile> s, in such a way that two terms are equal modilerhenever that
have a common reduct under rewriting. This is the case oksubtonvergent equational theories [1],
which are the ones that we will focus on in this work (otheratgunal theories, such as AC theories, can
also be applied in this fashion, however with a slightlffelient formal treatment as detailed lin [1]). A
subterm convergent system is a convergent rewrite systaewhich in every rewrite rule the right-hand

4 A Spatial-Epistemic Logic for Reasoning about Securitytétols

side is a proper subterm of the left-hand side. In this paperwill assume a general rewrite thedRy
subject to the conditions above. Given a rewrite tule s, we call the outermost function symboltm

destructor since the application of the rule may open the internacttine of inner terms imto produce
the terms. We classify the remaining function symbols, that neveuoes a destructor, asnstructors

For example, for signatur® = {enc/2;dec/2} and equational theorlg = {dec(enc(X,y),y) = X}, dec is

a destructor andnc a constructor. We range over constructors witlind destructors with.

We denote the set of names of a tefnby name¢T) and the depth of a term &8| (the depth is
the length of the longest path in the tree representatiomeftérm). We state that a term is ground
if it does not contain variables. We denote By the usual congruence relation induced by the set of
equationsk (which can be decided through term rewriting sirlRés convergent). We writg(y) for
the DY (Dolev-Yao) equational closure of a set of tenghat is, the set of all values (destructor-free
terms) generated by termswthrough function application, modulo the equational tige@his closure
represents all possible information that may be producemh @& set of terms while following the rules
of the equational theory, which if we interpret a set of teams set of messages, is the usual notion of
knowledge from the Dolev-Yao model.

Definition 2.1 (Equational Closure) Given a rewrite theoryR, the DY equational closure of a set of
termsy, noted(y), is the least set of terms such that:

1.y W)
2. Yf e X if f aconstructor andd,...,tx € §(y) then f(t1,...,t%) € ()
3. ¥§ e X. if 6 adestructor andst,...,tx € F(¥) andd(ty, ..., t) — t' thent € F(¥)

When interpreting the DY equational closure of a set of team®btainable knowledge, we can state
knowledge derivation through term derivation.

Definition 2.2 (Knowledge Derivation). Given sets of termg and ¢, we say thaty may be derived from

¥ (writteny k= ¢) if and only if¢ C F(y).

The general idea is that one may can derive a piece of infawmétit can be generated by combining
pieces of information using the rules of the equational the@iven these basic notions relative to terms,
equational theories, and knowledge derivation, we may rmasgnt our process calculus model.

2.2 Process Calculus

It is known that the high level of abstraction of thecalculus, convenient from a foundational perspec-
tive, is not suitable for modeling cryptographic technisjas necessary for analyzing security protocols.

We therefore adopt an extension to thealculus that extends the base values of the language with
functional terms (cf. Sectidn 2.1), that can be seen as aneagof the Appliedr-calculus/[2]. We choose
this calculus over the appliegicalculus mainly for simplicity reasons, not requiringieetsubstitutions
nor frames given that our goal is to use our logic to obsemrage

We model cryptographic operations by defining such operatin a term algebra. The calculus is
thus aimed at the explicit modeling of agents involved inusig protocols, both principals and adver-
saries. Principals are modeled standardly, using termsottehcryptographic terms. Adversaries are
modeled as processes (cf. Secfiod 4.1) using the attackeutqurefix - a non-deterministic output of
terms that can be generated from known values, which eneddssning directly about attacker knowl-
edge using our logic.

Definition 2.3 (Processes)Given a signatureZ, an infinite set of names ranged over bynmand an
infinite set of variables ranged over byyxz, the set of process¢R Q), of actionsa and of terms T are
defined in Fig[R.

B. Toninho, L. Caires 5

a = mx (Input)
| mT) (Output)
PQ = 0 (Null Process) | m(s) (Attacker Output)
| P|Q (Parallel Composition) | [To=Ts] (Test)
| ()P (Name Restriction) 1=72
| a.P (Action Prefix)
| P+Q (Choice)
|

X (Variable)

f(T1,...,Ta) (Function)

T == n (Name)
letx=Tin P (Let Construct) :

Figure 2: Process Calculus Syntax

nisaname Xxis avariable
subn) = n sul(x) =0

sulé(ty,...,tn)) = sulty) U--- U sulqty)

At with a variable or a destructor 3t; with a variable or a destructor
sul(f(ty,...,tn)) = f(t,....t0) sul(f(t1,...,tn)) = sult;) U--- U suld(t,)

Figure 3: Relevant Subterms

Before introducing the semantics of our calculus, we preseme definitions that pertain to obtain-
ing therelevant term®f a process that are necessary for our semantics.

A destructor function symbol denotes computation at the tewel. If such computations are valid
(under the equational theory), then the term containingdéstructor can be rewritten as one that only
has constructors. On the other hand, if such a term cannetdueed (e.gec(enc(m, ki), kz)), it has no
interesting meaning and has no place being communicatedbf&in the values (destructor free normal
forms) of a process, we define a relatiqrthat extracts the set of valugghat occur in a proces® ¢k ¥).
However, some care is needed in the definitionafince a term may contain bound names or variables.
For instance, in the procesx).a(dec(x,k)).0, the termdec(x,K) is not a proper value since it contains
the variablex. In these situations, our extraction has to be such thatllitpnoduce a set containing
but notx (nor dec(x,k)). Similarly, when we consider the terms that are to be theablof our attacker
output, while it is true that outputting a term containingaiable would be senseless, it is correct to
output a term that contains a restricted name, even thouwghttacker may not be able to use the name
in other messages.

To take all this into account, we define a procedsub that extracts theelevant subtermgnot
containing variables or destructors) of a term, and a praesdused to eliminate terms with restricted
names.

Definition 2.4 (Relevant Subterms)Given a term M we define the set of its relevant subterms enritt
sul(M), by the rules of Fig.13.

Definition 2.5 (Name Occurrence Term Removal)We define the removal of terms from a gein
which the name x occurg, T X, as: ¢ T x={t|tey :x¢ namegt)}.

Definition 2.6 (Relevant Term Extraction) Given a process P, the sgtof relevant terms of P, written
P ¢ ¢, is defined by the rules of Figl 4.

For our attacker output we collect all ground terms that oatthe process, which we denote giP).

The semantics of our calculus are defined standardly, maghdonversion of bound names and
variables, by a structural congruence relation, labelladsition and reduction, as follows. We denote
by fn(P) and fv(P) the set of free-names and free-variables of pro€essspectively.

6 A Spatial-Epistemic Logic for Reasoning about Securitytétols

Prke Qrky Prio Qrey Prko P{n— M} rce
P+Qrk(pUy) Pl Qrk (pUy) n(x).Prx ¢ letn=M in Pry ¢ UsuM)
Prye Pryo Prrke

Ork0 X(M).P k¢ U sul(M) (vNPrce Tn [M = N].P kg U su(M) U sul(N)

Figure 4: Relevant Term Extraction

n¢ fn(P)u fv(P)= P | (vn)Q= (vn)(P| Q) P|Oo=P

(vn)0=0 PIQ=Q|P

(m)(vm)P = (vm)(vn)P PI(QIR=(PIQIR
M=g M’ = letx=MinP=letx= M in P P+Q=Q+P

M =g M’ = nM).P = m(M’).P P+(Q+R=(P+Q)+R
M1 =g Mi = [M1=My].P= [Mi = My].P [M1=Mg].P=[Mz=Mq].P

Figure 5: Structural Congruence

Definition 2.7 (Structural Congruence) Structural congruences is the least congruence relation on
processes defined by the rules of . 5.

We augment the standard structural congruence laws of-ttadculus with rules that equate processes
modulo the equality=g of the equational theory. These laws are essential in ouastes because they
allow us to block processes performing actions that usestéhiat are not values (i.e. terms that contain
destructors).

Our semantics, which we now present, capture ttilestructor freedontonditions. If a process
is attempting to use a term that contains a destructor, wetmsetural congruence to rewrite the term
destructor-free and reduction proceeds. If the term cabeatwritten destructor-free, reduction halts.
These restrictions ensure that all received terms arelagluees, and not some arbitrary erroneous term.
Note the semantics of our attacker output, expressed iAttiaekerrule, that enable the output to emit
any message that can be generated by the process, giveoutgigerms and some fresh values.

Definition 2.8 (Reduction Semantics)The reduction relation P— Q over closed processes is defined
as the least relation closed under the rules of Eig. 6.

Definition 2.9 (Labelled Transition Semantics) The labelled transition relation RS Q is the least
relation on closed processes closed under the rules ofFig. 7

Our labelled semantics is not intended to characterize gplaiennotion of behavioral equivalence as
could be expected, but rather to allow the observation dabmastin our logic. Despite not belonging

to the scope of this work, we can point out that our labellethasgics do not allow for a complete

characterization of behavioral equivalence, in the selmaedur rules reveal information in a way that
induces a higher discriminative power then that of behaliequivalence.

3 Logic

Considering it is common to reason about security by reagoabout the knowledge of principals, we
explore key aspects of dynamic spatial logics, such as leealoning, to develop a logic that can reason
about epistemic, dynamic and spatial properties of agents.

We propose an extension to a dynamic spatial ladic [7] to lenaasoning at the term level. Our
extension consists of adding two epistemic modalitiég: denotes the ability of an agent to derige
from its knowledge, an&x.A allows us to mention values that are only known by an agegt éecrets).

B. Toninho, L. Caires 7

M is destructor-free M is destructor-free

letx=MinP— Pix— M ") (M)P+RIN(X.Q+S — Pl Qx— M "
Mz and M, are destructor-free M=g My P—0Q P—Q
[Mi=My].P— P (Test) _P| R_’—Q| R (Par) M(Scope)

P=FP P—-Q Q=0Q M € F(ct(Q)un) n fresh

PS>0 (Cong) R PTRIc.Q+r S — oRPIxe M Q) nacken
Figure 6: Reduction Semantics
P M is destructor-free M is destructor-free
P=Q (ray) 2T (ouy S (inp)
P—Q nM).P — P nx).Pp— P
Me ‘&(gt(P)V;Ks?vI> S fresh (Attackerou)y _P—Q YneU n¢nameo) (Res)

n(x).P — P (V)P - (v)Q

(M) ’ ey ~— 11 YT\ s D ,y @ i ;,

P-—SP sgnamyegfl\'{lﬂZanijsgu u =0\ (Boundou P=P P—-Q Q=0Q (Cong
VO)P =" (vu)P’ P5Q

Figure 7: Labelled Transition Semantics

Our intent is to couple the ability to reason about propsrtiespace and behavior with that of reasoning
about derivable information modulo the equational theddur notion of knowledge is therefore the
ability of an agent to derive terms from the information ispesses.

3.1 Syntax and Semantics

The syntax and semantics of our logic are presented in[FigVe8refer tog,y as knowledge formulas
and ambivalently use,y to denote both knowledge formulas and finite sets of termse Hdolean
connectives are standar@denotes the empty proceds| B denotes a process that can be partitioned in
two components, one satisfyigand the other satisfyinB; Hx.A allows us to mention restricted names
of processes in formulag; A denotes a process can perform actieend continue as a process satisfying
A; OA and©A denote “always in the future” and “sometime in the futurespectively.K¢ holds of a
process that has the ability to derive the terms denotesl byat is, the ability to know; Sx.A holds of
a process that satisfies propeftyhat depends on a value that is secret to a process — a terairéogt
a restricted name. It is also useful to define an auxil@ynting predicatgwritten asn, wheren is
a natural number), that allows us to count the number of sabgsses within a process. For instance,
a process consisting of a single thread would satisfy thadéa 1 defined as-0A =(-0 | =0), while a
process consisting of two sub-processes would satisfyotineufia2 defined as-0A -1 A =(=0| =0| =0),
and so on.

With this logic, we can state properties about the knowlexfggents (and not only adversarial ones)
over time, such as “it is never the case that the secret kayowik by 3 subsystems”:

-OH key (K key| K key| K key)

or “it is always the case that 2 agents know the key and onemlut&saoH key(K key| K key| =K key).
Since the semantics of our logic blur together processasatlastructurally congruent (e.@ | Q and

8 A Spatial-Epistemic Logic for Reasoning about Securitytétols

T (True)

| -A (Negation) PET N True
| AAB (Conjunction) PE-A = notPkEA
: P=AAB £ PEAandP:=B

| O (Void) R ©
| A|B (Composition) PO = P=0
| HxA (Hiddgn quantificationy " FAIB = JQRP=Q|Rand Q= Aand R=A
| @A (Action) PEHXA £ 3QP=(mQand Q= Ax < n)
| DA (Always) PEaA 2 JQP—-QandQE=A
| ©A (Eventually) _ PEOA £ VQstP5 QthenQ=A
| @n (Free-name Predicate) |, LoA + 30P5OQand QLA
| Ko (Knowledge) N
| SxA (Secret quantification) Pl @n = nefn(P)

' a PEK¢ 2 PryandykEe

o,y ¢ Ay (Conjunction) PESXA £ 3QtP=(k)Qand Qk Alx 1)

and Qr ¢ such that € ¢

: t (Term) and ke namef#t)

T (True)

Figure 8: Logic Syntax and Semantics

Q| P), we can use the free-name predicate to “tag” specific stdasygsand reason about their knowledge
explicitly: oH key(@tagA K key| T) which denotes “it is always the case that an agent with gerfiame
tag knows the key” (this subsumes the need for an indexed knge&legerator such as that in [15]).

Notice how the expressiveness of the logic arises from thigyato combine the three types of
modalities: dynamict, ¢), spatial {, |) and epistemick). The dynamic connectives allow us to range
over a specific execution or all possible executions, theéamannectives allow us to mention restricted
names (usually used to model keys and nonces) and to refansgstems, and the epistemic connectives
allow us to analyze derivable terms of a process.

The semantics foK¢ pose a challenge in the sense that they use the notion of &dgevlderivation
from Sectior 2.1L. While this definition is adequate from a aetic perspective, it makes use of the DY
equational closure of a set which is not stable by reductioierons, and thus doesn’t provide a clear
way of algorithmically determining i = ¢. We approach the problem with a purely logical approach
and characterize knowledge derivation with a structurabpsystem for knowledge formulas, unlike the
approach ofi[1].

3.2 Proof System for Knowledge Formulas

Our proof system, formulated as a sequent calculus, is pgdiwvith rules from the equational theory
in order to consider the ability to combine terms to genenat® information. Each rule of our calculus
represents a possible computational step that an agentecorrp on terms to produce a new term.
Intuitively, if a sequent + ¢ is derivable, the knowledge formutais deducible from the knowledge
represented by.

Definition 3.1 (Proof System K for Knowledge Formulas) The sequent calculus formulation of our
proof system K for knowledge formulas is defined by the rdl€gad9.

The rules for identity and conjunction are standard. RudRightstates that we are justified in conclud-
ing a complex term if we can derive its subterms. RAtd eftstates that all that can be derived from a
complex termf(ty,...,t,) can also be derived from its subterms; rblestrLeftreflects the equalities of
the equational theory: what can be deduced fexran also be deduced from terms equas tonder the
equational theory.

B. Toninho, L. Caires 9

I AB+rC I'rA I'tB

(1d) TANBIC (A: left) TCANB (A: right)

ILA-A
For every constructor function symbblwith arity n, such thaf € X:

I'rty..I'+t, (funRight) [, f(ty,....th) FC

bl AttLeft
TF f(t..t) T, o uke

For every equatiori(ty,...,ty) = se E:

I',s+C

i,)rc Loesttel

Figure 9: Proof System for Knowledge Formulas

For the sequent calculus, we establish the results sbundnesscompletenesanddecidability

Theorem 3.2 (Soundness of K)Given a set of terms S and a term A, if @ then SE A.
Proof: By induction on the derivation of SA]

Theorem 3.3 (Completeness of K)Given a set of terms S and a term A, iESA then Sr- A.
Theorem 3.4 (Decidability of K) For any set of terms S and term Ar3\ is decidable.

The proofs of completeness and decidability rely on a finiigraximation result for the DY equa-
tional closure of a set of terms. More concretely, for eachefiget of termsS and equational theory,
it is possible to build a finite sdi(S) from which all terms in the DY equational closure $fmay be
determined.

Proposition 3.5 (Approximation of &(S)) Let S be a finite set of terms. We may construct in polyno-
mial time an approximation t&(S), named KS), a finite set with the following property:

¥YM € F(S),3 C,t € b(S) such that M= CJ[t]

where (-] is a functional context solely built out of constructors.

Proof: The finite approximation (8) is built from the terms of S by interpreting the rewrite rulefs
the theory as contexts of a bounded size. Therefore, agplyimction symbols to terms of S up to the
bound of the context produces a new term by then applyingetugte rule. This procedure is iterated,
eventually reaching a fix-point, due to the subterm convergeroperty of the equational theories (the
idea is that each time we produce a new term, the term will balenthen the terms used to generate
it). The resulting computable set has the property that defour approximation [17]. []

The approximation(S) is such that all terms @¥(S) can be built from terms di(S) just by applying
constructors, no longer requiring the equations from tkemtyn Completeness follows from the fact that
our proof system is able to emulate the computation stepsreghjto generate the approximation. Given
a set of termsS, b(S) is generated by applying functions to termsS)fapplying a rewrite rule to the
resulting term and iterating. Thus, our proof system is detepsince the computation steps(E) may
be emulated by the rules of proof system K, and we may therydppttion symbols to terms d¥(S)
to produce terms d(S). The latter is trivial due tdunRightandAttLeft The former we prove through
the following lemma.

Lemma 3.6 (Completeness of K i.r.t the Approximation). Given a set of terms S ,ith(S) then Sk t.
Proof: Through instances oAttLetft it is possible to apply functions to terms of S up to the boudride
context used in(®). Through an instance dDestrLeftthe corresponding rewrite rule can applied, and
throughld the new term is derived at the root of the proof treel [17].]

10 A Spatial-Epistemic Logic for Reasoning about Securitytétols

To emulate the iteration with the proof system, that is, tdgren similar computations witls and the
new term, the auxiliary result of reasoning with cuts is issgl

Lemma 3.7 (Cut Admissibility in K). If I'+ A andI',A+ C thenI"+ C.
Proof: Seel([17].

Using Cut, the proof system is able to emulate the iteratieegrure by building the previously de-
scribed proof tree that allows the derivation of a new terng asing the new term as the cut formula.
This technigue can then be applied to produce any terb{®Y, as required. Since the computation of
b(S) always terminates, Theordm B.4 holds.

3.3 Model-Checking

We know that model-checking is decidable for the logic withihe new modalities [7], for the class of
bounded processes. Therefore, we need only show that ounbaalities preserve decidability.

Proposition 3.8 (Decidability of model-checkingK) Let¢ be a finite set of terms. Checking that=P
K¢ is decidable.

The above proposition holds since for any proc@sgsis possible to collect its set of relevant terms
(P rx %), compute the finite approximatids(y) and check that each term ¢gncan be constructed from
terms ofb(y) by application of constructors.

Proposition 3.9 (Decidability of model-checkingSx.A) Checking that = Sx.A is decidable.

Decidability of Sx.A follows from the fact that ifP = (vn)Q, it is possible to collect the se¢tof relevant
terms of process Q, pick some tetfinom y that contains the narmeand check tha £ A{x « t}. Given
that model-checking the core logic wilis decidable, it follows that checking = Sx.A is decidable
and therefore model-checking for our logic is decidabletlierclass of bounded processes.

Theorem 3.10 (Decidability of Model-Checking) Checking that B= A is decidable for the class of
bounded processes.

4 Expressiveness and Extensions

Having presented our framework, we discuss some extensiang work that can be used to model and
analyze systems. In particular, we discuss the represamtat attackers and modeling and verification
of correspondence assertions|[18] in our framework.

4.1 Modeling Attackers

To analyze a security protocol one usually needs to conkmlerit behaves in any possible environment.
While our logic focuses on the analysis of closed systenis pibssible to verify properties of a system
in an arbitrary environment, by internalizing an arbitrattacker in the system. The general idea is that,
for any proces®, we may determine a proce®s(making essential use of the attacker prefix construct)
such thatP|Q reaches some state whene¥ereaches an equivalent state when placed in an arbitrary
environment. While the explicit specification of an attacf@ a given protocol may not be easy, our
approach to represent the attacking environment is quiferdint and general, and may indeed be used
to find attacks (see example in Section 4.2). We can genlgritadel a Dolev-Yao[[12] attacker in our
framework by considering the number of message exchangetharcommunication channels used in a
protocol.

B. Toninho, L. Caires 11

AK) = (vKap,N) c(enc(pair(Kap, N),K)).c(X).[N -1 = dec(x, Kap)]
B(K) £ c(X).let Kgp = fst(dec(x,K)) N = snd(dec(x,K)) in c{enc(N — 1, Kgp))
Sys = (vK)(A(K)IB(K))

Figure 10: Modeling the Example

Attacker = ¢(X).c{x).c(y).c(x).men{X,y)
World £ (Syg Attacke)
World E -OHk.(2| (@memA KK))

Figure 11: An Attacker for the Example

Considering an arbitrary protocol modeled as a processtalkeeof an attacker is to intercept all
communications of the principals and be able to inject angsage it can produce, given its knowledge
at the time, at any point where a principal expects to recaimeessage (cf. our attacker output). Thus,
a Dolev-Yao attacker consists of a process that for all datpfithe protocol performs an input (storing
the received message) and for all inputs performs an attackput. For instance, consider the following
protocol, whereK is a shared keyN a fresh value an&, a session key generated Ay

A — B {Kap, Njk
B— A:{N-1},

In our process model, such a protocol would be representedrasin Fig.[ID (we omit the signature
and equational theory). An attacker for this protocol,daling ourattacker schema presented in Fig.
[I1I. We can then state that it is never the case that the attaakeknow one of the keys used in the
protocol. While some minorfBort of representing an attacker is necessary, we can eagigsent a
generic attacker for a protocol by following a pre-deteradirschema.

We currently only consider finite protocols, modeled as psses in our calculus that use a commu-
nication channet as their communication medium (writtét). We have not pursued infinite protocols
as of yet, but we believe it to possible to extend our appréaatfinite protocols by defining the attacker
as a recursive process with a parallel store (that is usedite the messages of the protocol). To analyze
such a system, we would then employ recursive formulas mgubie fixpoint operators of the logic.

Our attacker for finite protocols is defined as follows: Farteautput orc, the attacker performs an
input onc (and stores the message). For each input, dhe attacker performs an attacker output.

Definition 4.1 (Attacker Generation Procedure) Given a process Pthat models a finite protocol, the
set S that tracks the attacker memory, an attacker for P cagenerated by procedurattacker(P, S)
defined in Fig['IR (x and m are fresh in P and the attacker).

The generation procedure produces the necessary actidnsg®ction of the process dynamics: if an
output can occur in the process, the attacker interceptsmtssage and memorizes it; if an input can
occur in the process, the attacker injects any message proaluce from its knowledge; in the case
where the protocol has no more actions, we represent thekattemnemory with an outputyxa, ..., Xa),
modeling the attacker's memory throughout the protocol rWe thus show how an attacker can be
extracted by inspection of the considered protocol. We ¢emwsthat this attacker is general in our
framework, in the sense that it can simulate the behavioearp from an adversarial medium (c.f.
Dolev-Yao attacker). Note that this result does not yetyfalbply to our tool implementation, as we
discuss later in this section.

12 A Spatial-Epistemic Logic for Reasoning about Securitytétols

proc Attacker(P,S) =
if P> Q A @ = input onc then c(x).Attacker(Q, S) fi
it P> Q A @ = output onc then c(x).Attacker(Q, S U x) fi
if P < then MXxq, ..., X,) Wherex; € S fi.
Figure 12: Attacker Generation

Definition 4.2 (K-Set) Given a process P, we define its K-S, khe set of all terms known by P as:
Kp2{t|PEKt}

Theorem 4.3 (Monotonicity of K-Sets under Synchronization Let P, and A be a processes such that

M
Pe oM P, and Aﬂ A’. We have that k& € F(KauU M).

We begin with the K-Set of a process, the set of all terms knbwithe process that we observe
in our logic, and we show that the evolution of arbitrary meses’ K-Sets through synchronization is
monotonic: the resulting process’ knowledge will be a stilo$ghe initial process’ knowledge, plus

any received messages. We state a similar property of owrgieal attacker’'s K-Set. Over time, the
attacker’s K-Set captures all messages exchanged in thexpto

Theorem 4.4 (Monotonicity of Attacker Storage) Let P, and At be processes such that
At = Attacker(Pe, (1,0), P P’ and At At. We have that K = §(KaU M),

Our Attacker Simulation (Lemma 4.5) and Process Knowledgenfna 4.6) lemmas provide some
insight on the expressiveness of our attacker. Leinma 4\Wwsstimat a generated attacker, can obtain as
much knowledge as an arbitrary process interacting withigefprotocol. Lemma 416 states a similar
property, regarding the knowledge a finite protocol may iobthile interacting with our attacker.

Lemma 4.5 (Attacker Simulation) Let P, and A be processes.
If (vn)(Pc | A) — (vn)(P; | A’) and At= Attacker(P¢, S) with Ka € Kai then3JAt', S’ such that
(v)(Pe | At) — (vi)(P, | At') and At = Attacker(P,, SUS’) and Ky C Kag.

Lemma 4.6 (Process Knowledge) et P, A be processes angla knowledge formula.
If (vn)(Pc | A) = (vn)(P; | A’) and P, = K¢ and At= Attacker(P¢, S) with Ka € Kat then3At', S’ such
that (vn)(P¢ | At) = (vn)(P. | At') and P, E K¢ and At = Attacker(P,,SUS’).

Furthermore, from Lemnia 4.6 follows that, in our logic, atBrprotocol interacting with an arbitrary
process is indistinguishable from one interacting withatteicker. Combining these results, we can show
that our attacker can behave as one would expect of an ade¢Balev-Yao agent.

Theorem 4.7 (Preservation of Satisfaction)Let P. and A be processes and A any formula. If
) (Pe | A) — (vn)(P. | A’) and P, E A and At= Attacker(Pc, S) with Ka € K then3At, S’ such that
(vi)(P¢ | At) — (v)(P, | At) and P, = A and At = Attacker(PL, SUS).

Notice that this result follows from the fact that message $§or the attacker output prefix is unbounded.
Our implementation currently bounds the generated messagasure tractability, and thus sacrificing
completeness. However, as shownlinl[16], it is possible topde a finite bound on the message size
required to find an attack. The implementation of this resudtleave for future work. It is anyway
important to note that our method is alreastyund and complet®r passive attackers, even for the case
of non finite processes (eg. we may consider any finite coaytstem, or bounded in the senseldf [7]).

B. Toninho, L. Caires 13

parameter attacker_depth = 2;

defproc A(k) new N in c!(enc(N,k)).c?(x).[dec(x,k)=h(N)].end! Ch(N));
defproc B(k) c?(x) . (begin! (dec(x,k)) | c!(encCh(dec(x,k)),k)));
defproc Sys = new k in (A(k) | B(k));

defproc Attacker = c?(v).c!(¥*).s!(v);

defproc World = (Sys | Attacker);

defprop begin = <begin!> true;

defprop end = <end!> true;

defprop corrsp = always (end => begin);

check World |= corrsp;

Processing. ..

* Process World satisfies the formula corrsp *

Figure 13: Checking Correspondence in a Toy Protocol

defproc Sys = new k in (c!(k).(ACk) | Bk)));
defproc Attacker = c?(u).c?(v).c!(*).s!(v,u);
defproc World = (Sys | Attacker);

check World |= corrsp;
Processing. ..
* Process World does not satisfy the formula corrsp *

Figure 14: Checking Correspondence in a Broken Toy Protocol
4.2 Modeling Correspondence Assertions

Correspondence assertions are a technique for verifyitigeatication properties in protocols [18]. The
idea is that the model of each principal in a protocol is refingh begiriend events, namexbrrespon-
dence assertionsat each stage of an authentication procedure. Autheiaticatill be established if,
for every run of the protocol, all end events for each stagepaeceded by a matching begin event. To
illustrate the idea, consider the following protocol:

A— B:{N); B asserts the reception bif
B— A:{h(N)}x; Aasserts the reception bfN)

PrincipalsA andB share a symmetric kely; N is a fresh value antl is a one-way hash function. When

B receives{N}y it asserts the beginning of the run of the protocBlsends messadh(N)}k so thatA

can verify the freshness of the run, by comparing the redeiadue with its own hash dfl. If the test
succeedsA asserts the reception bfN) and the end of the run. To check correspondence, one has to
check that every run of the protocol, in the presence of arrsdyy, would be such thats end assertion

is always preceded b§'s begin assertion, that ig, only ends ifB was involved in the protocol.

Using our framework, we can model correspondence assertipmepresenting the assertion as an
output on a channel that is irrelevant to the protocol, aed tbserving the existence of such outputs with
our logic. For instance, our example could be modeled as ooRay. [13 (note theattacker_depth
parameter set to 2 due to the size of the second message). n\scasuccessfully handle the case
where we consider a faulty system that lekks the attacker (and thus correspondence does not hold),
as presented in Fig. 114.

5 Concluding Remarks and Related Work

In this paper we have introduced a dynamic spatial epistéogic for a variant of the applieg-calculus

aimed at reasoning about security protocols. We explorepipdication of spatial and epistemic rea-
soning to the several agents involved in a security protdeelthey principals or adversaries. In our
work, we can reason about the knowledge of the several agkatprotocol and how it can evolve over

14 A Spatial-Epistemic Logic for Reasoning about Securitytétols

time. Model-checking for the logic is shown to be decidaldedn interesting class of processes and
cryptographic primitives.

Our framework allows an interesting degree of freedom inahalyses it can perform, not only
allowing one to reason directly about knowledge of printsf@nd attackers but also enabling reasoning
with correspondence assertions, which is an importanttiaddio the range of available techniques.
Moreover, our internalization of attackers, which doesraquire a complete behavioral specification, is
able to accurately emulate the behavior of a Dolev-Yao ktta@nabling reasoning about the dynamics
and knowledge of such an attacker.

Finally, the decidability result for our logic allowed usitoplement a model-checking algorithm as a
proof of concept extension to the SLMC tool. The maifiatience between the tool and the theory is that
our attacker outputs are parametrized with a maximum messag, to bound the state space. This is the
main limitation of the current version of our tool, since da$ not yet fully capture the expressiveness of
our attacker modeling, given that our results employ a mowegpful version of the attacker output.

Overall, we have produced an interesting framework forqmok analysis, the first employing dy-
namic spatial logics. enabling a very natural (yet precigay of reasoning about security protocols,
all the while allowing reasoning with previously estabésghtechniques. Note, however, that our tool is
merely a proof of concept of the developed framework, notegifo compete with more mature tools
for protocol analysis such as Avisga [4], Scyther [9], Cadi8] or ProVerif [5]. The main point of
divergence of our approach and the ones mentioned befdmati;mstead of mainly focusing on a set of
built-in properties, we focus on a generic property langu@mir logic) and explore its expressiveness.

In terms of related logics, Kremer et dl. [8] have proposecepistemic logic for the applied-
calculus. However, their logic lacks the ability to reasboat spatial properties, which is a key element
in allowing reasoning about individual agents. Their eprst modalities focus solely on attacker knowl-
edge, not allowing one to state a property such as that ofntrarductory example where we care about
the knowledge of the attacker but also of the agents witharsitstem.

Another closely related logic is Datta et al.’'s PCL|[10]. PiSla well established protocol analysis
logic that allows one to verify properties of protocols mibet in a CCS style calculus by reasoning
about events that occur in traces of the protocol run. Whégaeus on the combined reasoning about
knowledge and spatial distribution of a protocol, PCL isigiesd to reason about the composition of
several protocols and thus its analyses are more sopitéstittaan ours (reasoning about invariants in the
protocol composition interleavings).

Mardare and Priami have also proposed a dynamic episterat@kppgic [15] without the issues
of security in mind. Their logic is hence substantiallfféient from ours, interpreting knowledge as
the possibility of observing actions of other processes raotdas the ability to know some piece of
information. Being based on CCS, such an approach is naldeifor reasoning about the flow of
messages within a system, which is one of our main goals.

For future work we wish to further study the problem of aterckepresentations, aiming at an ex-
pressiveness result along the lines of Thedrem 4.6 thatrmesquire the attacker to be able to produce
a message of an arbitrary size (this should follow from thelteof [16]). This result will be key in
removing the previously discussed limitation of our tool.

Acknowledgments The first author acknowledges support for this researchigeedvby the Fundagao
para a Ciéncia e a Tecnologia through the Carnegie Mellotugal Program under Grant SFRIBD /
33763/ 2009. We thank Mario Pires and Pedro Adao for their intaigcomments on some version of
this work. We also acknowledge the anonymous reviewerdir tomments and suggestions.

B. Toninho, L. Caires 15

References

[1] Martin Abadi & Véronique Cortier (2006)Deciding knowledge in security protocols under equatighat
ories Theor. Comput. ScB67(1), pp. 2-32.

[2] Martin Abadi & Cédric Fournet (2001)obile values, new names, and secure communicationPOPL
'01: Proceedings ofthe 28th ACM SIGPLAN-SIGACT symposiumRrinciples of programming languages
ACM, New York, NY, USA, pp. 104-115.

[3] Martin Abadi & Andrew D. Gordon (1997)A calculus for cryptographic protocols: the spi calculus:
CCS '97: Proceedings of the 4th ACM conference on Computércammunications securitACM, New
York, NY, USA, pp. 36-47.

[4] A. Armando, David A. Basin, Y. Boichut, Y. Chevalier, Lothpagna, J. Cuéllar, P. H. Drielsma, P.-C. Héam,
O. Kouchnarenko, J. Mantovani, S. Mddersheim, D. von Obeidh Rusinowitch, J. Santiago, M. Turuani,
L. Vigano & L. Vigneron (2005):The AVISPA Tool for the Automated Validation of InternetusigcProto-
cols and Applicationsin: CAV, pp. 281-285. Available &tttp://dx.doi.org/10.1007/11513988_27.

[5] Bruno Blanchet (2001)An Efficient Cryptographic Protocol Verifier Based on Prolog Rulks 14th IEEE
Computer Security Foundations Workshop (CSFW-IEEE Computer Society, Cape Breton, Nova Scotia,
Canada, pp. 82-96.

[6] Michael Burrows, Martin Abadi & Roger Needham (1998)logic of authenticationACM Trans. Comput.
Syst.8(1), pp. 18-36.

[7] Luis Caires (2004)Behavioral and Spatial Observations in a Logic for the PilcTdus FoSSaCS 2004

[8] Rohit Chadha, Stéphanie Delaune & Steve Kremer (20Bpjstemic Logic for the Applied Pi Calculub:

D. Lee, A. Lopes & A. Poetzsch-Higer, editors:Proceedings of IFIP FMOODBORTE'09 Lecture Notes
in Computer Science, Springer, pp. 182-197.

[9] C.J.F. Cremers (2008)The Scyther Tool: Verification, Falsification, and AnalysfsSecurity Protocols
In: Computer Aided Verification, 20th International Conferen€AV 2008, Princeton, USA, Prqod.ecture
Notes in Computer Scien&4232008, Springer, pp. 414-418.

[10] Anupam Datta, Ante Derek, John C. Mitchell & Arnab Roy0(®): Protocol Composition Logic (PCL)
Theor. Comput. Scll72(1-3), pp. 311-358.

[11] Dorothy E. Denning & Giovanni Maria Sacco (198Tmestamps in key distribution protocol€ommun.
ACM 24(8), pp. 533-536.

[12] Danny Dolev & Andrew C. Yao (1981)0n the security of public key protocol$echnical Report, Stanford
University, Stanford, CA, USA.

[13] Gavin Lowe (1998):.Casper: A Compiler for the Analysis of Security Protocdls: Journal of Computer
Security Society Press, pp. 53—-84.

[14] Etienne Lozes & Jules Villard (20087 Spatial Equational Logic for the Applied-Calculus In: CON-
CUR '08: Proceedings of the 19th international conferent€oncurrency Theongpringer-Verlag, Berlin,
Heidelberg, pp. 387-401.

[15] Radu Mardare & Corrado Priami (2008pynamic Epistemic Spatial LogicTechnical Report, Center for
Computational and Systems Biology, University of Trento.

[16] Michaél Rusinowitch & Mathieu Turuani (2003Protocol insecurity with a finite number of sessions and
composed keys is NP-compleféheor. Comput. ScR99(1-3), pp. 451-475.

[17] Bernardo Toninho & Luis Caires (2009 Spatial-Epistemic Logic and Tool for Reasoning about 8gcu
Protocols Technical Report, Departamento de Informéatica, FINL.

[18] Thomas Y. C. Woo & Simon S. Lam (1993k Semantic Model for Authentication Protocolsi: SP '93:
Proceedings of the 1993 IEEE Symposium on Security and &tVBEE Computer Society, Washington,
DC, USA, p. 178.

http://dx.doi.org/10.1007/11513988_27

	1 Introduction
	2 Process Model
	2.1 Terms and Equational Theories
	2.2 Process Calculus

	3 Logic
	3.1 Syntax and Semantics
	3.2 Proof System for Knowledge Formulas
	3.3 Model-Checking

	4 Expressiveness and Extensions
	4.1 Modeling Attackers
	4.2 Modeling Correspondence Assertions

	5 Concluding Remarks and Related Work

