
Dimitrova, Piskac (Eds.): Fifth Workshop on
Synthesis (SYNT 2016)
EPTCS 229, 2016, pp. 133–148, doi:10.4204/EPTCS.229.11

c© S. Jacobs and R. Bloem
This work is licensed under the
Creative Commons Attribution License.

The Reactive Synthesis Competition:
SYNTCOMP 2016 and Beyond

Swen Jacobs
Saarland University

Saarbrücken, Germany

Roderick Bloem
Graz University of Technology

Graz, Austria

We report on the design of the third reactive synthesis competition (SYNTCOMP 2016), including
a major extension of the competition to specifications in full linear temporal logic. We give a brief
overview of the synthesis problem as considered in SYNTCOMP, and present the rules of the com-
petition in 2016, as well as the ideas behind our design choices. Furthermore, we evaluate the recent
changes to the competition based on the experiences with SYNTCOMP 2016. Finally, we give an
outlook on further changes and extensions of the competition that are planned for the future.

1 Introduction

The automatic synthesis of reactive systems from formal specifications has been one of the major chal-
lenges of computer science for more than 50 years, and a number of fundamental approaches to solve the
problem have been proposed [13,21,49,51]. For a long time, the impact of theoretical results on the prac-
tice of system design has been rather limited, due to the highworst-case complexity of synthesis from
specifications in expressive temporal logics, and a lack of algorithms that solve the problem efficiently
in the average case. Recently, there have been a number of newapproaches that aim at more practical
synthesis algorithms by either restricting the specification language [6, 45], or by a smart exploration of
the search space [24,27,28,30,31,53]. Moreover, there hasbeen an increased interest in applications of
reactive synthesis techniques, e.g., in robotics and cyber-physical systems, or for the synthesis of device
drivers. [18, 20, 40, 42, 52] Despite this growing interest,there remains a divide between theoretical re-
search and applications, due in some part to a missing infrastructure to compare synthesis tools, and a
lack of incentive to build efficient and mature implementations (as noted by Ehlers [23]).

In 2014, the authors and Ehlers founded the reactive synthesis competition (SYNTCOMP) in order
to foster the research in scalable and user-friendly implementations of synthesis techniques. The goals
of SYNTCOMP are

i) to make synthesis tools comparable by establishing acommon benchmark format,

ii) to facilitate the exchange of benchmarks in apublic benchmark repository,

iii) to establish a dedicated platform for acomprehensive and fair evaluationof synthesis tools,

iv) to encourage the implementation of synthesis tools thatcan be used asblack-box solversin appli-
cations, and

v) to foster theefficient implementationof synthesis algorithms by regularly providing new and chal-
lenging benchmark problems, and comparing the performanceof tools on these.

Since its inception, SYNTCOMP was held annually, and the first two iterations [33,35] were intentionally
restricted to safety properties and a low-level specification format derived from the existing AIGER
format [5, 32], in order to have a low entry barrier for participants. We consider the competition to be a
great success thus far: where before there were no two synthesis tools that used the same input language,

http://dx.doi.org/10.4204/EPTCS.229.11
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


134 SYNTCOMP: 2016 and Beyond

there are now five tools from different research groups can becompared in a fair and meaningful way,
based on a common specification language. As a part of the SYNTCOMP effort, we maintain a public
benchmark library1 which now consists of several thousand benchmark instancesfrom a wide range of
domains, and is steadily growing. Moreover, SYNTCOMP has triggered an increased interest in the
development of efficient synthesis tools and specification languages that relate to the competition, as
witnessed by a growing number of publications on these topics [7, 10–12, 39]2, including tools and
research groups that have not participated in the competition thus far [19,22,41,46,56].

SYNTCOMP 2016 introduces a major extension of the competition by dropping the restriction to
low-level safety properties. To this end, we add a separate competition track for the evaluation of synthe-
sis tools on specifications in a high-level input format for full linear temporal logic (LTL). The specifi-
cation format used for the new tracks is thetemporal logic synthesis format(TLSF), recently introduced
by Jacobs and Klein [36].

In this paper, we describe the design of SYNTCOMP 2016, with afocus on the extension to speci-
fications in TLSF, and report on our plans for further extensions of the competition in the coming years.
We describe the synthesis problem as considered in SYNTCOMPin Section 2, followed by a presen-
tation of the design and rules of SYNTCOMP 2016 in Section 3. In Section 4, we evaluate our recent
changes to the competition, based on the experiences with SYNTCOMP 2016. Finally, in Section 5 we
give our thoughts on possible and probable further extensions of SYNTCOMP in the future, as a basis
for discussion. Note that the benchmarks, participants andresults of SYNTCOMP 2016 are presented in
a sister paper [34].

2 Reactive Synthesis: A Brief Overview

We briefly summarize the reactive synthesis problem as it is considered in SYNTCOMP, including ap-
proaches that have been developed to solve it.

The Synthesis Problem. We consider the synthesis problem for reactive systems thatcan be repre-
sented asfinite-state machines. The specifications we consider come in two forms: either as temporal
logic formulas, more specifically inlinear- time temporal logic(LTL) [48], over the sets of inputs and
outputs of the system, or as an AIGER circuit [5, 32] with a single output, with a set of controllable and
a set of uncontrollable inputs.

For specifications in LTL, therealizability problemis to decide whether there exists a finite-state
machine that reads the inputs and produces outputs such thatthe specification is satisfied in all possible
executions. For AIGER circuits, therealizability problemis to decide whether there exists a controller
circuit that reads the controllable inputs and the current state of the specification circuit, and produces
the controllable inputs of the specification circuit such that the single output of the circuit is never raised.

Given a realizable specification, thesynthesis problemis to find an implementation that satisfies the
specification. The synthesis problems we consider are equivalent to finding a winning strategy in infinite
two-player games whose structure and winning strategies are determined by the specification [57]. For
both kinds of specifications, solutions can be encoded into an AIGER circuit.

Important Fragments. There are several important fragments of LTL, differing in expressivity and in
the complexity of the realizability and synthesis problems. For full LTL, the realizability and synthesis

1Synthesis Competition Repository:https://bitbucket.org/swenjacobs/syntcomp/
2Moreover, the ideas from [58] were also used in the version ofSimple BDD Solver that competed in SYNTCOMP 2015.

https://bitbucket.org/swenjacobs/syntcomp/


S. Jacobs and R. Bloem 135

problems are 2EXPTIME-complete in the size of the specification formula [49]. However, there exist a
number of fragments for which the problems are decidable in EXPTIME [2,47], in particular the GR(1)
fragment [6], which allows some restricted liveness properties in addition to simple safety properties.3

Synthesis Algorithms. There are a number of existing algorithms to solve the synthesis problem, based
on two fundamental approaches. The first approach, by Büchi and Landweber [13], works by transla-
tion into a deterministic Büchi game, and solving it. The second approach, by Rabin [51], works by
translation into a tree automaton, and solving its emptyness problem.

In recent years, many algorithms for solving synthesis problems more efficiently have been proposed.
We mention a few prominent approaches. Bounded synthesis [31] searches incrementally for solutions
up to a certain size. An algorithm based on bounding livenessproperties and a symbolic representation
by antichains has been implemented in the synthesis tool Acacia [26,27]. Other algorithms try to exploit
the structure of commonly occuring specifications, and propose incremental or compositional ways to
solve the problem [27,38,53].

For safety properties, efficient algorithms can be implemented using BDDs and a fixpoint construc-
tion over the uncontrollable predecessors of the unsafe states. For GR(1), there is a similar algorithm,
using a nested fixpoint construction [6]. A more detailed introduction into approaches to solve safety
games can be found in the report of SYNTCOMP 2014 [33].

3 SYNTCOMP 2016: Rules and Setup

The basic idea of SYNTCOMP is that submitted tools are evaluated on a previously unknown selection
of benchmarks from the publicly available library, withoutuser intervention. Tools are then ranked with
respect to the number of problem instances that can correctly be solved within a given timeout. The
competition is separated into tracks that correspond to thefragments of LTL mentioned in Section 2.

In the following, we first give an overview of the rules that are common to all tracks, and then go into
some details for the separate tracks, with a focus on the changes made this year.

Tracks. The competition is divided into two maintracks, distinguished by the specification format:
safety specifications in AIGER format, and full LTL specifications in TLSF.4 In both tracks, realizability
is defined with respect to Mealy semantics, i.e., the outputsof an implementation are allowed to depend
on the inputs without any delay.

In each track there aresubtracksfor two different tasks:realizability checkingandsynthesis. While
in realizability checkingthe tools only need to return one bit of information, insynthesisthey need to
return a provably correct solution. While the main goal of the competition is to compare algorithms for
synthesis, we included subtracks for realizability checking to have a low entry barrier for participants.
This decision is justified by our experience: in each of the competitions in 2014, 2015 and 2016, there
were 2 tools that only supported realizability checking, but not synthesis.

Furthermore, for each (sub)track we separate the analysis of results into the two execution modes
sequentialandparallel. In sequentialmode, tools can only use one core of the CPU, and inparallel
mode they can use multiple cores in parallel. The idea of thisseparation is to have parallelization of

3More precisely, for GR(1) the size of the game arena is exponential in the size of the formula, and GR(1) games are solved
in quadratic time in the size of the arena [6,29].

4A third track with GR(1) specifications in TLSF was planned for SYNTCOMP 2016, but was not executed due to various
reasons that we explain in Section 5.1.



136 SYNTCOMP: 2016 and Beyond

algorithms as an explicit dimension of the competition. A side-effect in all iterations of SYNTCOMP
thus far was that in sequential mode we only compared single algorithms, and portfolio implementations
only appeared in the parallel mode (although the rules do notforbid to run portfolios in sequential mode).

Entrants. As in previous years, we ask participants to hand in their tools as source code, licensed for
research purposes, accompanied by installation instructions and a short description of the system and the
synthesis approach and optimizations it implements.

Each author can submit up to three differenttool configurationsper subtrack. Our experience from
previous iterations suggests that this limit is a good compromise that allows some flexibility for the tool
creators, while avoiding the flooding of the competition with too many configurations of the same tool.

The organizers commit to making reasonable efforts to install each tool, but reserve the right to
reject entrants where installation problems cannot be resolved. This was not the case for any of previous
iterations of the competition. In case of crashes or obviously wrong results we allow submission of
bugfixes, if time permits. This possibility has been used in all previous iterations, including SYNTCOMP
2016.

We encourage participants to visit the SYNT workshop and theCAV conference for the presentation
of the SYNTCOMP results, but this is not a requirement for participation. The organizers reserve the
right to submit their own tools, and do so regularly.

Timeout. In sequential execution mode, the timeout for each problem is 3600s of CPU time. In the
parallel mode, the timeout is 3600s of wall time.

Output Format. For the realizability checking tracks, tools should outputeither “REALIZABLE” or
“UNREALIZABLE” on stdout.

For the synthesis tracks, tools should either output “UNREALIZABLE”, or a circuit in AIGER format
that satisfies the specification. In the safety-track, the specification has to be included in the solution,
while in the LTL-track, the solution is only the synthesizedstrategy.

Correctness of Solutions. Correctness in realizability subtracks is determined either by existing in-
formation about the realizability of the benchmark (possibly stored in theSTATUS field of the specifi-
cation [35]), or by a majority vote of all participating solvers if such information is not available. In
the latter case, the execution platform for the experimentsgenerates a notification that a previously un-
solved problem has been solved, and the organizers inspect the problem to avoid errors in the evaluation.
Correctness in the synthesis subtracks is determined by verification of the produced solution within a
separate time limit of 3600s (for details see below).

Ranking. Competition entrants are ranked with respect to the number of problems that can be answered
with a correct solution within the given timeout. Timeouts (either in solving the problem or verifying
the solution) are not counted, and wrong results are punished by subtracting 4 points. Since all of
the benchmarks are publicly available before the competition, such a punishment was not necessary in
previous years. In SYNTCOMP 2016 however, we had one participant that returned a number of wrong
results in the new TLSF-based synthesis track, and that could not be fixed in time for the competition
(see the SYNTCOMP 2016 report [34]). This ranking scheme forwrong solutions is also used in other
competitions, but we have to agree with Cabodi et al. [14] that it is undesirable to possibly have a
competition winner that produces a positive number of wrongresults. Therefore, in future competitions



S. Jacobs and R. Bloem 137

we will disqualify tools that produce wrong solutions. If possible, we will allow the tool authors to
supply a fixed version after the competition, and evaluate ithors concours, as we did this year.

Quality Metrics. The goal of synthesis is to obtain implementations that are not only correct, but also
efficient. Therefore, in previous iterations of SYNTCOMP wealso considered additionalquality rank-
ings, where correct solutions are additionally weighted based on their size. Since the rankings used in
previous years gave unsatisfactory results, we do not have an official quality ranking this year. However,
we still analyzed solutions with respect to their size and present our findings in the SYNTCOMP 2016
report [34].

We plan to bring quality rankings back in future iterations of the competition, based on our experience
from SYNTCOMP 2016 and our thoughts presented in Section 5.4.

Competition Setup. Like in previous years, SYNTCOMP 2016 is organized on the EDACC plat-
form [3]. The competition runs on a set of machines at Saarland University, each with a single In-
tel XEON processor (E3-1271 v3, quad-core, 3.6GHz) and 32 GB RAM (PC1600, ECC), running a
GNU/Linux system. Each node has a local 480GB SSD that can store temporary files. To ensure a high
comparability and reproducability of our results, a complete machine will be reserved for each job, i.e.,
one synthesis tool (configuration) running one benchmark. Since all nodes are identical and no other
tasks will run in parallel, no other limits than the timeout will be set.

Benchmark Selection. A subset of all available benchmarks was selected for the competition. Like
in the previous year [35], benchmarks are separated into categories, and we selected a subset from each
category such that the different categories have approximately equal weight in the competition, and that
the competition benchmarks represent a good distribution across different difficulties for each category.

3.1 Specific Rules for AIGER safety track

Specifications. Specifications are given in the Extended AIGER Format for Synthesis [32,33], model-
ing a single safety property.

Output and Correctness. In the synthesis category, tools must produce solutions in AIGER format
that include the specification circuit and abide by additional syntactic restrictions [33]. These are model
checked with existing safety model checkers.

Since model checking turned out to be a significant challengefor some problem instances in previous
years, we introduce another extension in SYNTCOMP 2016. As an alternative to full model checking,
tools can output, in addition to their solution, awinning regionof the system as a witness for correctness.
If a winning region is supplied by the tool, we first try to verify correctness of the solution based on the
invariant, and fall back to full model checking if the check is inconclusive.

Legacy Tools. For comparison, we run some of the entrants of SYNTCOMP 2014 and SYNTCOMP
2015 in the safety track. This allows us to highlight the progress of tools over the course of the last two
years.



138 SYNTCOMP: 2016 and Beyond

3.2 Specific Rules for LTL Track

Specifications. In the LTL track, specifications are given in basic TLSF format. For tools that do not
support TLSF directly, the organizers supply a number of translators to different existing formats in the
SyFCo tool [1] (which will be installed on the competition machines). Specifications are interpreted
according to standard LTL semantics.

Output and Correctness. In the synthesis subtrack, tools must produce solutions in AIGER format if
the specification is realizable. As a syntactical restriction, the sets of inputs and outputs of the TLSF file
must be identical to the sets of inputs and outputs of the AIGER solution. Additionally, solutions are
model checked with existing LTL model checking tools.

Legacy Tools. For comparison, we run the legacy synthesis tool UNBEAST, non-competitive, in the
LTL track. To this end, we convert the TLSF specification to the native input format of UNBEAST, and
used a wrapper script to make inputs and outputs conform to the standard format. Since this would
be a significant amount of work for the synthesis subtracks, we use UNBEAST only in the realizability
subtrack.

4 SYNTCOMP 2016: Evaluation of Changes

We consider SYNTCOMP 2016, including the changes and extensions to the competition, as another
successful step towards the overall goals of SYNTCOMP, as defined in Section 1. In this section, we
give a brief overview of our experience with SYNTCOMP 2016, separated into the continuation of the
track based on safety specifications in AIGER format, and theintroduction of the new track, based on
full LTL specifications in TLSF.

4.1 Existing Track: Safety Specifications

One part of SYNTCOMP 2016 was the track with safety specifications in AIGER format. This track was
already a part of SYNTCOMP 2014 and 2015 [33,35], with essentially the same setup as this year. More
specifically, in SYNTCOMP 2016 the realizability subtrack ran with exactly the same rules as last year,
and there were two changes to the rules in the synthesis subtrack: i) tools can now also supply a winning
region in addition to their solution, in order to facilitateverification, and ii) the ranking is only based on
the number of (provably) correct solutions, but not on theirquality.

Regarding the number of participants and the progress over previous years, we think that it was well
worth continuing the existing track, and that this will remain true for the foreseeable future: the number
of participants increased to 6 (from 4 in SYNTCOMP 2015), andseveral tools performed significantly
better than the best configurations from last year, that wererun hors concours for comparison.

The possibility of supplying additional witness information to facilitate verification was used by 2
out of 4 tools that support synthesis of controllers, and proved to be very useful: out of the almost 1000
solutions that were provided by the tools that used this option, only for 3 the verification was inconclu-
sive. In comparison, out of approximately 400 solutions that came without this additional information,
14 could not be verified.

Regarding the ranking, we think that the number ofprovablycorrect solutions is a good basic measure
that will also be used in the future. Additionally, we also plan to bring back a quality ranking (see
Section 5.4).



S. Jacobs and R. Bloem 139

4.2 New Track: Full LTL Specifications.

The other main part of SYNTCOMP 2016 was a completely new competition track that is based on spec-
ifications in full LTL. Specifications are given in the newtemporal logic synthesis format(TLSF) [36],
that was designed to be clear and human-readable, to facilitate the development of complex, structured
specifications, and can be automatically translated to a basic format that is easy to parse by synthesis
tools.

We consider this new track a big success: the first iteration had 3 participating tools, all of which
supported not only realizability checking, but also synthesis. Additionally, we were able to run the legacy
tool UNBEAST on the competition benchmarks for comparison in the realizability checking subtrack.

The newly designed format proved to be very well-suited for the competition, as witnessed by the
following points:

• Specifications are easy to write, due to the structure of the format and the tool support. In partic-
ular, most of the benchmark instances used in the competition stem from explicitlyparameterized
benchmarks that can automatically be instantiated for different valuations of their parameters.

• The new specification format is also easy to integrate with existing synthesis tools. In SYNTCOMP
2016, versions of pre-existing synthesis tools Acacia and PARTY-Elli participated officially, and
the legacy tool UNBEAST was run hors concours. All of these used thesynthesis format conversion
tool (SyFCo) [1], supplied by the organizers and F. Klein, to automatically translate specifications
to their native input formats.

In the synthesis subtrack, verification of solutions by existing model checkers worked reasonably
well. That is, for 2 out of 3 participants all of the solutionscould be verified, while for the other one
there were 20 out of 153 solutions where model checking was inconclusive. To facilitate verification,
we will consider the possibility to include additional witness information with the solution. For more
details, see Section 5.5.

5 The Future: Ideas for SYNTCOMP 2017 and Beyond

We discuss ideas for changes and extensions in upcoming iterations of SYNTCOMP. These are sepa-
rated into six topics: a track for GR(1) specifications (Section 5.1), synthesis of compositional systems
(Section 5.2), synthesis challenges (Section 5.3), quality ranking (Section 5.4), witnesses for correctness
(Section 5.5), and the technical setup (Section 5.6).

5.1 A Track for GR(1) Specifications

As mentioned in Section 2, there are a number of fragments of LTL that allow for more efficient synthesis
procedures. The fragment that has found most application inpractice is GR(1). We plan to add a separate
track with specifications in GR(1) in SYNTCOMP 2017. Basically, the idea is to treat GR(1) as a
fragment of LTL and use TLSF as the input format, while accounting for the non-standard semantics that
is used with respect to safety assumptions in GR(1) (cp. Bloem et al. [6]).

We already had plans for a GR(1) track in SYNTCOMP 2016, but these did not come to fruition due
to several reasons. The main reason is that we were not able tocollect a sufficiently large benchmark set
for a meaningful comparison in time for the competition. This was in part due to a number of difficulties
regarding the non-standard semantics, influencing what is deemed a correct solution, and how correctness



140 SYNTCOMP: 2016 and Beyond

can be checked. Additionally, there is an issue with the basic version of the TLSF format not being very
well-suited for some important GR(1) benchmarks.

While not in time for SYNTCOMP 2016, we believe that we have now fixed the semantics issues, and
a translation from formulas in the GR(1) semantics to formulas in the standard LTL semantics has been
added to SyFCo, enabling automatic verification with LTL model checkers. Additionally, we were able to
conduct some preliminary experiments that allow us to prepare better for the introduction of the track in
2017. In particular, we observed a much greater difficulty ofverifying the solutions than for the existing
tracks. With existing model checkers (that are tailored towards either safety or LTL specifications, but
not towards GR(1)), model checking the results often takes much longer than producing them, making
verification of all solutions infeasible. This means that for the GR(1) track we will either have to lift the
requirement that solutions have to be provably correct, or will need additional witness information (see
Section 5.5) to make verification possible.

Regarding the specification format, the problem is that someof the specifications become very large
when translated to the basic version of TLSF, which is currently the standard input formats for LTL
synthesis tools in SYNTCOMP. The native input formats of GR(1) synthesis tools such asslugs [25]
avoid the explosion of specification files by allowing sharing of sub-expressions in formulas. While this
is already possible in full LTL, it is not allowed in basic LTL. To have a better support for GR(1), we plan
a minor extension of TLSF with a format that is between the full and the basic formats in expressivity,
and allows such sharing of subexpressions (and possibly some additional features).

5.2 Compositional Specifications and Systems

We plan to extend the specification format and the competition to systems that consist of multiple com-
ponents. Some possible extensions of the specification format are also discussed in the format descrip-
tion [36]. Here, we focus on extensions of the competition, and what this means for the synthesis prob-
lems that need to be solved.

Compositional Specifications. Systems that need to be synthesized often consist of multiple compo-
nents. These components can either be synthesized separately if specifications are completely local, or
need to be synthesized such that the composed system additionally satisfies a global specification. The
latter case is interesting for SYNTCOMP, and is currently not supported by the specification format.

Partial Implementations. When considering composed systems, a natural case of the synthesis prob-
lem is the synthesis of components for a system that is already partially implemented, i.e., where some
components have a fixed implementation.

In some sense, this problem is already considered in the AIGER tracks of SYNTCOMP, as an AIGER
file can contain both an implementation of a component, and a monitor automaton that raises an error
output if the safety specification is violated. However, in an AIGER file there is no clear structural
distinction between the two.

To give structural support for component-based systems, weconsider an extension of TLSF that
allows the specification of components that have a fixed implementation. Such an implementation of a
component could for example be given as an AIGER circuit. Theresulting format will generalize both
the existing TLSF format and the existing AIGER format, as explained in the following.

Integration of both formats into one. If the supported format includes both compositional TLSF
specifications and partial implementations as AIGER circuits, then the resulting format generalizes both



S. Jacobs and R. Bloem 141

the existing TLSF format (obviously), and the existing AIGER format: a given specification in AIGER
format can simply be added as a component with a fixed implementation and a single outputError, where
controllable inputs are assigned as outputs to the system tobe synthesized, and the specification of the
system is simply

G¬Error.

Imperfect Information: Finally, compositional specifications lead to the synthesis problem under par-
tial information, i.e., the components need to decide on their behavior without knowing all inputs or the
full internal state of the other components. As Pnueli and Rosner have shown [50], the synthesis prob-
lem is undecidable under partial information, even for safety specifications. However, there have been a
number of approaches to solve instances of the problem [9,30,31,43,44], and it would be interesting to
include it into the competition at some point.

5.3 Synthesis Challenges

In its third year, SYNTCOMP is still in the process of naturalgrowth, and is only establishing itself
as a regular institution in the synthesis community. In somerelated research fields, competitions have
been around for a long time, and there have been some unintentional adverse effects on the develop-
ment of tools. On the one hand, a competition gives additional incentive for the development of efficient
push-button tools, and positive effects of competitions onthe quality and efficiency of tools have been
observed [4, 14, 37, 55]. On the other hand, the specific design and rules of a competition may also dis-
courage research on certain aspects of a problem, if they arenot part of the competition. A long-running
competition may also produce a number of very efficient and mature tools that discourage newcomers
from entering the field.

Thus, as organizers of SYNTCOMP we have to admit to a responsibility for the research directions
that we encourage or discourage by the design and the effectsof the competition. One way to deal
with the problems mentioned above would be flexiblesynthesis challengesthat change from year to
year (or every few years), and might be decided on by the community. Some of the tasks mentioned in
Sections 5.2, 5.4 and 5.5, could be offered as challenges fora limited time.

Another option is to provide potential participants with baseline solvers that already integrate the
commonly accepted optimizations, such that the participants can focus on additional smart solutions,
and don’t have to implement all the basic features themselves. This approach could be enforced in a
special track, where participants must start from this common baseline, and are only allowed to make
limited changes to the implementation that is supplied. An example of such an approach are the “Hack
Tracks” of the SAT competition [37], where participants start from a given SAT solver in source code,
and the difference between the baseline and their own implementation is limited to 1000 (non-space)
characters.

5.4 Quality Ranking/Quantitative Aspects

As mentioned before, in synthesis we usually not only care about correctness of our implementations,
but also about quantitative properties of the synthesized artifact, like its size, its reaction time to certain
events, or possibly other aspects like energy efficiency.

Experience in Previous Competitions. In SYNTCOMP 2014 and 2015, we used different quality
rankings based on the number of AND-gates in the solution, bycomparing either against the size of other



142 SYNTCOMP: 2016 and Beyond

solutions in the given competition, or against the size of a reference solution. A comparison against a
value that is not fixed before the competition means that the results (including the relative ranking of
tools) may change when we add a tool. This is undesirable in general, and in particular if we want to
use the results of the competition to evaluate a tool that didnot participate. Therefore, using a reference
solution is in general preferable. However, reference solutions are not always available, since one of our
goals is to havenewandchallengingbenchmarks in every iteration of the competition. Therefore, in
SYNTCOMP 2015 we adopted a mixed solution, which uses the size of a reference solution if available,
and the size of the smallest solution in the current run otherwise. Evaluation of non-participating tools
then requires to take this distinction into account.

However, even with this mixed approach, the results of the quality ranking were somewhat unsatis-
factory, since the size of solutions effectively only played a small role, and was dominated by the number
of problems that could be solved. This was due to two main reasons. First, points for the size of solutions
were given according to alog10-scale, i.e., for solutionA to get one additional point compared to solution
B, A had to be 10 times smaller thanB. Probably alog2-scale would be better if we want to emphasize
the need for small implementations. Second, we compared thesize of full solutions, which in the AIGER
format includes the specification circuit. Since we have many problems with a very large specification,
the size of the solution is often dominated by the size of the specification, and the size of the synthesized
code does not make much of a difference. An option to repair this would be to compare the size of the
synthesized code instead of the size of the full solution.

In SYNTCOMP 2016, we experimented with these options, and some information can be found in the
competition report [34]. In particular, it seems that comparing only the size of the actual implementation
(or controller) gives significantly more meaningful results than comparing the sizes of the complete
system that includes the specification circuit, and this will probably be the base of our quality ranking for
SYNTCOMP 2017. On the other hand, the question how much a smaller solution should be rewarded,
i.e., whether to use thelog10-scale, thelog2-scale, or some other measure, is a design decision that can
not be answered objectively.

Quality of Solutions for LTL specifications. With our extension of SYNTCOMP to specifications in
LTL, one question is whether the same ranking scheme is also suitable and fair for the new track. In the
AIGER-based track, input and output are both symbolically encoded, and we can reasonably expect tools
to optimize with respect to this encoding. In the LTL-based tracks, the input is not symbolically encoded,
and the output encoding will in many cases be an additional step to conform to the competition format.
Therefore, the answer to the question of fairness and suitability is not obvious. On the other hand, one
can argue that almost all solutions that are efficient by somedifferent measure can also be encoded into
a small symbolic AIGER representation.

In SYNTCOMP 2016 we experimented with the existing quality measures also for the TLSF-based
track, and discussed the issue with the community at the SYNTworkshop. In addition to the number of
AND-gates, we also made experiments with the number of latches in the solution (since now solutions
are in general not memoryless). Our results suggest that a ranking based on AND-gates will be similar
to one that is based on latches: a solution with a high number of latches will almost always have a
correspondingly high number of AND-gates. Since the numberof latches is usually negligible compared
to the number of AND-gates, one possibility is to not consider latches at all and use the same ranking
as described above. Another option is to rank solutions according the combined size of AND-gates and
latches in gate equivalents.



S. Jacobs and R. Bloem 143

Quality Measures Beyond (Circuit) Size. There are many other natural quality measures for reactive
systems. These include:

• the size of the reachable state space (either of the synthesized strategy, or of the solution that
includes the specification circuit),

• the reaction time (or delay) to certain actions/inputs of the environment, and

• more complex measures that assign a cost to certain actions of the system, e.g. a measure for
energy-efficiencyor power consumption.

Specialized synthesis approaches that optimize a solutionwith respect to these measures exist [8,
15–17, 31, 59]. We want to discuss at the SYNT workshop whether any of them should be a standard
quality measure in future competitions, or whether we should use optimization towards them as special
challenges for some competitions.

5.5 Witnesses for Correctness

The problems that we consider in SYNTCOMP are realizabilityof a specification and synthesis of a
solution. While the production of solutions is optional in some other subfields of automated reasoning
and computer-aided verification, it is at the heart of SYNTCOMP. Because of this, solutions themselves
are natural witnesses for the correctness of a “realizable”statement. To verify that a solution is correct,
it can be model checked against the specification.

However, there are a number of problems with this approach:

1. solutions of the synthesis problem can only be used as witnesses for correctness if the specification
is realizable. If it is unrealizable, SYNTCOMP thus far did not require any witness of correctness.

2. model checking may not be easy for complex solutions and specifications. Even for safety specifi-
cations, we had a number of solutions in SYNTCOMP 2014 that could not be model checked, and
an increased number in 2015.

In the following, we present some ideas how to handle these problems. Note that the proposed
solutions are orthogonal and could be combined.

Witnesses for Unrealizability (Counter-strategies): To solve problem 1, the competition could in-
clude (either by default, or as separate track, or as a challenge) the computation of counter-strategies for
unrealizable specifications.

The easiest way to investigate the performance of tools on this task would be to run the tool on
the negated specification and require a Moore-type implementation (instead of the usual Mealy-type).
Combining the two tasks gives even more meaningful results,as in general we will not know whether
our specification is realizable or not, and we want a witness of the fact regardless of the outcome.

Comprehensive Witnesses for Effective Correctness Proofs: Based on our findings in SYNTCOMP
2014 and 2015, we introduced the possibility that tools (in the AIGER-based safety track) can give
additional witness information that will make it easier to check correctness of the provided solution. For
safety specifications, this information can simply be an inductive invariant of the produced solution, i.e.,
a set of states that does not contain error states and is such that the produced solution will never leave
the set. The winning region of the system (computed by the standard fixpoint-based algorithm for safety
games) is an example of an inductive invariant. In SYNTCOMP 2016, we allow tools to provide such an



144 SYNTCOMP: 2016 and Beyond

invariant (also in the AIGER format). As mentioned before, this solves the problem of verifying more
complex solutions in most cases.

For specifications in LTL or GR(1), we found the problem of verifiability to be even worse. Further-
more, comprehensive witnesses need to contain more information if specifications are not restricted to
safety. Since the hardest part of the verification of liveness properties is essentially the construction of
(some form of) suitable ranking function, it would be good ifthis ranking function could be supplied by
the synthesis tool. In case of GR(1), such ranking functionshave a rather simple form, which might boil
down to a fixed unrolling of liveness properties and then effectively checking a safety property.

5.6 Technical Setup

Both SYNTCOMP 2015 and 2016 were run at Saarland University,on a small set of machines that were
acquired specifically for this purpose. The benefit of this approach is that we were able to tailor the
computers to the needs of our competition, which is CPU- and memory-intensive, but does not have a
focus on parallelization. For instance, since none of the tools in the competition used more than 3 or 4
cores (in SYNTCOMP 2014 and 2015, respectively), we had a huge benefit from moving from machines
with 16 CPU cores, but low sequential speed (in 2014), to machines with only 4 CPU cores, but nearly
twice the sequential speed (in 2015 and 2016). Moreover, theorganizers have full control over these
machines (as opposed to machines that are operated and serviced by a third party), which makes the
execution of the competition easier and more predictable.

However, the reduced number of available competition servers was already an issue last year. To cope
with the problem, we reduced the number of benchmark instances that were tested in the competition
overall.5 In 2016, the capacity of the competition servers was at its limit, and we had to run experiments
until 2 days before the presentation, instead of having a longer window between execution of presentation
as planned. Since we want to add another track to the competition next year, a bigger computing capacity
is certainly desirable and possibly necessary.

This could be achieved in different ways, each with their ownadvantages and disadvantages. In-
creasing the number of machines in the current setup requires dedicated funding and local infrastructure,
which may be hard to justify for a service that only runs 2-3 months per year. The other option is to use
third-party machines, for example those provided by the StarExec platform [54]. The benefit would be
essentially unlimited compute capacity, while the downside would be that we give up complete control
over the machines and the execution of the competition, and have to adjust our technical setup to the
infrastructure of that service (to a degree that is currently unknown to us).

6 Conclusions

The Reactive Synthesis Competition has been held annually since 2014. SYNTCOMP 2016 presents
the biggest extension of the competition thus far, introducing an additional track with specifications in
full LTL. SYNTCOMP is designed as a long-term effort that is guided by feedback from the reactive
synthesis community, and we will continue to extend and modify the competition to foster the research
in scalable and mature implementations of synthesis techniques.

Acknowledgments.We thank Rüdiger Ehlers, Ioannis Filippidis, Ayrat Khalimov, Felix Klein, Andrey Kupriyanov,
Kim Larsen, Nir Piterman, Markus Rabe, and Leander Tentrup for interesting suggestions for the future of SYNT-

5In fact, we significantly reduced the number from 569 to 250 inthe realizability track, while increasing the number from
157 to 239 instances in the synthesis track.



S. Jacobs and R. Bloem 145

COMP (and apologize if we forgot someone). Finally, we thankJens Kreber for technical assistance during setup
and execution of SYNTCOMP 2016 at Saarland University.

The organization of SYNTCOMP was supported by the Austrian Science Fund (FWF) through project RiSE
(S11406-N23), and by the German Research Foundation (DFG) through project “Automatic Synthesis of Dis-
tributed and Parameterized Systems” (JA 2357/2-1).

References

[1] Synthesis Format Conversion Tool. Available athttps://github.com/reactive-systems/syfco.

[2] Rajeev Alur & Salvatore La Torre (2004):Deterministic generators and games for LTL fragments. ACM
Trans. Comput. Log.5(1), pp. 1–25, doi:10.1145/963927.963928.

[3] Adrian Balint, Daniel Diepold, Daniel Gall, Simon Gerber, Gregor Kapler & Robert Retz (2011):EDACC -
An Advanced Platform for the Experiment Design, Administration and Analysis of Empirical Algorithms. In:
LION 5. Selected Papers, LNCS 6683, Springer, pp. 586–599, doi:10.1007/978-3-642-25566-3_46.

[4] Clark Barrett, Morgan Deters, Leonardo Mendonça de Moura, Albert Oliveras & Aaron Stump (2013):6
Years of SMT-COMP. J. Autom. Reasoning50(3), pp. 243–277, doi:10.1007/s10817-012-9246-5.

[5] Armin Biere: AIGER Format and Toolbox. Available athttp://fmv.jku.at/aiger/.

[6] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli & Y. Sa’ar (2012): Synthesis of Reactive(1) designs. J.
Comput. Syst. Sci.78(3), pp. 911–938, doi:10.1016/j.jcss.2011.08.007.

[7] R. Bloem, R. Könighofer & M. Seidl (2014):SAT-Based Synthesis Methods for Safety Specs. In: VMCAI ,
LNCS 8318, Springer, pp. 1–20, doi:10.1007/978-3-642-54013-4_1.

[8] Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger & Barbara Jobstmann (2009):Better
Quality in Synthesis through Quantitative Objectives. In: CAV, LNCS 5643, Springer, pp. 140–156,
doi:10.1007/978-3-642-02658-4_14.

[9] Roderick Bloem, Krishnendu Chatterjee, Swen Jacobs & Robert Könighofer (2015):Assume-Guarantee
Synthesis for Concurrent Reactive Programs with Partial Information. In: TACAS, LNCS 9035, Springer,
pp. 517–532, doi:10.1007/978-3-662-46681-0_50.

[10] Roderick Bloem, Uwe Egly, Patrick Klampfl, Robert Könighofer, Florian Lonsing & Martina Seidl (2016):
Satisfiability-Based Methods for Reactive Synthesis from Safety Specifications. CoRRabs/1604.06204. Avail-
able athttp://arxiv.org/abs/1604.06204.

[11] Romain Brenguier, Guillermo A. Pérez, Jean-François Raskin & Ocan Sankur (2014):AbsSynthe:
abstract synthesis from succinct safety specifications. In: SYNT, EPTCS 157, pp. 100–116,
doi:10.4204/EPTCS.157.11.

[12] Romain Brenguier, Guillermo A. Pérez, Jean-François Raskin & Ocan Sankur (2016):Compositional Algo-
rithms for Succinct Safety Games. In: SYNT, EPTCS202, pp. 98–111, doi:10.4204/EPTCS.202.7.

[13] J.R. Büchi & L.H. Landweber (1969):Solving sequential conditions by finite-state strategies. Trans. Amer.
Math. Soc.138, pp. 295–311, doi:10.2307/1994916.

[14] Gianpiero Cabodi, Carmelo Loiacono, Marco Palena, Paolo Pasini, Denis Patti, Stefano Quer, Danilo Ven-
draminetto, Armin Biere, Keijo Heljanko & Jason Baumgartner (2016): Hardware Model Checking Com-
petition 2014: An Analysis and Comparison of Solvers and Benchmarks. Journal on Satisfiability, Boolean
Modeling and Computation9, pp. 135–172.

[15] Pavol Cerný, Krishnendu Chatterjee, Thomas A. Henzinger, Arjun Radhakrishna & Rohit Singh (2011):
Quantitative Synthesis for Concurrent Programs. In: CAV, Lecture Notes in Computer Science6806,
Springer, pp. 243–259, doi:10.1007/978-3-642-22110-1_20.

[16] Pavol Cerný & Thomas A. Henzinger (2011):From boolean to quantitative synthesis. In: EMSOFT, ACM,
pp. 149–154, doi:10.1145/2038642.2038666.

https://github.com/reactive-systems/syfco
http://dx.doi.org/10.1145/963927.963928
http://dx.doi.org/10.1007/978-3-642-25566-3_46
http://dx.doi.org/10.1007/s10817-012-9246-5
http://fmv.jku.at/aiger/
http://dx.doi.org/10.1016/j.jcss.2011.08.007
http://dx.doi.org/10.1007/978-3-642-54013-4_1
http://dx.doi.org/10.1007/978-3-642-02658-4_14
http://dx.doi.org/10.1007/978-3-662-46681-0_50
http://arxiv.org/abs/1604.06204
http://dx.doi.org/10.4204/EPTCS.157.11
http://dx.doi.org/10.4204/EPTCS.202.7
http://dx.doi.org/10.2307/1994916
http://dx.doi.org/10.1007/978-3-642-22110-1_20
http://dx.doi.org/10.1145/2038642.2038666


146 SYNTCOMP: 2016 and Beyond

[17] Krishnendu Chatterjee, Thomas A. Henzinger, Barbara Jobstmann & Rohit Singh (2011):QUASY: Quan-
titative Synthesis Tool. In: TACAS, Lecture Notes in Computer Science6605, Springer, pp. 267–271,
doi:10.1007/978-3-642-19835-9_24.

[18] Yushan Chen, Xu Chu Ding, Alin Stefanescu & Calin Belta (2012): Formal Approach to the
Deployment of Distributed Robotic Teams. IEEE Transactions on Robotics28(1), pp. 158–171,
doi:10.1109/TRO.2011.2163434.

[19] Ting-Wei Chiang & Jie-Hong R. Jiang (2015):Property-Directed Synthesis of Reactive Systems from Safety
Specifications. In: ICCAD, IEEE, pp. 794–801, doi:10.1109/ICCAD.2015.7372652.

[20] Sandeep Chinchali, Scott C. Livingston, Ufuk Topcu, Joel W. Burdick & Richard M. Murray (2012):Towards
formal synthesis of reactive controllers for dexterous robotic manipulation. In: ICRA, IEEE, pp. 5183–5189,
doi:10.1109/ICRA.2012.6225257.

[21] Alonzo Church (1962):Logic, arithmetic and automata. In: Proceedings of the international congress of
mathematicians, pp. 23–35.

[22] Niklas Eén, Alexander Legg, Nina Narodytska & Leonid Ryzhyk (2015): SAT-Based Strategy
Extraction in Reachability Games. In: AAAI , AAAI Press, pp. 3738–3745. Available at
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9683.

[23] Rüdiger Ehlers (2011):Unbeast: Symbolic Bounded Synthesis. In: TACAS, LNCS 6605, Springer, pp.
272–275, doi:10.1007/978-3-642-19835-9_25.

[24] Rüdiger Ehlers (2012):Symbolic bounded synthesis. Formal Methods in System Design40(2), pp. 232–262,
doi:10.1007/s10703-011-0137-x.

[25] Rüdiger Ehlers & Vasumathi Raman (2016):Slugs: Extensible GR(1) Synthesis. In: CAV (2), Lecture Notes
in Computer Science9780, Springer, pp. 333–339, doi:10.1007/978-3-319-41540-6_18.

[26] Emmanuel Filiot:Acacia+. Available athttp://lit2.ulb.ac.be/acaciaplus/.

[27] Emmanuel Filiot, Naiyong Jin & Jean-François Raskin (2011):Antichains and compositional algorithms for
LTL synthesis. Formal Methods in System Design39(3), pp. 261–296, doi:10.1007/s10703-011-0115-3.

[28] Emmanuel Filiot, Naiyong Jin & Jean-François Raskin (2013):Exploiting structure in LTL synthesis. STTT
15(5-6), pp. 541–561, doi:10.1007/s10009-012-0222-5.

[29] Bernd Finkbeiner (2016):Synthesis of Reactive Systems. In: Dependable Software Systems Engineering,
NATO Science for Peace and Security Series - D: Information and Communication Security45, IOS Press,
pp. 72–98, doi:10.3233/978-1-61499-627-9-72.

[30] Bernd Finkbeiner & Swen Jacobs (2012):Lazy Synthesis. In: VMCAI , LNCS 7148, Springer, pp. 219–234,
doi:10.1007/978-3-642-27940-9_15.

[31] Bernd Finkbeiner & Sven Schewe (2013):Bounded synthesis. STTT 15(5-6), pp. 519–539,
doi:10.1007/s10009-012-0228-z.

[32] Swen Jacobs (2014):Extended AIGER Format for Synthesis. CoRR abs/1405.5793. Available at
http://arxiv.org/abs/1405.5793.

[33] Swen Jacobs, Roderick Bloem, Romain Brenguier, Rüdiger Ehlers, Timotheus Hell, Robert Könighofer,
Guillermo A. Pérez, Jean-François Raskin, Leonid Ryzhyk, Ocan Sankur, Martina Seidl, Leander Ten-
trup & Adam Walker (2016): The First Reactive Synthesis Competition (SYNTCOMP 2014). STTT,
doi:10.1007/s10009-016-0416-3. Published online first, journal issue to appear.

[34] Swen Jacobs, Roderick Bloem, Romain Brenguier, Ayrat Khalimov, Felix Klein, Robert Könighofer, Jens
Kreber, Alexander Legg, Nina Narodytska, Guillermo A. Pérez, Jean-François Raskin, Leonid Ryzhyk, Ocan
Sankur, Martina Seidl, Leander Tentrup & Adam Walker (2016): The 3rd Reactive Synthesis Competition
(SYNTCOMP 2016): Benchmarks, Participants & Results. In: SYNT, Electronic Proceedings in Theoretical
Computer Science229, Open Publishing Association, pp. 149–177, doi:10.4204/EPTCS.229.12.

[35] Swen Jacobs, Roderick Bloem, Romain Brenguier, RobertKönighofer, Guillermo A. Pérez, Jean-François
Raskin, Leonid Ryzhyk, Ocan Sankur, Martina Seidl, LeanderTentrup & Adam Walker (2016):The Second

http://dx.doi.org/10.1007/978-3-642-19835-9_24
http://dx.doi.org/10.1109/TRO.2011.2163434
http://dx.doi.org/10.1109/ICCAD.2015.7372652
http://dx.doi.org/10.1109/ICRA.2012.6225257
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9683
http://dx.doi.org/10.1007/978-3-642-19835-9_25
http://dx.doi.org/10.1007/s10703-011-0137-x
http://dx.doi.org/10.1007/978-3-319-41540-6_18
http://lit2.ulb.ac.be/acaciaplus/
http://dx.doi.org/10.1007/s10703-011-0115-3
http://dx.doi.org/10.1007/s10009-012-0222-5
http://dx.doi.org/10.3233/978-1-61499-627-9-72
http://dx.doi.org/10.1007/978-3-642-27940-9_15
http://dx.doi.org/10.1007/s10009-012-0228-z
http://arxiv.org/abs/1405.5793
http://dx.doi.org/10.1007/s10009-016-0416-3
http://dx.doi.org/10.4204/EPTCS.229.12


S. Jacobs and R. Bloem 147

Reactive Synthesis Competition (SYNTCOMP 2015). In: SYNT, EPTCS202, Open Publishing Association,
pp. 27–57, doi:10.4204/EPTCS.202.4.

[36] Swen Jacobs, Felix Klein & Sebastian Schirmer (2016):A High-Level LTL Synthesis Format: TLSF v1.1.
In: SYNT, Electronic Proceedings in Theoretical Computer Science229, Open Publishing Association, pp.
112–132, doi:10.4204/EPTCS.229.10.

[37] Matti Järvisalo, Daniel Le Berre, Olivier Roussel & Laurent Simon (2012):The International SAT Solver
Competitions. AI Magazine33(1).

[38] Barbara Jobstmann & Roderick Bloem (2006):Optimizations for LTL Synthesis. In: FMCAD, IEEE Com-
puter Society, pp. 117–124, doi:10.1109/FMCAD.2006.22.

[39] Ayrat Khalimov (2016):Specification Format for Reactive Synthesis Problems. In: SYNT, EPTCS202, pp.
112–119, doi:10.4204/EPTCS.202.8.

[40] Hadas Kress-Gazit, Georgios E. Fainekos & George J. Pappas (2009): Temporal-Logic-Based Re-
active Mission and Motion Planning. IEEE Transactions on Robotics25(6), pp. 1370–1381,
doi:10.1109/TRO.2009.2030225.

[41] Alexander Legg, Nina Narodytska & Leonid Ryzhyk (2016): A SAT-Based Counterexample
Guided Method for Unbounded Synthesis. In: CAV (2), LNCS 9780, Springer, pp. 364–382,
doi:10.1007/978-3-319-41540-6_20.

[42] Jun Liu, Necmiye Ozay, Ufuk Topcu & Richard M. Murray (2013): Synthesis of Reactive Switching
Protocols From Temporal Logic Specifications. IEEE Trans. Automat. Contr.58(7), pp. 1771–1785,
doi:10.1109/TAC.2013.2246095.

[43] P. Madhusudan & P. S. Thiagarajan (2001):Distributed Controller Synthesis for Local Specifications. In:
ICALP, LNCS 2076, Springer, pp. 396–407, doi:10.1007/3-540-48224-5_33.

[44] P. Madhusudan & P. S. Thiagarajan (2002):A Decidable Class of Asynchronous Distributed Controllers. In:
CONCUR, LNCS 2421, Springer, pp. 145–160, doi:10.1007/3-540-45694-5_11.

[45] Andreas Morgenstern & Klaus Schneider (2011):A LTL Fragment for GR(1)-Synthesis. In: iWIGP,
EPTCS50, pp. 33–45, doi:10.4204/EPTCS.50.3.

[46] Nina Narodytska, Alexander Legg, Fahiem Bacchus, Leonid Ryzhyk & Adam Walker (2014): Solv-
ing Games without Controllable Predecessor. In: CAV, LNCS 8559, Springer, pp. 533–540,
doi:10.1007/978-3-319-08867-9_35.

[47] A Pnueli, E Asarin, O Maler & J Sifakis (1998):Controller synthesis for timed automata. In: Proc. System
Structure and Control. Elsevier.

[48] Amir Pnueli (1977):The Temporal Logic of Programs. In: FOCS, IEEE Computer Society, pp. 46–57,
doi:10.1109/SFCS.1977.32.

[49] Amir Pnueli & Roni Rosner (1989):On the Synthesis of a Reactive Module. In: POPL, ACM Press, pp.
179–190, doi:10.1145/75277.75293.

[50] Amir Pnueli & Roni Rosner (1990):Distributed Reactive Systems Are Hard to Synthesize. In: Foundations
of Computer Science (FOCS’90), IEEE Computer Society, pp. 746–757, doi:10.1109/FSCS.1990.89597.

[51] Michael O. Rabin (1972):Automata on Infinite Objects and Church’s Problem. Amer. Math. Soc.13.

[52] Leonid Ryzhyk, Adam Walker, John Keys, Alexander Legg,Arun Raghunath, Michael Stumm & Mona Vij
(2014):User-Guided Device Driver Synthesis. In: OSDI, USENIX Association, pp. 661–676. Available at
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/ryzhyk.

[53] Saqib Sohail & Fabio Somenzi (2013):Safety first: a two-stage algorithm for the synthesis of reactive
systems. STTT15(5-6), pp. 433–454, doi:10.1007/s10009-012-0224-3.

[54] Aaron Stump, Geoff Sutcliffe & Cesare Tinelli (2014):StarExec: A Cross-Community Infrastructure for
Logic Solving. In: IJCAR, LNCS 8562, Springer, pp. 367–373, doi:10.1007/978-3-319-08587-6_28.

[55] Geoff Sutcliffe & Christian B. Suttner (2006):The state of CASC. AI Commun.19(1), pp. 35–48.

http://dx.doi.org/10.4204/EPTCS.202.4
http://dx.doi.org/10.4204/EPTCS.229.10
http://dx.doi.org/10.1109/FMCAD.2006.22
http://dx.doi.org/10.4204/EPTCS.202.8
http://dx.doi.org/10.1109/TRO.2009.2030225
http://dx.doi.org/10.1007/978-3-319-41540-6_20
http://dx.doi.org/10.1109/TAC.2013.2246095
http://dx.doi.org/10.1007/3-540-48224-5_33
http://dx.doi.org/10.1007/3-540-45694-5_11
http://dx.doi.org/10.4204/EPTCS.50.3
http://dx.doi.org/10.1007/978-3-319-08867-9_35
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1145/75277.75293
http://dx.doi.org/10.1109/FSCS.1990.89597
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/ryzhyk
http://dx.doi.org/10.1007/s10009-012-0224-3
http://dx.doi.org/10.1007/978-3-319-08587-6_28


148 SYNTCOMP: 2016 and Beyond

[56] Leander Tentrup (2016): Solving QBF by Abstraction. CoRR abs/1604.06752. Available at
http://arxiv.org/abs/1604.06752.

[57] Wolfgang Thomas (1995):On the Synthesis of Strategies in Infinite Games. In: STACS, pp. 1–13,
doi:10.1007/3-540-59042-0_57.

[58] Adam Walker & Leonid Ryzhyk (2014):Predicate abstraction for reactive synthesis. In: FMCAD, IEEE,
pp. 219–226, doi:10.1109/FMCAD.2014.6987617.

[59] Martin Zimmermann (2013):Optimal bounds in parametric LTL games. Theor. Comput. Sci.493, pp. 30–45,
doi:10.1016/j.tcs.2012.07.039.

http://arxiv.org/abs/1604.06752
http://dx.doi.org/10.1007/3-540-59042-0_57
http://dx.doi.org/10.1109/FMCAD.2014.6987617
http://dx.doi.org/10.1016/j.tcs.2012.07.039

	1 Introduction
	2 Reactive Synthesis: A Brief Overview
	3 SYNTCOMP 2016: Rules and Setup
	3.1 Specific Rules for AIGER safety track
	3.2 Specific Rules for LTL Track

	4 SYNTCOMP 2016: Evaluation of Changes
	4.1 Existing Track: Safety Specifications
	4.2 New Track: Full LTL Specifications.

	5 The Future: Ideas for SYNTCOMP 2017 and Beyond
	5.1 A Track for GR(1) Specifications
	5.2 Compositional Specifications and Systems
	5.3 Synthesis Challenges
	5.4 Quality Ranking/Quantitative Aspects
	5.5 Witnesses for Correctness
	5.6 Technical Setup

	6 Conclusions

