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We report on the design of the third reactive synthesis coitigpe (SYNTCOMP 2016), including

a major extension of the competition to specifications ihlfnéar temporal logic. We give a brief
overview of the synthesis problem as considered in SYNTCaviB present the rules of the com-
petition in 2016, as well as the ideas behind our design elsoieurthermore, we evaluate the recent
changes to the competition based on the experiences witiT&€aOWIP 2016. Finally, we give an
outlook on further changes and extensions of the competitiat are planned for the future.

1 Introduction

The automatic synthesis of reactive systems from formatifipations has been one of the major chal-
lenges of computer science for more than 50 years, and a muhlmdamental approaches to solve the
problem have been proposéd|[13[21],49,51]. For a long timdampact of theoretical results on the prac-
tice of system design has been rather limited, due to the waist-case complexity of synthesis from
specifications in expressive temporal logics, and a lackgurahms that solve the problem efficiently
in the average case. Recently, there have been a number apmoaches that aim at more practical
synthesis algorithms by either restricting the specificatanguage [6, 45], or by a smart exploration of
the search space [24,/27]28|,[30/31,53]. Moreover, therbdwsan increased interest in applications of
reactive synthesis techniques, e.g., in robotics and eyfwgsical systems, or for the synthesis of device
drivers. [18, 20, 40,42, 52] Despite this growing interdisére remains a divide between theoretical re-
search and applications, due in some part to a missing tniisre to compare synthesis tools, and a
lack of incentive to build efficient and mature implemerdas (as noted by Ehlers [23]).
In 2014, the authors and Ehlers founded the reactive syisthempetition (SYNTCOMP) in order

to foster the research in scalable and user-friendly implgations of synthesis techniques. The goals
of SYNTCOMP are

i) to make synthesis tools comparable by establishingramon benchmark format
i) to facilitate the exchange of benchmarks ipublic benchmark repository
i) to establish a dedicated platform forcamprehensive and fair evaluatiar synthesis tools,

iv) to encourage the implementation of synthesis tools ¢hatbe used aslack-box solverén appli-
cations, and

v) to foster theefficient implementatioof synthesis algorithms by regularly providing new and €hal
lenging benchmark problems, and comparing the performahtmols on these.

Since its inception, SYNTCOMP was held annually, and thetfive iterations[[38,35] were intentionally
restricted to safety properties and a low-level specificaformat derived from the existing AIGER
format [5/32], in order to have a low entry barrier for papants. We consider the competition to be a
great success thus far: where before there were no two sysiioels that used the same input language,
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there are now five tools from different research groups cacobepared in a fair and meaningful way,
based on a common specification language. As a part of the £YIWIP effort, we maintain a public
benchmark Iibra@which now consists of several thousand benchmark instdnoesa wide range of
domains, and is steadily growing. Moreover, SYNTCOMP hagéred an increased interest in the
development of efficient synthesis tools and specificatiorgliages that relate to the competition, as
witnessed by a growing number of publications on these $opi¢10+12, 39E, including tools and
research groups that have not participated in the competiius far[[19, 22,41, 46, 56].

SYNTCOMP 2016 introduces a major extension of the compaetitiy dropping the restriction to
low-level safety properties. To this end, we add a sepa@t®etition track for the evaluation of synthe-
sis tools on specifications in a high-level input format folt finear temporal logic (LTL). The specifi-
cation format used for the new tracks is teenporal logic synthesis form&@tLSF), recently introduced
by Jacobs and Klein [36].

In this paper, we describe the design of SYNTCOMP 2016, witbcas on the extension to speci-
fications in TLSF, and report on our plans for further extensiof the competition in the coming years.
We describe the synthesis problem as considered in SYNTC@®NMfection 2, followed by a presen-
tation of the design and rules of SYNTCOMP 2016 in Sedtibnr8Séctior #, we evaluate our recent
changes to the competition, based on the experiences wilTSOMP 2016. Finally, in Sectidn 5 we
give our thoughts on possible and probable further extessid SYNTCOMP in the future, as a basis
for discussion. Note that the benchmarks, participantgesults of SYNTCOMP 2016 are presented in
a sister paper [34].

2 Reactive Synthesis: A Brief Overview

We briefly summarize the reactive synthesis problem as ibfisidered in SYNTCOMP, including ap-
proaches that have been developed to solve it.

The Synthesis Problem. We consider the synthesis problem for reactive systemsctrate repre-
sented adinite-state machinesThe specifications we consider come in two forms: eitheeagpbral
logic formulas, more specifically itinear- time temporal logidLTL) [48], over the sets of inputs and
outputs of the system, or as an AIGER circlit [5, 32] with agiroutput, with a set of controllable and
a set of uncontrollable inputs.

For specifications in LTL, theealizability problemis to decide whether there exists a finite-state
machine that reads the inputs and produces outputs sucthéhspecification is satisfied in all possible
executions. For AIGER circuits, thealizability problemis to decide whether there exists a controller
circuit that reads the controllable inputs and the currgatesof the specification circuit, and produces
the controllable inputs of the specification circuit sucattine single output of the circuit is never raised.

Given a realizable specification, tegnthesis problers to find an implementation that satisfies the
specification. The synthesis problems we consider are a&guitvto finding a winning strategy in infinite
two-player games whose structure and winning strategesl@iermined by the specification [57]. For
both kinds of specifications, solutions can be encoded imt&IGER circuit.

Important Fragments. There are several important fragments of LTL, differing xpeessivity and in
the complexity of the realizability and synthesis probleraer full LTL, the realizability and synthesis

1Synthesis Competition Repositofyttps: //bitbucket . org/swenjacobs/syntcomp/
2Moreover, the ideas from [58] were also used in the versiosimiple BDD Solver that competed in SYNTCOMP 2015.
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problems are 2EXPTIME-complete in the size of the specifioaiormula [49]. However, there exist a
number of fragments for which the problems are decidableXREBME [2,/47], in particular the GR(1)
fragment[[6], which allows some restricted liveness propeiin addition to simple safety propert@s.

Synthesis Algorithms. There are a number of existing algorithms to solve the swith@roblem, based

on two fundamental approaches. The first approach, by BiimchLandweber[[13], works by transla-
tion into a deterministic Blichi game, and solving it. Thea®t approach, by Rabin [61], works by
translation into a tree automaton, and solving its emptypesblem.

In recent years, many algorithms for solving synthesis lgrab more efficiently have been proposed.
We mention a few prominent approaches. Bounded syntheEjs§arches incrementally for solutions
up to a certain size. An algorithm based on bounding livepesgerties and a symbolic representation
by antichains has been implemented in the synthesis toaia¢26/27]. Other algorithms try to exploit
the structure of commonly occuring specifications, and gsepincremental or compositional ways to
solve the probleni [27, 38, 53].

For safety properties, efficient algorithms can be impletegnising BDDs and a fixpoint construc-
tion over the uncontrollable predecessors of the unsafessté&or GR(1), there is a similar algorithm,
using a nested fixpoint constructidn [6]. A more detailedadtiction into approaches to solve safety
games can be found in the report of SYNTCOMP 2014 [33].

3 SYNTCOMP 2016: Rules and Setup

The basic idea of SYNTCOMP is that submitted tools are evatuan a previously unknown selection
of benchmarks from the publicly available library, withaugier intervention. Tools are then ranked with
respect to the number of problem instances that can corrbetlsolved within a given timeout. The
competition is separated into tracks that correspond térédggnents of LTL mentioned in Sectidn 2.

In the following, we first give an overview of the rules tha¢ @ommon to all tracks, and then go into
some details for the separate tracks, with a focus on thegelsamade this year.

Tracks. The competition is divided into two maimacks distinguished by the specification format:
safety specifications in AIGER format, and full LTL specifioas in TLSH In both tracks, realizability
is defined with respect to Mealy semantics, i.e., the outpluts implementation are allowed to depend
on the inputs without any delay.

In each track there amubtracksfor two different tasksrealizability checkingandsynthesis While
in realizability checkinghe tools only need to return one bit of information,synthesighey need to
return a provably correct solution. While the main goal @& dompetition is to compare algorithms for
synthesis, we included subtracks for realizability chegkio have a low entry barrier for participants.
This decision is justified by our experience: in each of thepetitions in 2014, 2015 and 2016, there
were 2 tools that only supported realizability checking, fmt synthesis.

Furthermore, for each (sub)track we separate the analjsesolts into the two execution modes
sequentialand parallel. In sequentialimode, tools can only use one core of the CPU, angairallel
mode they can use multiple cores in parallel. The idea ofgbmaration is to have parallelization of

SMore precisely, for GR(1) the size of the game arena is expiiadén the size of the formula, and GR(1) games are solved
in quadratic time in the size of the arenha [6], 29].

4A third track with GR(1) specifications in TLSF was planned $NTCOMP 2016, but was not executed due to various
reasons that we explain in Sect[onl5.1.
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algorithms as an explicit dimension of the competition. deseffect in all iterations of SYNTCOMP
thus far was that in sequential mode we only compared sihgteitnms, and portfolio implementations
only appeared in the parallel mode (although the rules déombid to run portfolios in sequential mode).

Entrants. As in previous years, we ask participants to hand in theilstas source code, licensed for
research purposes, accompanied by installation instngtnd a short description of the system and the
synthesis approach and optimizations it implements.

Each author can submit up to three differél configurationsper subtrack. Our experience from
previous iterations suggests that this limit is a good camyse that allows some flexibility for the tool
creators, while avoiding the flooding of the competitionhwtibo many configurations of the same tool.

The organizers commit to making reasonable efforts to linstch tool, but reserve the right to
reject entrants where installation problems cannot bdwedoThis was not the case for any of previous
iterations of the competition. In case of crashes or obWousong results we allow submission of
bugfixes, if time permits. This possibility has been usedlipravious iterations, including SYNTCOMP
2016.

We encourage participants to visit the SYNT workshop andXRe conference for the presentation
of the SYNTCOMP results, but this is not a requirement fottipigmation. The organizers reserve the
right to submit their own tools, and do so regularly.

Timeout. In sequential execution mode, the timeout for each probeB8600s of CPU time. In the
parallel mode, the timeout is 3600s of wall time.

Output Format. For the realizability checking tracks, tools should outpither ‘REALIZABLE” or
“UNREALIZABLE” on stdout.

For the synthesis tracks, tools should either out@REALIZABLE”", or a circuit in AIGER format
that satisfies the specification. In the safety-track, trexi§pation has to be included in the solution,
while in the LTL-track, the solution is only the synthesizgthategy.

Correctness of Solutions. Correctness in realizability subtracks is determinedeeithy existing in-
formation about the realizability of the benchmark (polgsgtored in theSTATUS field of the specifi-
cation [35]), or by a majority vote of all participating sehs if such information is not available. In
the latter case, the execution platform for the experimgatgerates a notification that a previously un-
solved problem has been solved, and the organizers ingpeptdblem to avoid errors in the evaluation.
Correctness in the synthesis subtracks is determined liffcaéion of the produced solution within a
separate time limit of 3600s (for details see below).

Ranking. Competition entrants are ranked with respect to the numtgroblems that can be answered
with a correct solution within the given timeout. Timeouéstijer in solving the problem or verifying
the solution) are not counted, and wrong results are puaisiyesubtracting 4 points. Since all of
the benchmarks are publicly available before the compatitsuch a punishment was not necessary in
previous years. In SYNTCOMP 2016 however, we had one ppatitithat returned a number of wrong
results in the new TLSF-based synthesis track, and thatlamtl be fixed in time for the competition
(see the SYNTCOMP 2016 report [34]). This ranking schemenfmng solutions is also used in other
competitions, but we have to agree with Cabodi etlall [14{ th&s undesirable to possibly have a
competition winner that produces a positive number of wnasglts. Therefore, in future competitions
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we will disqualify tools that produce wrong solutions. Ifgsible, we will allow the tool authors to
supply a fixed version after the competition, and evaludteris concours, as we did this year.

Quality Metrics.  The goal of synthesis is to obtain implementations that atenly correct, but also
efficient. Therefore, in previous iterations of SYNTCOMP aleo considered additionguality rank-
ings where correct solutions are additionally weighted bagetheir size. Since the rankings used in
previous years gave unsatisfactory results, we do not haeéfiaial quality ranking this year. However,
we still analyzed solutions with respect to their size arebpnt our findings in the SYNTCOMP 2016
report [34].

We plan to bring quality rankings back in future iteratiofighe competition, based on our experience
from SYNTCOMP 2016 and our thoughts presented in Settidn 5.4

Competition Setup. Like in previous years, SYNTCOMP 2016 is organized on the EDAplat-
form [3]. The competition runs on a set of machines at Sadrlaniversity, each with a single In-
tel XEON processor (E3-1271 v3, quad-core§@Hz) and 32 GB RAM (PC1600, ECC), running a
GNU/Linux system. Each node has a local 480GB SSD that cae smporary files. To ensure a high
comparability and reproducability of our results, a contglmachine will be reserved for each job, i.e.,
one synthesis tool (configuration) running one benchmaikceSall nodes are identical and no other
tasks will run in parallel, no other limits than the timeoliti e set.

Benchmark Selection. A subset of all available benchmarks was selected for thepetitton. Like

in the previous year [35], benchmarks are separated inégoges, and we selected a subset from each
category such that the different categories have apprdgignaqual weight in the competition, and that
the competition benchmarks represent a good distributioosa different difficulties for each category.

3.1 Specific Rules for AIGER safety track

Specifications. Specifications are given in the Extended AIGER Format fortlsgsis [32, 33], model-
ing a single safety property.

Output and Correctness. In the synthesis category, tools must produce solutionsI®ER format
that include the specification circuit and abide by addal@yntactic restrictions [33]. These are model
checked with existing safety model checkers.

Since model checking turned out to be a significant challémgsome problem instances in previous
years, we introduce another extension in SYNTCOMP 2016. rAalizrnative to full model checking,
tools can output, in addition to their solutionwinning regionof the system as a witness for correctness.
If a winning region is supplied by the tool, we first try to vgrcorrectness of the solution based on the
invariant, and fall back to full model checking if the cheskiniconclusive.

Legacy Tools. For comparison, we run some of the entrants of SYNTCOMP 20t4SYNTCOMP
2015 in the safety track. This allows us to highlight the pesg of tools over the course of the last two
years.
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3.2 Specific Rules for LTL Track

Specifications. In the LTL track, specifications are given in basic TLSF fotnfeor tools that do not
support TLSF directly, the organizers supply a number ofdiators to different existing formats in the
SyFCo tool [[1] (which will be installed on the competition ones). Specifications are interpreted
according to standard LTL semantics.

Output and Correctness. In the synthesis subtrack, tools must produce solutiond@ER format if
the specification is realizable. As a syntactical restittihe sets of inputs and outputs of the TLSF file
must be identical to the sets of inputs and outputs of the ARGEBIution. Additionally, solutions are
model checked with existing LTL model checking tools.

Legacy Tools. For comparison, we run the legacy synthesis toalBEAST, non-competitive, in the
LTL track. To this end, we convert the TLSF specification te tative input format of tIBEAST, and
used a wrapper script to make inputs and outputs conformectdndard format. Since this would
be a significant amount of work for the synthesis subtraclksuse WWBEAST only in the realizability
subtrack.

4 SYNTCOMP 2016: Evaluation of Changes

We consider SYNTCOMP 2016, including the changes and extendo the competition, as another
successful step towards the overall goals of SYNTCOMP, éisatkin SectioriIl. In this section, we
give a brief overview of our experience with SYNTCOMP 201€parated into the continuation of the
track based on safety specifications in AIGER format, andrtreduction of the new track, based on
full LTL specifications in TLSF.

4.1 Existing Track: Safety Specifications

One part of SYNTCOMP 2016 was the track with safety specifioatin AIGER format. This track was
already a part of SYNTCOMP 2014 and 2015![33, 35], with esakiynthe same setup as this year. More
specifically, in SYNTCOMP 2016 the realizability subtraekmwith exactly the same rules as last yeatr,
and there were two changes to the rules in the synthesisasibi) tools can now also supply a winning
region in addition to their solution, in order to facilitaterification, and ii) the ranking is only based on
the number of (provably) correct solutions, but not on tleiality.

Regarding the number of participants and the progress oeeigus years, we think that it was well
worth continuing the existing track, and that this will rém&ue for the foreseeable future: the number
of participants increased to 6 (from 4 in SYNTCOMP 2015), aaderal tools performed significantly
better than the best configurations from last year, that werdnors concours for comparison.

The possibility of supplying additional witness infornatito facilitate verification was used by 2
out of 4 tools that support synthesis of controllers, andigadao be very useful: out of the almost 1000
solutions that were provided by the tools that used thisooptnly for 3 the verification was inconclu-
sive. In comparison, out of approximately 400 solutiong tizane without this additional information,
14 could not be verified.

Regarding the ranking, we think that the numbepmivablycorrect solutions is a good basic measure
that will also be used in the future. Additionally, we als@mplto bring back a quality ranking (see
Sectior[ 5.4).
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4.2 New Track: Full LTL Specifications.

The other main part of SYNTCOMP 2016 was a completely new atitipn track that is based on spec-
ifications in full LTL. Specifications are given in the néemporal logic synthesis formétLSF) [3€],
that was designed to be clear and human-readable, todéeitiie development of complex, structured
specifications, and can be automatically translated to & fasnat that is easy to parse by synthesis
tools.

We consider this new track a big success: the first iteratiwh $hparticipating tools, all of which
supported not only realizability checking, but also systheAdditionally, we were able to run the legacy
tool UNBEAST on the competition benchmarks for comparison in the reailinachecking subtrack.

The newly designed format proved to be very well-suited far ¢competition, as witnessed by the
following points:

e Specifications are easy to write, due to the structure ofdhmdt and the tool support. In partic-
ular, most of the benchmark instances used in the compestam from explicitlyparameterized
benchmarks that can automatically be instantiated foeudifft valuations of their parameters.

e The new specification format is also easy to integrate witstiexg synthesis tools. In SYNTCOMP
2016, versions of pre-existing synthesis tools Acacia axmiTlP-Elli participated officially, and
the legacy tool lIBEAST was run hors concours. All of these usedshathesis format conversion
tool (SyFCo) [1], supplied by the organizers and F. Klein, to engtically translate specifications
to their native input formats.

In the synthesis subtrack, verification of solutions by &xgs model checkers worked reasonably
well. That is, for 2 out of 3 participants all of the solutioosuld be verified, while for the other one
there were 20 out of 153 solutions where model checking weanitiusive. To facilitate verification,
we will consider the possibility to include additional watss information with the solution. For more
details, see Sectidn 5.5.

5 The Future: Ideas for SYNTCOMP 2017 and Beyond

We discuss ideas for changes and extensions in upcomiragidgtes of SYNTCOMP. These are sepa-

rated into six topics: a track for GR(1) specifications (®edb.1), synthesis of compositional systems
(Sectiorl5.R), synthesis challenges (Sedtioh 5.3), qualitking (Sectiof 514), witnesses for correctness
(Sectiorf5.b), and the technical setup (Sediioh 5.6).

5.1 A Track for GR(1) Specifications

As mentioned in Sectidn 2, there are a number of fragment$loftat allow for more efficient synthesis
procedures. The fragment that has found most applicatipreictice is GR(1). We plan to add a separate
track with specifications in GR(1) in SYNTCOMP 2017. Badyathe idea is to treat GR(1) as a
fragment of LTL and use TLSF as the input format, while actimgnfor the non-standard semantics that
is used with respect to safety assumptions in GR(1) (cp.rBleeal. [6]).

We already had plans for a GR(1) track in SYNTCOMP 2016, beséidid not come to fruition due
to several reasons. The main reason is that we were not apdect a sufficiently large benchmark set
for a meaningful comparison in time for the competition. STwias in part due to a number of difficulties
regarding the non-standard semantics, influencing whaesed a correct solution, and how correctness
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can be checked. Additionally, there is an issue with thedhasision of the TLSF format not being very
well-suited for some important GR(1) benchmarks.

While not in time for SYNTCOMP 2016, we believe that we haverficed the semantics issues, and
a translation from formulas in the GR(1) semantics to foasuh the standard LTL semantics has been
added to SyFCo, enabling automatic verification with LTL mlatheckers. Additionally, we were able to
conduct some preliminary experiments that allow us to pepatter for the introduction of the track in
2017. In particular, we observed a much greater difficultyenffying the solutions than for the existing
tracks. With existing model checkers (that are tailoredat@s either safety or LTL specifications, but
not towards GR(1)), model checking the results often takeshnionger than producing them, making
verification of all solutions infeasible. This means thattfie GR(1) track we will either have to lift the
requirement that solutions have to be provably correct, ibme&ed additional witness information (see
Sectior[ 5.b) to make verification possible.

Regarding the specification format, the problem is that softlee specifications become very large
when translated to the basic version of TLSF, which is culyethe standard input formats for LTL
synthesis tools in SYNTCOMP. The native input formats of GR{ynthesis tools such adugs [25]
avoid the explosion of specification files by allowing shgraf sub-expressions in formulas. While this
is already possible in full LTL, it is not allowed in basic LTTo have a better support for GR(1), we plan
a minor extension of TLSF with a format that is between thédot the basic formats in expressivity,
and allows such sharing of subexpressions (and possiblg salditional features).

5.2 Compositional Specifications and Systems

We plan to extend the specification format and the competitiocsystems that consist of multiple com-

ponents. Some possible extensions of the specificationaficane also discussed in the format descrip-
tion [36]. Here, we focus on extensions of the competitiard &hat this means for the synthesis prob-
lems that need to be solved.

Compositional Specifications. Systems that need to be synthesized often consist of neuttiphpo-
nents. These components can either be synthesized sép#rapecifications are completely local, or
need to be synthesized such that the composed system adtijtieatisfies a global specification. The
latter case is interesting for SYNTCOMP, and is currentlysupported by the specification format.

Partial Implementations. When considering composed systems, a natural case of theesigprob-
lem is the synthesis of components for a system that is airpadially implemented, i.e., where some
components have a fixed implementation.

In some sense, this problem is already considered in the RIte&tks of SYNTCOMP, as an AIGER
file can contain both an implementation of a component, aneiaitor automaton that raises an error
output if the safety specification is violated. However, mAGER file there is no clear structural
distinction between the two.

To give structural support for component-based systemscomsider an extension of TLSF that
allows the specification of components that have a fixed implgation. Such an implementation of a
component could for example be given as an AIGER circuit. fEsalting format will generalize both
the existing TLSF format and the existing AIGER format, aglained in the following.

Integration of both formats into one. If the supported format includes both compositional TLSF
specifications and partial implementations as AIGER cissihen the resulting format generalizes both
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the existing TLSF format (obviously), and the existing AlBEormat: a given specification in AIGER
format can simply be added as a component with a fixed impletien and a single outp@rror, where
controllable inputs are assigned as outputs to the systdim synthesized, and the specification of the
system is simply

G —Error.

Imperfect Information:  Finally, compositional specifications lead to the synth@soblem under par-
tial information, i.e., the components need to decide om thehavior without knowing all inputs or the
full internal state of the other components. As Pnueli andrieo have shown [50], the synthesis prob-
lem is undecidable under partial information, even for ga$pecifications. However, there have been a
number of approaches to solve instances of the problém [31383, 44], and it would be interesting to
include it into the competition at some point.

5.3 Synthesis Challenges

In its third year, SYNTCOMP is still in the process of natugabwth, and is only establishing itself
as a regular institution in the synthesis community. In soet&ted research fields, competitions have
been around for a long time, and there have been some unimahadverse effects on the develop-
ment of tools. On the one hand, a competition gives additimeantive for the development of efficient
push-button tools, and positive effects of competitiongtenquality and efficiency of tools have been
observed([4, 14, 37, 55]. On the other hand, the specific desid rules of a competition may also dis-
courage research on certain aspects of a problem, if thayodpart of the competition. A long-running
competition may also produce a number of very efficient antureaools that discourage newcomers
from entering the field.

Thus, as organizers of SYNTCOMP we have to admit to a resbititysifor the research directions
that we encourage or discourage by the design and the etiette competition. One way to deal
with the problems mentioned above would be flexibljmthesis challengethat change from year to
year (or every few years), and might be decided on by the camtymuSome of the tasks mentioned in
Section$ 514, 514 aiid 5.5, could be offered as challengeslimited time.

Another option is to provide potential participants withsbline solvers that already integrate the
commonly accepted optimizations, such that the partitgpaan focus on additional smart solutions,
and don’t have to implement all the basic features themsel\idis approach could be enforced in a
special track, where participants must start from this camiaseline, and are only allowed to make
limited changes to the implementation that is supplied. Remgple of such an approach are the “Hack
Tracks” of the SAT competitior [37], where participantsrsfeom a given SAT solver in source code,
and the difference between the baseline and their own imgiéation is limited to 1000 (non-space)
characters.

5.4 Quality Ranking/Quantitative Aspects

As mentioned before, in synthesis we usually not only camugborrectness of our implementations,
but also about quantitative properties of the synthesiztifaet, like its size, its reaction time to certain
events, or possibly other aspects like energy efficiency.

Experience in Previous Competitions. In SYNTCOMP 2014 and 2015, we used different quality
rankings based on the number of AND-gates in the solutiooyparing either against the size of other
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solutions in the given competition, or against the size offarence solution. A comparison against a
value that is not fixed before the competition means that ésealts (including the relative ranking of
tools) may change when we add a tool. This is undesirablenergg and in particular if we want to
use the results of the competition to evaluate a tool thahdidarticipate. Therefore, using a reference
solution is in general preferable. However, referencet&ois are not always available, since one of our
goals is to havenewand challengingbenchmarks in every iteration of the competition. Thermfdn
SYNTCOMP 2015 we adopted a mixed solution, which uses treeddia reference solution if available,
and the size of the smallest solution in the current run ettser. Evaluation of non-participating tools
then requires to take this distinction into account.

However, even with this mixed approach, the results of thaityuranking were somewhat unsatis-
factory, since the size of solutions effectively only pldyesmall role, and was dominated by the number
of problems that could be solved. This was due to two mairoread-irst, points for the size of solutions
were given according tolag;p-scale, i.e., for solutiod to get one additional point compared to solution
B, A had to be 10 times smaller th& Probably dog,-scale would be better if we want to emphasize
the need for small implementations. Second, we comparesizbef full solutions, which in the AIGER
format includes the specification circuit. Since we have ynaoblems with a very large specification,
the size of the solution is often dominated by the size of geeiication, and the size of the synthesized
code does not make much of a difference. An option to repaibuld be to compare the size of the
synthesized code instead of the size of the full solution.

In SYNTCOMP 2016, we experimented with these options, antesaformation can be found in the
competition report[34]. In particular, it seems that conimpgionly the size of the actual implementation
(or controller) gives significantly more meaningful resulthan comparing the sizes of the complete
system that includes the specification circuit, and thispvdbably be the base of our quality ranking for
SYNTCOMP 2017. On the other hand, the question how much aeansalution should be rewarded,
i.e., whether to use tHeg;g-scale, thdog,-scale, or some other measure, is a design decision that can
not be answered objectively.

Quiality of Solutions for LTL specifications. With our extension of SYNTCOMP to specifications in
LTL, one question is whether the same ranking scheme is altbte and fair for the new track. In the
AIGER-based track, input and output are both symbolicallyoeled, and we can reasonably expect tools
to optimize with respect to this encoding. In the LTL-bagedlts, the input is not symbolically encoded,
and the output encoding will in many cases be an additioeal t& conform to the competition format.
Therefore, the answer to the question of fairness and dlitigalb not obvious. On the other hand, one
can argue that almost all solutions that are efficient by sodifferent measure can also be encoded into
a small symbolic AIGER representation.

In SYNTCOMP 2016 we experimented with the existing qualityasures also for the TLSF-based
track, and discussed the issue with the community at the SWbfkshop. In addition to the number of
AND-gates, we also made experiments with the number of éstah the solution (since now solutions
are in general not memoryless). Our results suggest thatkingabased on AND-gates will be similar
to one that is based on latches: a solution with a high numbéatches will almost always have a
correspondingly high number of AND-gates. Since the nunsbtatches is usually negligible compared
to the number of AND-gates, one possibility is to not considéches at all and use the same ranking
as described above. Another option is to rank solutionsrdawg the combined size of AND-gates and
latches in gate equivalents.
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Quality Measures Beyond (Circuit) Size. There are many other natural quality measures for reactive
systems. These include:

e the size of the reachable state space (either of the symtitestrategy, or of the solution that
includes the specification circuit),

o the reaction time (or delay) to certain actions/inputs eféhvironment, and

e more complex measures that assign a cost to certain actfahe gystem, e.g. a measure for
energy-efficiencpr power consumptian

Specialized synthesis approaches that optimize a solutithrespect to these measures exist [8,
15417 31, 59]. We want to discuss at the SYNT workshop whethg of them should be a standard
quality measure in future competitions, or whether we ghaowske optimization towards them as special
challenges for some competitions.

5.5 Witnesses for Correctness

The problems that we consider in SYNTCOMP are realizabiitya specification and synthesis of a
solution. While the production of solutions is optional onge other subfields of automated reasoning
and computer-aided verification, it is at the heart of SYNTMI Because of this, solutions themselves
are natural witnesses for the correctness of a “realizagibgément. To verify that a solution is correct,
it can be model checked against the specification.

However, there are a number of problems with this approach:

1. solutions of the synthesis problem can only be used agsges for correctness if the specification
is realizable. If it is unrealizable, SYNTCOMP thus far diot mequire any witness of correctness.

2. model checking may not be easy for complex solutions aadifspations. Even for safety specifi-
cations, we had a number of solutions in SYNTCOMP 2014 thaldcoot be model checked, and
an increased number in 2015.

In the following, we present some ideas how to handle thesblgms. Note that the proposed
solutions are orthogonal and could be combined.

Witnesses for Unrealizability (Counter-strategies): To solve problenill, the competition could in-
clude (either by default, or as separate track, or as a ciga)ehe computation of counter-strategies for
unrealizable specifications.

The easiest way to investigate the performance of tools mntéisk would be to run the tool on
the negated specification and require a Moore-type implégtien (instead of the usual Mealy-type).
Combining the two tasks gives even more meaningful resadtsn general we will not know whether
our specification is realizable or not, and we want a witnéskeofact regardless of the outcome.

Comprehensive Witnesses for Effective Correctness Proofs Based on our findings in SYNTCOMP
2014 and 2015, we introduced the possibility that tools i@ AIGER-based safety track) can give
additional witness information that will make it easier teeck correctness of the provided solution. For
safety specifications, this information can simply be amuatide invariant of the produced solution, i.e.,
a set of states that does not contain error states and is lsaictheé produced solution will never leave
the set. The winning region of the system (computed by thedsta fixpoint-based algorithm for safety
games) is an example of an inductive invariant. In SYNTCONP&, we allow tools to provide such an
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invariant (also in the AIGER format). As mentioned befolds tsolves the problem of verifying more
complex solutions in most cases.

For specifications in LTL or GR(1), we found the problem ofifiability to be even worse. Further-
more, comprehensive witnesses need to contain more infmmid specifications are not restricted to
safety. Since the hardest part of the verification of liven@®perties is essentially the construction of
(some form of) suitable ranking function, it would be goothik ranking function could be supplied by
the synthesis tool. In case of GR(1), such ranking functlmn& a rather simple form, which might boil
down to a fixed unrolling of liveness properties and thenatiffely checking a safety property.

5.6 Technical Setup

Both SYNTCOMP 2015 and 2016 were run at Saarland Universityy small set of machines that were
acquired specifically for this purpose. The benefit of thiprapch is that we were able to tailor the
computers to the needs of our competition, which is CPU- aathary-intensive, but does not have a
focus on parallelization. For instance, since none of tléstm the competition used more than 3 or 4
cores (in SYNTCOMP 2014 and 2015, respectively), we had & begefit from moving from machines
with 16 CPU cores, but low sequential speed (in 2014), to iashwith only 4 CPU cores, but nearly
twice the sequential speed (in 2015 and 2016). Moreoverothanizers have full control over these
machines (as opposed to machines that are operated andesebyi a third party), which makes the
execution of the competition easier and more predictable.

However, the reduced number of available competition semwas already an issue last year. To cope
with the problem, we reduced the number of benchmark instatitat were tested in the competition
overall In 2016, the capacity of the competition servers was atriift,land we had to run experiments
until 2 days before the presentation, instead of having gdowindow between execution of presentation
as planned. Since we want to add another track to the comopatigxt year, a bigger computing capacity
is certainly desirable and possibly necessary.

This could be achieved in different ways, each with their advantages and disadvantages. In-
creasing the number of machines in the current setup repgésicated funding and local infrastructure,
which may be hard to justify for a service that only runs 2-3thg per year. The other option is to use
third-party machines, for example those provided by theExec platform[[54]. The benefit would be
essentially unlimited compute capacity, while the dowesibuld be that we give up complete control
over the machines and the execution of the competition, and to adjust our technical setup to the
infrastructure of that service (to a degree that is curyamtknown to us).

6 Conclusions

The Reactive Synthesis Competition has been held annuattg 2014. SYNTCOMP 2016 presents
the biggest extension of the competition thus far, intrady@n additional track with specifications in
full LTL. SYNTCOMP is designed as a long-term effort that isided by feedback from the reactive
synthesis community, and we will continue to extend and ffiyatie competition to foster the research
in scalable and mature implementations of synthesis tqobsi
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