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With the increasing importance of distributed systems asmapeiting paradigm, a systematic ap-
proach to their design is needed. Although the area of foxmafication has made enormous ad-
vances towards this goal, the resulting functionalitiedianited to detecting problems in a particular
design. By means of a classical example, we illustrate alsitemplate-based approach to computer-
aided design of distributed systems based on leveraginggli&nown technique of bounded model
checking to the synthesis setting.

1 Introduction

Consider a situation where a developer is trying to desighpsogram a multi-agent distributed system

to perform a certain task. The agents could be robots conuatimg with each other, sensors in a

sensor network, processes in a multi-core machine, or psocg connected to a bus in an avionics
system. The task could involve achieving consensus, gettatually exclusive access to some shared
resource, computing some function of some sensed datagmatsimg similar. The developer knows the

underlying topology of the communication network, the @ymnous or asynchronous) communication
model, as well as the nature of faults the network and thetaghamselves can manifest. Does there
exist a known algorithm that the developer could use in thisigular scenario?

One path forward for the developer would be to study theditee on distributed algorithmis [16].

It contains several impossibility results, as well as pesitesults and algorithms for several distributed
problems, but all those results are accompanied with aricality criterion. Does the condition for
applicability hold for the developer’s particular situat? Suppose that an impossibility result is appli-
cable. Is there a workaround if certain system requiremargshanged? Suppose the developer finds
an algorithm that appears to be meaningful in his contexttHmiapplicability criteria does not match.
Can the discovered algorithm be massaged for his particolatext?

All the questions raised above may be difficult to answer. rEason is that all intuitions about what
works start to fail for distributed algorithms, and more sdhe presence of faults. Reasoning about the
correctness of an algorithm in the presence of faults is niyt difficult, but also a surprisingly delicate
task. The following quote, taken from the seminal paper th@bduced the well-known Byzantine
Generals Problem [13], talks about the correctness of annrdlly presented argument:

“This argument may appear convincing, but we strongly agltfiee reader to be very suspi-
cious of such nonrigorous reasoning. Although this resulhdeed correct, we have seen
equally plausible ‘proofs’ of invalid results. We know of a@a in computer science or

mathematics in which informal reasoning is more likely @deo errors than in the study of

this type of algorithm.”

For these reasons, applying formal verification to distalwalgorithms, as well as their fault-tolerant
variants, has drawn considerable attention. In fact, s¢weechanized correctness proofs exist for some
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classical distributed algorithms [24,122,] 14] 20], and sodthanization even lead to the detection of
flaws in published results in some cades [22, 14]. In constvathese examples of the application of
verification technology, where the goal was to formally fyethe correctness of a given algorithm, we
are interested insing formal methods to guide the human in the design prooessad of just to verify
its result.

Recently, there has been lots of excitement and progresatimatically synthesizing programs
that satisfy some given requirement. This development viggered by the observation that program
synthesis starts becoming feasible if we start from a pragiketch — rather than from a clean slate — and
synthesize a program by completing the sketch so that itheatthe given specification. This synthesis
process has been effectively demonstrated for imperatgrams([25, 26].

The main reason why distributed algorithms are specialijable for a computer-aided design
methodology is that the solutions to the kind of problems tinaed above are usually short and easy to
describe, while their correctness (or impossibility) geocan be very involved. This situation is ideal
for synthesis tools, since their complexity is roughly tmeduct of the size of the design space and the
verification (checking) complexity. Consequently, mogttlgsis tools need either the design space to
be small or the verification (checking) effort to be minimal.

However, sketches for distributed algorithms can not bétevriin imperative languages. A much
richer language is needed (seel[28] for related recent wodynthesis distributed protocols). The input
language of formal verification tools, such as the SAL lamgés a great option. It provides a very rich
set of constructs — nondeterminism, synchronous and agymaiis composition, parametric module
specifications, module instantiations, rich datatypesrafdexpression language — that are needed for
modeling the execution of distributed algorithms in preseof faults. However, the formal verification
tools that run on SAL models, such as the SAL model checkerjuat verification tools and hence they
do not perform synthesis. If parts of the modeled system ar&mown, they can not help complete the
algorithm in any way; though they can verify a manually coetgd sketch.

In this paper, we present computational techniques thata@hia human in exploring the design
space of algorithms; that is, the field cbmputer-aided synthesisvith a focus in problems arising
in distributed systemsOur proposed approach is based on usipigthesis-versions of popular formal
verification techniquesA general view of our approach to build computer-aided Isgsits technology is
shown in Figuréll. Just as SAT-based bounded model cheaking & verification problem into a search
problem (over a large, but finite, search space), QBF-bheadded model synthedisrns a synthesis
problem into a large, but finite, one-st&f game that can be solved using a QBF solver. Similarly,
verification byk-induction can be lifted t&k-inductive synthesis. There is a similar correspondence
between the infinite state space versions of these techmidiughe present paper we focus on bounded
model synthesis. Our approach is enabled by some imprassigat progress in the field of QBF solving
anddv SMT solving [21]29] 15, 19, 18, 11,10, 4].

More concretely, in this paper we focus on leveraging thén&pie of bounded model checking
to the template-based synthesis setting. Our templatewrditen in the SAL language, which is, as
commented above, a suitable formalism to describe a disdabsystem. We also take advantage of
the SAL model checker to contruct a 2QBF formula that is afseds sent to an off-the-shelf QBF
solver. Our work indicates that the synthesis-extensiothafnded model checking can be used to
obtain surprising new algorithms, show non-existence gdrthms for certain classes of problems, and
generate useful variants of known algorithms.

The rest of this paper is organized as follows. In the nexti@eeve present our running example, a
problem inspired by Dijkstra’s papér [5]. In Sectldn 3 wegaet our synthesis methodology and describe
an oportunistic implementation using the SAL model checkeSectior 4 we describe our experience
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| Task \ Inputs Technique Backend solvelf
Verification: Model, Property — bmc, k-ind — SAT formula
Synthesis: | Partial Model, Property — bms, k-inds — V3 QBF formula
Verification: Model, Property — inf-bmc, k-ind — SMT formula
Synthesis: | Partial Model, Property — inf-bms, k-inds — V3 SMT formula

Figure 1:Lifting some verification techniques to synthesis: Boundwexdiel checking (bmc) anktinduction (k-
ind) are generalized to bounded model synthesis (bmskanductive synthesis (k-inds); and similarly, for the
infinite state space versions of these techniques.

applying our approach to the running example, with refegerio all the SAL models implemented along
the way. Finally, in Sectioh]5 we provide some discussiondirettions for further work.

2 Running example: Reaching Mutual Exclusion

In this section, we describe a simple example inspired bikdDg’'s paper 5], which is a remarkable
milestone in the study of fault tolerance. The example haspiioperty that its solution is simple to
describe, yet difficult to verify. Subsequently, we will ube same example to present our approach to
computer-aided design of distributed algorithms. For lamomore complex example on fault-tolerant
consensus, which also provides a proof of concept for ourcagp, the reader is refered o [8].

Consider a system with four machineg, m;, mp, mz. Each machinen; has two Boolean state vari-
ablesA andB. The 4 machines are arranged in a ring topology in which emeghine has read access
to the state variables of its right and left neighbors; teatiachinem has read/write permission on its
own state variable andB and read permission on the state variables of maamipg)y.q4, Which we
denote ag\r andBg, and the the state variables of machmeg_1),,q44, Which we denote a8, B_. Each
machinem; updates its state according to a finite set of ritesf the form

IF privilege THEN make MOVEENDIF

where privilege is a Boolean condition on the state vargloliethe machine and its neighbors, and a
move is an update to the valuesAdfandB. We say that a rule isnabledat some step if its privilege
evaluates to true in that step and its corresponding robaagedhe current state. At each step, arule is
arbitrarily selected from the set of enabled rules and eeglcuNe say that the system is iregitimate
state ifexactly oneule in|JR, is enabled. The problem is to find rules for each machige. ., mz such
that:

(a) At least one rule will always be enabled and the systegu@santeedo reach a legitimate state
regardless of its initial conditions afinite number of steps.

(b) In each legitimate state, each possible move will brirgdystem again into a legitimate state.

Intuitively, the initial state is arbitrary and multiple ictines can make a move, but eventually we
want the machines to getmautually exclusive acce$s make a move.

Itis not at all obvious how to design local rules that will @ste convergence towards states satisfying
(a) and (b). Note that the source of difficulty is that theiahistate, as well as the subsequent moves of
the system, are all picked nondeterministically. Anotlaerrse of difficulty that we will consider later is
requiringfairness i.e. for every pair of machinas;, m;, there is a sequence of steps of the system going
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from a legitimate state where a rule wf is enabled to a legitimate state were a rulemgfis enabled.
Note that there might be other reasonable definitions afiégis.

Some questions that may arise in the process of designinggantiam for this problem might be:
How many rules do we need? Is it useful to restrict the stgiasesby fixing some variables to have a
certain value? Is there a solution where all machines havsdme set of rules? As stated by Dijkstra in
the original paper, the discovery that the answer to thd tpirestion is “no” was crucial to obtaining an
algorithm.

With our proposed approach, the third question can be autceiig answered for a fixed (but rea-
sonably big) number of rules of considerable complexity fmd fixed choice for the number of steps
to achieving convergence.

Before going into the details of our approach to templatgedasynthesis of distributed systems in
the next section, let us present a possible solution to alol@m. We encourage the reader to think about
the problem at this point.

In this solution,B; is fixed to have valudalse By, is fixed to have valugrue, and the set of rules for
each of the four machines is defined as follows:

Ro = {IF (A=Ag)ABRTHENA:=AENDIF},
Rs = {IFA#A_THEN A:=AENDIF}
Ri=Ry = {IFA£A THENA::A_\,B:: falseENDIF,
IF (A= AR) ABr THEN B :=true ENDIF}

Note that every machine needs at most two different rulelignsblution. We will not argue here about
the correctness of this solution, which was obtained udiegsiynthesis methodology described in the
following section and later verified in SAL. (se€ [7] for therresponding SAL model).

3 A Synthesisapproach for FG properties

Roughly speaking, any template-based program synthagisithim must traverse the space of possible
instantiations of a given template and check if one of thetisfegs the requirement, i.e. implements
a solution to the given problem. Checking if a synthesizddt®m satisfies a requirement is a formal
verification problem. Hence, synthesis can be simply peréor as a loop over the formal verification
tool. Our approach to synthesis is simpler: we merge thecbesard verify loop into just one constraint,
as done in previous works such as[[3,16, 1,[27[ 26, 25].

Our approach can be viewed as a generalization of the ideaunfded model checking to synthesis.
Just as bounded model checking turns a verification probheonainexistentialcontraint that encodes a
weakerversion of the verification problem, we turn synthesis inforall-existsconstraint that encodes
aweakerversion of the synthesis problem. The key step that makesreed synthesis effective is the
step that defines the weaker version. A simpler version o$yinghesis problem is obtained by
(i) restricting the universe of possible algorithms thal i searched and
(ii) replacing the verification step by an approximatiorpste

In our example, restriction (i) is achieved by fixing a tentglaf the solution to be synthetized. That
already restricts the search space for possible solutmasfinite (but possibly huge) set. As another
example, along with fixing the number of processes to a cofhsbae can also fix the signature of the
messages exchanged between processes((see [8]). We idietree limitations derived from this kind
of restrictions are harmless from the perspective of a Byskesigner or researcher trying to gain insight
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into a problem, although overcoming them in a general waycls=dienging and important problem from
the verification perspective, even specifically for disitdd systems [12].

For restriction (ii), we modify the property that the sotutihas to satisfy. The modification is done
so that the new property is easier to verify. Specificallg analogously to how bounded model checking
is used to check that a property is not violated in a fixed nurobstepsk, we replace our LTL property
FGo by X°Gg, for some natural numbaer. Intuitively, that corresponds to relaxing a property of th
form “eventually, it is always the case thatholds” to “afterc steps, it is always the case thgholds”.
The word “steps” might create some confusion here sincegenés on the particular problem being
analyzed. However, for distributed systems, regardleshef timing model, a notion of step always
exist. Moreover, as we will see in our example, an adequatgelimy of the problem might, in some
cases, make the propertiE&S@ andX“Gg equivalent for a suitable.

However, the modified propert¥°Ge may still be too complex for our synthesis purposes. Hence,
we can replac&@ by just @ or ¢ A X@. Thus, instead of meeting the requirem€i@ g, the synthesis
tool may find a solution that satisfies a weaker requiremeytXX X(¢). For example, in our running
example, one possible relaxed version of property (a) cbaldAt least one rule will always be enabled
and the system is guaranteed to reach a legitimate g#edless of its initial conditionén 8 steps.
Whether this property is enough to synthetize a solutioreddp on the provided template. Similarly, in
our previous work on synthesis of distributed consensusriifigns, our relaxed synthesis property was
that consensus must be achieved in at most 3 steps, insteadadbitrarily large (but finite) number of
steps.

Due to the modification of the requirement, a solution fountbaatically may not be sound with
respect to the original requirements. It needs to be fognvaltified and hence, the synthesized solution is
verified against the original prope®Gg. Since our approach leverages existing verification teghes
to the synthesis setting, the final verification step doesiaetl any extra encoding or translation work.

3.1 Fromthe SAL model to the synthesis constraint

The modeling language of verification tools, such as SAL an&MV, just defines state transition sys-
tems, but provide powerful language constructs for thippse that make it easy to model concurrent
systems. Distributed algorithms, regardless of theirrigmnodel, can also be easily modeled as open
(finite) state transition systems in these languages.Xlagnote all the state variables appearing in a
model. Letl (%) be the predicate denoting the initial states arid;,%,) be the predicate denoting the
transition relation (of the state transition system).

SAT-based (bounded) model checking is a powerful bug-tletetechnique that is available in many
verification tools. Let us provide some details about bodnol®del checking. Given the transition
system defined by, T, the propertyG¢, and a depth to search 3, a bounded model checker genemates th
following formula:

3;{0,;{1,;{2,;{3 o (5&0) A T(io,il) A\ T(il,ig) A\ T(ig,ig) A\ —|q0(5£3) (l)

which states that there is 3-step execution of the systetwithlates the properto.

Now consider the problem of synthesizing a transition syste satisfyF@. LetZ denote all the
state variables appearing ineanplate model/sketdf the transition system. The s&étan be partitioned
asx Uy, where they are the (input) variables used to represent the synthegistsepace and are the
remaining regular (non-synthesis) variables (as in th#igation case above).

Instead of synthesizing fdf ¢, i.e. enforcing the LTL propert§ ¢ in the resulting synthetized
model, say we decide to satisfy the stronger requirerifetiX¢. Given the template transition system
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defined by, T with synthesis variableg and non-synthesis variablgsthe property ¢, and a depth for
synthesis 3, dounded model synthesizgenerates the following formula:

V¥0,¥1,¥2,¥3 o =F1 =2 =3 =
(Hio,il,iz,fg o (20) /\T(Eo,iﬂ AT(El,Ez) /\T(Ez,ig) A ﬂ(p(ig)) (2)

wherez; = %; U¥; for all i.

Formuld2 says that “for every concrete instance of the stasition system (defined by assignment
to ¥o), there is an execution of that transition system that de¢seachg in 3 steps”. If this formula
is invalid, then it means that there is a concrete instaatiatf the template that always reachen 3
steps. This indicates that synthesis is successful (foretpgirementX X X, and consequently fdf @).
If the formula is valid, then it means that synthesis failstfie requiremenK X X¢. It is important to
remark that this approach, as well as bounded model checkiisgmes that the transition system of the
modeled state machines is total, i.e. there are no deadiatdss

If the domains of all variables in Formula 2 have finite caatiiy, then the formula can be written
as a quantifiedyd) Boolean formula (QBF), which can be solved using off-thelsQBF solvers. The
synthesized algorithm, if it exists, is obtained from thiutation of the formula generated by the QBF

Note that Formul&al2 is not very different from Formlla 1, whis generated by existing bounded
model checkers. In the work presented in this paper, we raeddalr template in SAL, and used the
SAL bounded model checker to generate Forrlila 1, togethterarvnapping from variables of the SAL
model to the corresponding arrays of Boolean variablesrdoguin Formuld 1. Then, we used a simple
script to convert Formuld 1 into Formula 2. Specifically, mwestigation was carried out by performing
the following steps, described also in Figlte 2:

1. We model theemplateof distributed algorithm in SAL[23, 17]. The model includggnthesis
variablesy to define the transition relation.

2. We use the SAL bounded model checker to generate the SAiufarfor the verification con-
straint (Formul&lIl). The SAT formula implicitly existertiaquantifies all variables, including the
synthesis variableg.

3. We modify the SAT formula and convert it into a QBF formuba tmiversally quantifying the
synthesis variables. (This step uses the mapping from igaak SAL variables to the Boolean
SAT variables).

4. We use off-the-shelf QBF solvers (and a QBF preprocesearheck validity of thev3 formula
(Formula[2). For the experiments reported in the next sectice used the QBF preprocessor
Blogger [2], followed by the QBF solver RareQS [9], although have also experimented with
DepQBF [15].

5. If the QBF solver return8nsat, then the synthesis is declarsdccessfyland if the QBF solver
returnsSat, then the synthesis procesalissuccessful

6. If synthesis is successful, the QBF solver outputs a tialudor the synthesis variablgs(a Her-
brand model), which is used to obtain a concrete distribatgdrithm.

7. The synthesized algorithm is formally verified: if the pesty wasF ¢, there is nothing to verify;
if the property wad-Gg, then the property that “aftds steps, the property is always true” is
verified usingk-induction or symbolic model checking.
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MODEL
TEMPLATE

Synthesis variables

Verification
constraint .

Synthesis
(Formula 1) Constraint

Preprocessing (Formula 2)> QBF
MODEL SAT/SMT Formula step SOLVER
CHECKER >
Variable mapping

SAT
UNSAT

Postprocessing (Herbrand model)

step

Synthesis unsuccesful:
The template cannot
be completed

Synthesis succesful:
Completed model ready
for verification

Figure 2: The bounded synthesis approach.

4 Synthesis of a self-stabilizing system with distributed control

In this section we present an example of our synthesis appriog finding a solution for the problem
presented in Sectidd 2. Instead of just presenting the s iat was provided to our synthesis tool to
produce a solution, we will ilustrate one possible chaimbéractions with the synthesis tool that leads
to a solution. Our goal is to demonstrate how interactindnht synthesis tool is useful to get insight
into the problem. To this end, we explain how Synthia, an imay character, used our approach to
synthesize a solution to the problem of Secfibn 2. We will gett into the modeling details, since all
SAL models can be accessed|(dt [7]. An advantage of our agptieabat limited effort is needed to
modify a template due to the expressivity of the SAL language

4.1 How many rules?

The first question that came to Synthia’s mind was whetheaByreimple protocol would work. Is a
single rule per process enough? What about the same ruledior grocess? That did not seem plausible
but, to be sure, Synthia encoded the following simple sotutemplate, which represents a finite family
of possible solutions where (1) all 4 machines have the saieeset, (2) this rule set contains a single
rule, (3) the privilege of that rule is a conjunction of twouatjty predicates comparirg andB to two,
possibly negated, variables the machine can read. Thespomding SAL model isingle rule.sal

in [7].

Ro=R1 =R, =R3={IF caACg THEN A:=Vjp,B = vg ENDIF}, where
cac{(A=Db)|bc Z2}U{(A=Db)|bc 2}, 2={AB,A,ARBL,BR, falsetrue},
cge{(B=Db)|be 2}u{(B=Db)|be 2}, va,vgec{AAB,B,true false.

To confirm her suspicion, Synthia asked the tool whetheetiesome instantiation of this template
such that the system always reaches a legitimate stateristigps. Note that the interesting property is
in fact FG(legitimate, which gets transformed int¢*(legitimate. In about a minute and a half the tool
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told Synthia that there is no such instantiation. She aled to synthetize a solution fot(legitimate
andX*®(legitimate. As expected, the answer was again “no” in 2 and a half and Gtesnrespectively.

Synthia was convinced that the rules had to implement sorgefiafluencing the conditions of the
rules of the neighbors. A possibility is preventing the lefighbor from making a move by haviigg
as a condition of the rule. She asked the solver to completéotlowing small variation of the previous
template. The corresponding SAL modekismgle rule BR.sal in [[7].

Ro=R; =Ry =Rs = {IF cAABRr THEN A:=Vj,B := vg ENDIF}, where
cac{(A=Db)|bec Z2}U{(A=Db)|bec 2}, 2={AB,A,ArBL,Bg, falsetrue}, and
Va, Vg € {A A B,B,true, falsel.

After getting a negative answer for ba¥f(legitimate andX!(legitimate in less than 5 seconds,
Synthia realized that the symmetry of the rules has to bedor@domehow since otherwise the states
wherevi € {0,...,3} : B; = falsewould not have a successor. A possibility is to fix the valu® af
machine 3 tarue. She tried that and, additionally, fixing the valueBfn machine 0 to valudalseg
getting a negative answer in both cases.

To gain more intuition into the problem, Synthia tried to theatize a solution assuming a particular
initial state, changing the previous template to obtainfdtlewing (the corresponding SAL model is
single rule B blocks initialized.salin [7]):

By initialized to 1

Ao, A1,As, Az, B1, By, Bz initialized to O

Ro=R; =Ry =Rs = {IF cAABRr THEN A:=Vj,B := vg ENDIF}, where
cac{(A=Db)|bc Z2}U{(A=Db)|bc 2}, 2={AB,A,ARBL,BR, falsetrue},
va,Ve € {A A B,B,true, false}.

The enforced property was aga¥t(legitimate. The answer of the solver, in less than 2 seconds,
was

By initialized to 1
Ao,A1,A2,Az,B1,Bo, Bz initialized to 0
Ry =R; =R, =R3={IF BR THEN A:=Bg,B := AENDIF}

Synthia knew that this could not be generalized, since hrerdoattempt to synthetize a solution had
failed. She tried to verify the previous solution for the peaty X*(legitimate using symbolic model
checking. It worked. The next step then, is to te&(legitimate. SAL returned a counterexample of
length 10. Also, simulating by hand the execution of the jones complete model helped Synthia to get
convinced that a solution wheR = R; = R, = Rz could not exist, although she did not worry about
formally proving it.

4.2 Tworulesper machine

Synthia extended the template to have two rules per machifiee corresponding SAL model is
two_rules _general.salin [7].
R = {IF Cai1/\Cgj1 THEN A= VA1, B:.= VB,i,1 ENDIF,
IF Caj2/\Cgj2 THEN A:=Vai2,B:=Vgj2 ENDIF}, where
caij€ {(A=b)|be 2} U{(A=b) |be 2}, 2={AB,A AgBL,Bg, falsatrue},
cgij€{(B=b)|beZ2}U{(B=Db)|be 2}, vaij,&ij<{AAB,B,true false
for everyi € {0,1,2,3},] € {1,2}.
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Once again, the enforced property wé§legitimate, the bounded version d¥G(legitimate. The
solver did not produce a solution in 10 minutes and Synttsaher patience. It is important to remark
here that the election for the value of the constaint the strengtening®(¢) of FG(¢p) may be crucial
to obtain a solution. With this fact in mind, Synthia tri¥d?(legitimate with no success. The 2QBF
v3 instance corresponding to formdla 2 for this system terepdatd the property*(legitimate has
128 universal and 23273 existential variables. The QBFrpgssor Blogger [2] reduced the number of
clauses from 91714 to 15338.

Synthia knew that this template was too general, and thuy wiits instances are either equivalent
to some other instance or can be trivially discarded. Thée thes, was to find a more restrictive tem-
plate and reduce the number of universal variables in thdtieg 2QBF problem. A simple option is
considering the restriction of the previous template whre- R,. This requires trivial changes with
respect to the previous template and is encodedivinrules_reduced.sal. The resulting QBF for-
mula for the property*(legitimate, after being preprocessed with blogger, has 96 universaiblas,
19059 existential variables, and 16099 clauses. As beBymathia gives up after waiting for around 15
minutes.

After realizing that the tool will not give her all the answeiSynthia decided to go back to the
idea of usingBg to block the left neighbor from making a move. Note that thegecis not covered in
the previous template. Additionally, she kept the resticthatR; = R,. The resulting SAL model is
two_rules_reduced BR.sal.

B, is fixed to have valudalse and the set of rules for each of the four machines is definéollagss:

R = {IF cak1 ABR THEN A:=Vak1,B:=Vgk1 ENDIF,
IF CAk2/\CBK2 THEN A:=Vak2,B:=Vgk2 ENDIF}, where

k=2if i =3 andk =i, otherwise and

Cak,j € {(A: b) | be .@}U{(A: @ | be .@}, 9 = {A, B,AL,AR,_BL,B_R, falsetrue},

Cek2 €{(B=Db)|be 2}U{(B=b) |be Z}, Vakj,Vekj < {A A B,B,true false}
for everyi € {0,1,2,3},] € {1,2}.

After not obtaining a solution from the QBF solver in 10 miesit Synthia decided to simplify
her template even more, by restricting the domains of thelitons and the assignments of the
rules ascaxj € {(A=b) |be D}U{(A=D)|be 27}, whereZ = {B,A_,Ar}, andVakj,Vakj €
{A Atrue, false}. Again, the enforced property ¥*(legitimate. In 5 minutes the tool reported that
there was no instance of the template satisfying the prapert

Synthia was confused at this point. After using the tool totkgsize a solution for a particular
case, Synthia realized that, not only the valuéah machine 0, but also the value Bfin machine 3,
must be fixed. The corresponding SAL modeti® rules reduced BR simpl values.sal. When
enforcing X*(legitimate), the tool found an instance not satisfyifgs(legitimate), which was easily
detected when trying to formally verify it. For the caseXdf(legitimate), the tool found the following
solution:

B; is fixed to have valudalse B, is fixed to have valuérue, and the set of rules for each of the four
machines is defined as follows:
Ry = {IF (A=B)ABRTHENA:=AENDIF,
IF (A=B) THEN A:= AENDIF}},
Rs = {IFA#A_AB=ARTHENA:=AENDIF}
Ri=R, = {IFA#A ABRTHENA:=A B:= falseENDIF}
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The first thing that Synthia did was verifyirflgG(legitimate to make sure that the synthetized so-
lution preserves stabilization. This property could bevpbby SAL using symbolic model checking in
a few seconds. Also, the solution was checked for deadl@tksst However, after inspecting the solu-
tion, Synthia realized that it is not fair. It was confirmedtbying to verify the more complex property
FG(legitimateA M), whereM is a predicate that is satisfied iff every machine made a mioserae step
in the past, since symbolic model checking produced a coexdaeple.

Recall that the notion of fairness required in our exampkbas, for every pair of machines, m;,
there is a sequence of steps of the system going from evatiyriate state where a rule af; is enabled
to a legitimate state were a rule of; is enabled. Note that this property requires the existefi@ao
execution, and hence it intuitively corresponds to Eh€Exists) temporal operator in Computational
Tree Logic (CTL), and not th& operator in LTL. In the original problem presented by Dijkstthe
definition of enabled rule did not require a rule to changectimeent state to be enabled. However, note
that every execution of the system with Dijkstra’s defimtmf enabled can be associated to an execution
in our setting. Hence, the prope®G(legitimateA M) correctly captures the original fairness condition.

Hence, Synthia used our tool to synthesize a solutiorxf@(legitimate/\ M), and obtained, in less
than 30 seconds, the solution presented in SeCtion 2.

The first question that came to Synthia’s mind was whethesyhéhesized solution could be gener-
alized ton machines. However, before getting into that, Synthia askedlast question to the synthesis
tool: is there any instantiation of the template satisfy¥g(legitimate? The tool quickly answered
“no”. Synthia started wondering whether that bound holdsfty algorithm satisfying the requirements.
She then closed her laptop and grabbed pencil and paper.

5 Conclusion and further work

We have presented a practical approach to the synthesisitefgtate distributed systems based in
bounded synthesis of LTL properties. Our approach can be ag@ natural first step in the extension
of the capabilities of a model checker to synthesis and suifal on the fact that, while synthetizing a
complex system from scratch is still unfeasible in pragtibe recent progress in QBF solving enables
synthesis from human-provided templates.

As further work, we plan to extend an existing model checkehsas SAL to have synthesis capa-
bilities. While the SAL language is very appropiate for thedaling of distributed systems, it does not
provide specific constructs for describing templates. Apdrtant component of this task is the design
and implementation of an extension of the SAL language tpeumlefinition of templates.

From another perspective, besides experimenting moreowitlpproach, we are interested in lever-
aging it to thek-induction and infinite settings. The latter is enabled l®yriacent progress v SMT
solving. However, more investigation is needed in findingisilen procedures for that problem that are
well suited for the instances that have to be solved in otinget
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