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With the increasing importance of distributed systems as a computing paradigm, a systematic ap-
proach to their design is needed. Although the area of formalverification has made enormous ad-
vances towards this goal, the resulting functionalities are limited to detecting problems in a particular
design. By means of a classical example, we illustrate a simple template-based approach to computer-
aided design of distributed systems based on leveraging thewell-known technique of bounded model
checking to the synthesis setting.

1 Introduction

Consider a situation where a developer is trying to design and program a multi-agent distributed system
to perform a certain task. The agents could be robots communicating with each other, sensors in a
sensor network, processes in a multi-core machine, or processors connected to a bus in an avionics
system. The task could involve achieving consensus, getting mutually exclusive access to some shared
resource, computing some function of some sensed data, or something similar. The developer knows the
underlying topology of the communication network, the (synchronous or asynchronous) communication
model, as well as the nature of faults the network and the agents themselves can manifest. Does there
exist a known algorithm that the developer could use in this particular scenario?

One path forward for the developer would be to study the literature on distributed algorithms [16].
It contains several impossibility results, as well as positive results and algorithms for several distributed
problems, but all those results are accompanied with an applicability criterion. Does the condition for
applicability hold for the developer’s particular situation? Suppose that an impossibility result is appli-
cable. Is there a workaround if certain system requirementsare changed? Suppose the developer finds
an algorithm that appears to be meaningful in his context, but the applicability criteria does not match.
Can the discovered algorithm be massaged for his particularcontext?

All the questions raised above may be difficult to answer. Thereason is that all intuitions about what
works start to fail for distributed algorithms, and more so in the presence of faults. Reasoning about the
correctness of an algorithm in the presence of faults is not only difficult, but also a surprisingly delicate
task. The following quote, taken from the seminal paper thatintroduced the well-known Byzantine
Generals Problem [13], talks about the correctness of an informally presented argument:

“This argument may appear convincing, but we strongly advise the reader to be very suspi-
cious of such nonrigorous reasoning. Although this result is indeed correct, we have seen
equally plausible ‘proofs’ of invalid results. We know of noarea in computer science or
mathematics in which informal reasoning is more likely to lead to errors than in the study of
this type of algorithm.”

For these reasons, applying formal verification to distributed algorithms, as well as their fault-tolerant
variants, has drawn considerable attention. In fact, several mechanized correctness proofs exist for some
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classical distributed algorithms [24, 22, 14, 20], and suchmechanization even lead to the detection of
flaws in published results in some cases [22, 14]. In constrast to these examples of the application of
verification technology, where the goal was to formally verify the correctness of a given algorithm, we
are interested inusing formal methods to guide the human in the design process, instead of just to verify
its result.

Recently, there has been lots of excitement and progress in automatically synthesizing programs
that satisfy some given requirement. This development was triggered by the observation that program
synthesis starts becoming feasible if we start from a program sketch – rather than from a clean slate – and
synthesize a program by completing the sketch so that it matches the given specification. This synthesis
process has been effectively demonstrated for imperative programs [25, 26].

The main reason why distributed algorithms are specially suitable for a computer-aided design
methodology is that the solutions to the kind of problems mentioned above are usually short and easy to
describe, while their correctness (or impossibility) proofs can be very involved. This situation is ideal
for synthesis tools, since their complexity is roughly the product of the size of the design space and the
verification (checking) complexity. Consequently, most synthesis tools need either the design space to
be small or the verification (checking) effort to be minimal.

However, sketches for distributed algorithms can not be written in imperative languages. A much
richer language is needed (see [28] for related recent work on synthesis distributed protocols). The input
language of formal verification tools, such as the SAL language, is a great option. It provides a very rich
set of constructs – nondeterminism, synchronous and asynchronous composition, parametric module
specifications, module instantiations, rich datatypes andrich expression language – that are needed for
modeling the execution of distributed algorithms in presence of faults. However, the formal verification
tools that run on SAL models, such as the SAL model checker, are just verification tools and hence they
do not perform synthesis. If parts of the modeled system are not known, they can not help complete the
algorithm in any way; though they can verify a manually completed sketch.

In this paper, we present computational techniques that canaid a human in exploring the design
space of algorithms; that is, the field ofcomputer-aided synthesis, with a focus in problems arising
in distributed systems. Our proposed approach is based on usingsynthesis-versions of popular formal
verification techniques. A general view of our approach to build computer-aided synthesis technology is
shown in Figure 1. Just as SAT-based bounded model checking turns a verification problem into a search
problem (over a large, but finite, search space), QBF-basedbounded model synthesisturns a synthesis
problem into a large, but finite, one-step∀∃ game that can be solved using a QBF solver. Similarly,
verification byk-induction can be lifted tok-inductive synthesis. There is a similar correspondence
between the infinite state space versions of these techniques. In the present paper we focus on bounded
model synthesis. Our approach is enabled by some impressiverecent progress in the field of QBF solving
and∃∀ SMT solving [21, 29, 15, 19, 18, 11, 10, 4].

More concretely, in this paper we focus on leveraging the technique of bounded model checking
to the template-based synthesis setting. Our templates arewritten in the SAL language, which is, as
commented above, a suitable formalism to describe a distributed system. We also take advantage of
the SAL model checker to contruct a 2QBF formula that is afterwards sent to an off-the-shelf QBF
solver. Our work indicates that the synthesis-extension ofbounded model checking can be used to
obtain surprising new algorithms, show non-existence of algorithms for certain classes of problems, and
generate useful variants of known algorithms.

The rest of this paper is organized as follows. In the next section we present our running example, a
problem inspired by Dijkstra’s paper [5]. In Section 3 we present our synthesis methodology and describe
an oportunistic implementation using the SAL model checker. In Section 4 we describe our experience
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Task Inputs Technique Backend solver

Verification: Model, Property −→ bmc, k-ind −→ SAT formula
Synthesis: Partial Model, Property −→ bms, k-inds −→ ∀∃ QBF formula
Verification: Model, Property −→ inf-bmc, k-ind −→ SMT formula
Synthesis: Partial Model, Property −→ inf-bms, k-inds −→ ∀∃ SMT formula

Figure 1:Lifting some verification techniques to synthesis: Boundedmodel checking (bmc) andk-induction (k-
ind) are generalized to bounded model synthesis (bms) andk-inductive synthesis (k-inds); and similarly, for the
infinite state space versions of these techniques.

applying our approach to the running example, with references to all the SAL models implemented along
the way. Finally, in Section 5 we provide some discussion anddirections for further work.

2 Running example: Reaching Mutual Exclusion

In this section, we describe a simple example inspired by Dijkstra’s paper [5], which is a remarkable
milestone in the study of fault tolerance. The example has the property that its solution is simple to
describe, yet difficult to verify. Subsequently, we will usethe same example to present our approach to
computer-aided design of distributed algorithms. For another more complex example on fault-tolerant
consensus, which also provides a proof of concept for our approach, the reader is refered to [8].

Consider a system with four machinesm0,m1,m2,m3. Each machinemi has two Boolean state vari-
ablesA andB. The 4 machines are arranged in a ring topology in which everymachine has read access
to the state variables of its right and left neighbors; that is, machinemi has read/write permission on its
own state variablesA andB and read permission on the state variables of machinem(i+1)mod4, which we
denote asAR andBR, and the the state variables of machinem(i−1)mod4, which we denote asAL, BL. Each
machinemi updates its state according to a finite set of rulesRi of the form

IF privilegeTHEN make moveENDIF

where privilege is a Boolean condition on the state variables of the machine and its neighbors, and a
move is an update to the values ofA andB. We say that a rule isenabledat some step if its privilege
evaluates to true in that step and its corresponding movechangesthe current state. At each step, a rule is
arbitrarily selected from the set of enabled rules and executed. We say that the system is in alegitimate
state ifexactly onerule in

⋃
Ri is enabled. The problem is to find rules for each machinem0, . . . ,m3 such

that:

(a) At least one rule will always be enabled and the system isguaranteedto reach a legitimate state
regardless of its initial conditionsin afinite number of steps.

(b) In each legitimate state, each possible move will bring the system again into a legitimate state.

Intuitively, the initial state is arbitrary and multiple machines can make a move, but eventually we
want the machines to get amutually exclusive accessto make a move.

It is not at all obvious how to design local rules that will achieve convergence towards states satisfying
(a) and (b). Note that the source of difficulty is that the initial state, as well as the subsequent moves of
the system, are all picked nondeterministically. Another source of difficulty that we will consider later is
requiringfairness, i.e. for every pair of machinesmi ,mj , there is a sequence of steps of the system going



8 Synthesis of a simple self-stabilizing system

from a legitimate state where a rule ofmi is enabled to a legitimate state were a rule ofmj is enabled.
Note that there might be other reasonable definitions of fairness.

Some questions that may arise in the process of designing an algorithm for this problem might be:
How many rules do we need? Is it useful to restrict the states space by fixing some variables to have a
certain value? Is there a solution where all machines have the same set of rules? As stated by Dijkstra in
the original paper, the discovery that the answer to the third question is “no” was crucial to obtaining an
algorithm.

With our proposed approach, the third question can be automatically answered for a fixed (but rea-
sonably big) number of rules of considerable complexity andfor a fixed choice for the number of steps
to achieving convergence.

Before going into the details of our approach to template-based synthesis of distributed systems in
the next section, let us present a possible solution to our problem. We encourage the reader to think about
the problem at this point.

In this solution,B1 is fixed to have valuef alse, B4 is fixed to have valuetrue, and the set of rules for
each of the four machines is defined as follows:

R0 = {IF (A= AR)∧BR THEN A := Ā ENDIF},

R3 = {IF A 6= AL THEN A := Ā ENDIF}

R1 = R2 = {IF A 6= AL THEN A := Ā,B := f alseENDIF,

IF (A= AR)∧BR THEN B := true ENDIF}

Note that every machine needs at most two different rules in this solution. We will not argue here about
the correctness of this solution, which was obtained using the synthesis methodology described in the
following section and later verified in SAL. (see [7] for the corresponding SAL model).

3 A Synthesis approach for FG properties

Roughly speaking, any template-based program synthesis algorithm must traverse the space of possible
instantiations of a given template and check if one of them satisfies the requirement, i.e. implements
a solution to the given problem. Checking if a synthesized solution satisfies a requirement is a formal
verification problem. Hence, synthesis can be simply performed as a loop over the formal verification
tool. Our approach to synthesis is simpler: we merge the search and verify loop into just one constraint,
as done in previous works such as [3, 6, 1, 27, 26, 25].

Our approach can be viewed as a generalization of the idea of bounded model checking to synthesis.
Just as bounded model checking turns a verification problem into anexistentialcontraint that encodes a
weakerversion of the verification problem, we turn synthesis into aforall-existsconstraint that encodes
a weakerversion of the synthesis problem. The key step that makes automated synthesis effective is the
step that defines the weaker version. A simpler version of thesynthesis problem is obtained by
(i) restricting the universe of possible algorithms that will be searched and
(ii) replacing the verification step by an approximation step.

In our example, restriction (i) is achieved by fixing a template of the solution to be synthetized. That
already restricts the search space for possible solutions to a finite (but possibly huge) set. As another
example, along with fixing the number of processes to a constant, one can also fix the signature of the
messages exchanged between processes (see [8]). We believethat the limitations derived from this kind
of restrictions are harmless from the perspective of a system designer or researcher trying to gain insight
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into a problem, although overcoming them in a general way is achallenging and important problem from
the verification perspective, even specifically for distributed systems [12].

For restriction (ii), we modify the property that the solution has to satisfy. The modification is done
so that the new property is easier to verify. Specifically, and analogously to how bounded model checking
is used to check that a property is not violated in a fixed number of stepsk, we replace our LTL property
FGφ by XcGφ , for some natural numberc. Intuitively, that corresponds to relaxing a property of the
form “eventually, it is always the case thatφ holds” to “afterc steps, it is always the case thatφ holds”.
The word “steps” might create some confusion here since it depends on the particular problem being
analyzed. However, for distributed systems, regardless oftheir timing model, a notion of step always
exist. Moreover, as we will see in our example, an adequate modeling of the problem might, in some
cases, make the propertiesFGφ andXcGφ equivalent for a suitablec.

However, the modified propertyXcGφ may still be too complex for our synthesis purposes. Hence,
we can replaceGφ by just φ or φ ∧Xφ . Thus, instead of meeting the requirementFGφ , the synthesis
tool may find a solution that satisfies a weaker requirement, say XXX(φ). For example, in our running
example, one possible relaxed version of property (a) couldbe: At least one rule will always be enabled
and the system is guaranteed to reach a legitimate stateregardless of its initial conditionsin 8 steps.
Whether this property is enough to synthetize a solution depends on the provided template. Similarly, in
our previous work on synthesis of distributed consensus algorithms, our relaxed synthesis property was
that consensus must be achieved in at most 3 steps, instead ofan arbitrarily large (but finite) number of
steps.

Due to the modification of the requirement, a solution found automatically may not be sound with
respect to the original requirements. It needs to be formally verified and hence, the synthesized solution is
verified against the original propertyFGφ . Since our approach leverages existing verification techniques
to the synthesis setting, the final verification step does notneed any extra encoding or translation work.

3.1 From the SAL model to the synthesis constraint

The modeling language of verification tools, such as SAL and NuSMV, just defines state transition sys-
tems, but provide powerful language constructs for this purpose that make it easy to model concurrent
systems. Distributed algorithms, regardless of their timing model, can also be easily modeled as open
(finite) state transition systems in these languages. Let~x denote all the state variables appearing in a
model. LetI(~x) be the predicate denoting the initial states andT(~x1,~x2) be the predicate denoting the
transition relation (of the state transition system).

SAT-based (bounded) model checking is a powerful bug-detection technique that is available in many
verification tools. Let us provide some details about bounded model checking. Given the transition
system defined byI ,T, the propertyGφ , and a depth to search 3, a bounded model checker generates the
following formula:

∃~x0,~x1,~x2,~x3 : I(~x0)∧T(~x0,~x1)∧T(~x1,~x2)∧T(~x2,~x3)∧¬φ(~x3) (1)

which states that there is 3-step execution of the system that violates the propertyGφ .
Now consider the problem of synthesizing a transition system to satisfyFφ . Let~z denote all the

state variables appearing in atemplate model/sketchof the transition system. The set~z can be partitioned
as~x∪~y, where the~y are the (input) variables used to represent the synthesis search space and~x are the
remaining regular (non-synthesis) variables (as in the verification case above).

Instead of synthesizing forFφ , i.e. enforcing the LTL propertyFφ in the resulting synthetized
model, say we decide to satisfy the stronger requirementXXXφ . Given the template transition system
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defined byI ,T with synthesis variables~y and non-synthesis variables~x, the propertyFφ , and a depth for
synthesis 3, abounded model synthesizergenerates the following formula:

∀~y0,~y1,~y2,~y3 :~y0 =~y1 =~y2 =~y3 ⇒

(∃~x0,~x1,~x2,~x3 : I(~z0)∧T(~z0,~z1)∧T(~z1,~z2)∧T(~z2,~z3)∧¬φ(~z3)) (2)

where~zi =~xi ∪~yi for all i.
Formula 2 says that “for every concrete instance of the statetransition system (defined by assignment

to~y0), there is an execution of that transition system that does not reachφ in 3 steps”. If this formula
is invalid, then it means that there is a concrete instantiation of the template that always reachesφ in 3
steps. This indicates that synthesis is successful (for therequirementXXXφ , and consequently forFφ ).
If the formula is valid, then it means that synthesis fails for the requirementXXXφ . It is important to
remark that this approach, as well as bounded model checking, assumes that the transition system of the
modeled state machines is total, i.e. there are no deadlock states.

If the domains of all variables in Formula 2 have finite cardinality, then the formula can be written
as a quantified (∀∃) Boolean formula (QBF), which can be solved using off-the-shelf QBF solvers. The
synthesized algorithm, if it exists, is obtained from the refutation of the formula generated by the QBF
solver in form of a Herbrand model, i.e. a valuation for variables~y0,~y1,~y2,~y3.

Note that Formula 2 is not very different from Formula 1, which is generated by existing bounded
model checkers. In the work presented in this paper, we modeled our template in SAL, and used the
SAL bounded model checker to generate Formula 1, together with a mapping from variables of the SAL
model to the corresponding arrays of Boolean variables occurring in Formula 1. Then, we used a simple
script to convert Formula 1 into Formula 2. Specifically, ourinvestigation was carried out by performing
the following steps, described also in Figure 2:

1. We model thetemplateof distributed algorithm in SAL [23, 17]. The model includessynthesis
variables~y to define the transition relation.

2. We use the SAL bounded model checker to generate the SAT formula for the verification con-
straint (Formula 1). The SAT formula implicitly existentially quantifies all variables, including the
synthesis variables~y.

3. We modify the SAT formula and convert it into a QBF formula by universally quantifying the
synthesis variables. (This step uses the mapping from the original SAL variables to the Boolean
SAT variables).

4. We use off-the-shelf QBF solvers (and a QBF preprocessor)to check validity of the∀∃ formula
(Formula 2). For the experiments reported in the next section, we used the QBF preprocessor
Bloqqer [2], followed by the QBF solver RareQS [9], althoughwe have also experimented with
DepQBF [15].

5. If the QBF solver returnsUnsat, then the synthesis is declaredsuccessful, and if the QBF solver
returnsSat, then the synthesis process isunsuccessful.

6. If synthesis is successful, the QBF solver outputs a valuation for the synthesis variables~y (a Her-
brand model), which is used to obtain a concrete distributedalgorithm.

7. The synthesized algorithm is formally verified: if the property wasFφ , there is nothing to verify;
if the property wasFGφ , then the property that “afterk steps, the propertyφ is always true” is
verified usingk-induction or symbolic model checking.
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Figure 2: The bounded synthesis approach.

4 Synthesis of a self-stabilizing system with distributed control

In this section we present an example of our synthesis approach by finding a solution for the problem
presented in Section 2. Instead of just presenting the template that was provided to our synthesis tool to
produce a solution, we will ilustrate one possible chain of interactions with the synthesis tool that leads
to a solution. Our goal is to demonstrate how interacting with the synthesis tool is useful to get insight
into the problem. To this end, we explain how Synthia, an imaginary character, used our approach to
synthesize a solution to the problem of Section 2. We will notget into the modeling details, since all
SAL models can be accessed at [7]. An advantage of our approach is that limited effort is needed to
modify a template due to the expressivity of the SAL language.

4.1 How many rules?

The first question that came to Synthia’s mind was whether a really simple protocol would work. Is a
single rule per process enough? What about the same rule for every process? That did not seem plausible
but, to be sure, Synthia encoded the following simple solution template, which represents a finite family
of possible solutions where (1) all 4 machines have the same rule set, (2) this rule set contains a single
rule, (3) the privilege of that rule is a conjunction of two equality predicates comparingA andB to two,
possibly negated, variables the machine can read. The corresponding SAL model issingle rule.sal

in [7].

R0 = R1 = R2 = R3 = {IF cA∧cB THEN A := vA,B := vB ENDIF}, where
cA ∈ {(A= b) | b∈ D}∪{(A= b̄) | b∈ D}, D = {A,B,AL,AR,BL,BR, f alse, true},
cB ∈ {(B= b) | b∈ D}∪{(B= b̄) | b∈ D}, vA,vB ∈ {A, Ā,B, B̄, true, f alse}.

To confirm her suspicion, Synthia asked the tool whether there is some instantiation of this template
such that the system always reaches a legitimate state in four steps. Note that the interesting property is
in factFG(legitimate), which gets transformed intoX4(legitimate). In about a minute and a half the tool
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told Synthia that there is no such instantiation. She also tried to synthetize a solution forX8(legitimate)
andX16(legitimate). As expected, the answer was again “no” in 2 and a half and 6 minutes, respectively.

Synthia was convinced that the rules had to implement some way of influencing the conditions of the
rules of the neighbors. A possibility is preventing the leftneighbor from making a move by havingBR

as a condition of the rule. She asked the solver to complete the following small variation of the previous
template. The corresponding SAL model issingle rule BR.sal in [7].

R0 = R1 = R2 = R3 = {IF cA∧BR THEN A := vA,B := vB ENDIF}, where
cA ∈ {(A= b) | b∈ D}∪{(A= b̄) | b∈ D}, D = {A,B,AL,AR,BL,BR, f alse, true}, and
vA,vB ∈ {A, Ā,B, B̄, true, f alse}.

After getting a negative answer for bothX4(legitimate) andX16(legitimate) in less than 5 seconds,
Synthia realized that the symmetry of the rules has to be broken somehow since otherwise the states
where∀i ∈ {0, . . . ,3} : Bi = f alsewould not have a successor. A possibility is to fix the value ofB in
machine 3 totrue. She tried that and, additionally, fixing the value ofB in machine 0 to valuef alse,
getting a negative answer in both cases.

To gain more intuition into the problem, Synthia tried to synthetize a solution assuming a particular
initial state, changing the previous template to obtain thefollowing (the corresponding SAL model is
single rule B blocks initialized.sal in [7]):

B0 initialized to 1
A0,A1,A2,A3,B1,B2,B3 initialized to 0
R0 = R1 = R2 = R3 = {IF cA∧BR THEN A := vA,B := vB ENDIF}, where

cA ∈ {(A= b) | b∈ D}∪{(A= b̄) | b∈ D}, D = {A,B,AL,AR,BL,BR, f alse, true},
vA,vB ∈ {A, Ā,B, B̄, true, f alse}.

The enforced property was againX4(legitimate). The answer of the solver, in less than 2 seconds,
was

B0 initialized to 1
A0,A1,A2,A3,B1,B2,B3 initialized to 0
R0 = R1 = R2 = R3 = {IF BR THEN A := BR,B := A ENDIF}

Synthia knew that this could not be generalized, since her former attempt to synthetize a solution had
failed. She tried to verify the previous solution for the property X4(legitimate) using symbolic model
checking. It worked. The next step then, is to testFG(legitimate). SAL returned a counterexample of
length 10. Also, simulating by hand the execution of the previous complete model helped Synthia to get
convinced that a solution whereR0 = R1 = R2 = R3 could not exist, although she did not worry about
formally proving it.

4.2 Two rules per machine

Synthia extended the template to have two rules per machine.The corresponding SAL model is
two rules general.sal in [7].

Ri = {IF cA,i,1∧cB,i,1 THEN A := vA,i,1,B := vB,i,1 ENDIF,

IF cA,i,2∧cB,i,2 THEN A := vA,i,2,B := vB,i,2 ENDIF}, where

cA,i, j ∈ {(A= b) | b∈ D}∪{(A= b̄) | b∈ D}, D = {A,B,AL,AR,BL,BR, f alse, true},
cB,i, j ∈ {(B= b) | b∈ D}∪{(B= b̄) | b∈ D}, vA,i, j ,vB,i, j ∈ {A, Ā,B, B̄, true, f alse}

for everyi ∈ {0,1,2,3}, j ∈ {1,2}.
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Once again, the enforced property wasX4(legitimate), the bounded version ofFG(legitimate). The
solver did not produce a solution in 10 minutes and Synthia lost her patience. It is important to remark
here that the election for the value of the constantc in the strengteningXc(φ) of FG(φ) may be crucial
to obtain a solution. With this fact in mind, Synthia triedX12(legitimate) with no success. The 2QBF
∀∃ instance corresponding to formula 2 for this system template and the propertyX4(legitimate) has
128 universal and 23273 existential variables. The QBF preprocessor Bloqqer [2] reduced the number of
clauses from 91714 to 15338.

Synthia knew that this template was too general, and thus many of its instances are either equivalent
to some other instance or can be trivially discarded. The goal then, was to find a more restrictive tem-
plate and reduce the number of universal variables in the resulting 2QBF problem. A simple option is
considering the restriction of the previous template whereR1 = R2. This requires trivial changes with
respect to the previous template and is encoded intwo rules reduced.sal. The resulting QBF for-
mula for the propertyX4(legitimate), after being preprocessed with bloqqer, has 96 universal variables,
19059 existential variables, and 16099 clauses. As before,Synthia gives up after waiting for around 15
minutes.

After realizing that the tool will not give her all the answers, Synthia decided to go back to the
idea of usingBR to block the left neighbor from making a move. Note that that case is not covered in
the previous template. Additionally, she kept the restriction thatR1 = R2. The resulting SAL model is
two rules reduced BR.sal.
B1 is fixed to have valuef alse, and the set of rules for each of the four machines is defined asfollows:

Ri = {IF cA,k,1∧BR THEN A := vA,k,1,B := vB,k,1 ENDIF,

IF cA,k,2∧cB,k,2 THEN A := vA,k,2,B := vB,k,2 ENDIF}, where

k= 2 if i = 3 andk= i, otherwise and
cA,k, j ∈ {(A= b) | b∈ D}∪{(A= b̄) | b∈ D}, D = {A,B,AL,AR,BL,BR, f alse, true},
cB,k,2 ∈ {(B= b) | b∈ D}∪{(B= b̄) | b∈ D}, vA,k, j ,vB,k, j ∈ {A, Ā,B, B̄, true, f alse}

for everyi ∈ {0,1,2,3}, j ∈ {1,2}.

After not obtaining a solution from the QBF solver in 10 minutes, Synthia decided to simplify
her template even more, by restricting the domains of the conditions and the assignments of the
rules ascA,k, j ∈ {(A = b) | b ∈ D} ∪ {(A = b̄) | b ∈ D}, whereD = {B,AL,AR}, and vA,k, j ,vB,k, j ∈
{A, Ā, true, f alse}. Again, the enforced property isX4(legitimate). In 5 minutes the tool reported that
there was no instance of the template satisfying the property.

Synthia was confused at this point. After using the tool to synthesize a solution for a particular
case, Synthia realized that, not only the value ofB in machine 0, but also the value ofB in machine 3,
must be fixed. The corresponding SAL model istwo rules reduced BR simpl values.sal. When
enforcingX4(legitimate), the tool found an instance not satisfyingFG(legitimate), which was easily
detected when trying to formally verify it. For the case ofX12(legitimate), the tool found the following
solution:

B1 is fixed to have valuef alse, B4 is fixed to have valuetrue, and the set of rules for each of the four
machines is defined as follows:

R0 = {IF (A= B)∧BR THEN A := Ā ENDIF,

IF (A= B) THEN A := Ā ENDIF}},

R3 = {IF A 6= AL ∧B= AR THEN A := Ā ENDIF}

R1 = R2 = {IF A 6= Ar ∧BR THEN A := Ā,B := f alseENDIF}
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The first thing that Synthia did was verifyingFG(legitimate) to make sure that the synthetized so-
lution preserves stabilization. This property could be proved by SAL using symbolic model checking in
a few seconds. Also, the solution was checked for deadlock states. However, after inspecting the solu-
tion, Synthia realized that it is not fair. It was confirmed bytrying to verify the more complex property
FG(legitimate∧M), whereM is a predicate that is satisfied iff every machine made a move at some step
in the past, since symbolic model checking produced a counterexample.

Recall that the notion of fairness required in our example isthat, for every pair of machinesmi,mj ,
there is a sequence of steps of the system going from every legitimate state where a rule ofmi is enabled
to a legitimate state were a rule ofmj is enabled. Note that this property requires the existence of an
execution, and hence it intuitively corresponds to theE (Exists) temporal operator in Computational
Tree Logic (CTL), and not theF operator in LTL. In the original problem presented by Dijkstra, the
definition of enabled rule did not require a rule to change thecurrent state to be enabled. However, note
that every execution of the system with Dijkstra’s definition of enabled can be associated to an execution
in our setting. Hence, the propertyFG(legitimate∧M) correctly captures the original fairness condition.

Hence, Synthia used our tool to synthesize a solution forX12(legitimate∧M), and obtained, in less
than 30 seconds, the solution presented in Section 2.

The first question that came to Synthia’s mind was whether thesynthesized solution could be gener-
alized ton machines. However, before getting into that, Synthia askedone last question to the synthesis
tool: is there any instantiation of the template satisfyingX11(legitimate)? The tool quickly answered
“no”. Synthia started wondering whether that bound holds for any algorithm satisfying the requirements.
She then closed her laptop and grabbed pencil and paper.

5 Conclusion and further work

We have presented a practical approach to the synthesis of finite-state distributed systems based in
bounded synthesis of LTL properties. Our approach can be seen as a natural first step in the extension
of the capabilities of a model checker to synthesis and builds up on the fact that, while synthetizing a
complex system from scratch is still unfeasible in practice, the recent progress in QBF solving enables
synthesis from human-provided templates.

As further work, we plan to extend an existing model checker such as SAL to have synthesis capa-
bilities. While the SAL language is very appropiate for the modeling of distributed systems, it does not
provide specific constructs for describing templates. An important component of this task is the design
and implementation of an extension of the SAL language to support definition of templates.

From another perspective, besides experimenting more withour approach, we are interested in lever-
aging it to thek-induction and infinite settings. The latter is enabled by the recent progress in∃∀ SMT
solving. However, more investigation is needed in finding decision procedures for that problem that are
well suited for the instances that have to be solved in our setting.
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