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We present a framework that takes a concurrent program composed of unsynchronized processes,
along with a temporal specification of their global concurrent behaviour, and automatically generates
a concurrent program with synchronization ensuring correct global behaviour. Our methodology
supports finite-state concurrent programs composed of processes that may have local and shared
variables, may be straight-line or branching programs, may be ongoing or terminating, and may
have program-initialized or user-initialized variables. The specification language is an extension of
propositional Computation Tree Logic (CTL) that enables easy specification of safety and liveness
properties over control and data variables. The framework also supports synthesis of synchronization
at different levels of abstraction and granularity.

1 Introduction

Shared-memory concurrent programs are ubiquitous in today’s era of multi-core processors. Unfortu-
nately, these programs are hard to write and even harder to verify. We assert that one can simplify the
design and analysis of (shared-memory) concurrent programs by, first, manually writing synchronization-
free concurrent programs, followed by, automatically synthesizing the synchronization code necessary
for ensuring the programs’ correct concurrent behaviour. This particular approach to synthesis of con-
current programs was first developed in [7, 3] and was revisited more recently in [13, 24, 25]. The
early synthesis papers focused on propositional temporal logic specifications and restricted models of
concurrent programs such as synchronization skeletons. Even when dealing with finite-state programs,
it is highly cumbersome to express properties over functions and predicates of program variables using
propositional temporal logic. Besides, synchronization skeletons that suppress data variables and compu-
tations are often inadequate abstractions of real-world concurrent programs. The more recent synthesis
approaches have fairly sophisticated program models. However, they are applicable for restricted classes
of specifications such as safety properties, and entail some possibly restrictive assumptions. For instance,
it is almost always assumed that all data variables are initialized within the program to specific values,
thereby disallowing any kind of user or environment input to a concurrent program. The presence of
local data variables is also rarely accounted for or treated explicitly. Finally, there has been limited effort
in developing adaptable synthesis frameworks that are capable of generating synchronization at different
levels of abstraction and granularity.

In this paper, we present a comprehensive treatment of synthesis of synchronization for concurrent
programs with CTL-like specifications over program variables. We support finite-state concurrent pro-
grams composed of processes that may have local and shared variables, may be straight-line or branching,
may be ongoing or terminating, and may be executed as a closed system (with no external environment)
or with an external environment that may initialize the values of the program variables or read the values
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of the program variables at any point in the programs’ execution. We propose an extension to proposi-
tional CTL that helps express properties over program locations and data variables. These properties may
be syntactic, e.g., AG¬(loc1 = l1 ∧ loc2 = l2), specifying that the first and the second process cannot
simultaneously be in locations l1 and l2, respectively, or semantic, e.g., AG(v1 = υ ⇒ AF(v2 = υ +1)),
specifying that if the value of variable v1 is υ , then it is inevitable that the value of variable v2 be υ +1, or
both syntactic and semantic. Furthermore, as is evident from the above examples, these properties may
express safety as well as liveness requirements. Finally, we support the synthesis of synchronization
in the form of conditional critical regions (CCRs), or based on lower-level synchronization primitives
such as locks and condition variables. In the latter case, the synthesized synchronization can be either
coarse-grained or fine-grained.

Given a concurrent program P composed of synchronization-free processes, P1,P2, . . . ,Pk, and a
temporal logic specification φspec specifying the expected concurrent behaviour, the goal is to obtain
synchronized processes, Ps

1 ,P
s
2 , . . . ,P

s
k , such that the concurrent program Ps resulting from their asyn-

chronous composition satisfies φspec. This is effected in several steps in our proposed approach. The first
step involves specifying the concurrency and operational semantics of the unsynchronized processes as
a temporal logic formula φP. We help mitigate the user’s burden of specification-writing by automati-
cally generating φP. The second step involves construction of a tableau Tφ , for φ given by φP ∧ φspec.
If the overall specification is found to be satisfiable, the tableau yields a global model M, based on
P1,P2, . . . ,Pk such that M |= φ . The next step entails decompositon of M into the desired synchronized
processes Ps

1 , . . . ,P
s
k with synchronization in the form of CCRs. The last step comprises a mechanical

compilation of the synthesized CCRs into both coarse-grained and fine-grained synchronization code
based on locks and condition variables.

To construct the tableau Tφ , we adapt the tableau-construction for propositional CTL to our extended
specification language over variables, functions and predicates. When there exist environment-initialized
variables, we present an initial brute-force solution for modifying the basic approach to ensure that Ps

satisfies φspec for all possible initial values of such variables. Also, we address the effect of local variables
on the permitted behaviours in Ps due to limited observability of global states, and discuss solutions.

The paper is structured as follows. We begin by introducing our specification language and program
model in Sec. 2. We present a basic algorithmic framework in Sec. 3, focussing on the formulation of φP,
tableau construction, model generation and extraction of CCRs. We then address extensions of the basic
framework to deal with uninitialized variables, local variables, different synchronization primitives and
multiple processes in Sec. 4. We conclude with a discussion of related and future work in Sec. 5.

2 Formal Framework

2.1 A vocabulary L

Symbols of L: We fix a vocabulary L that includes a set LV of variable symbols (denoted v, v1 etc.), a
set LF of function symbols (denoted f , f1 etc.), a set LB of predicate symbols (denoted B, B1 etc.), and
a non-empty set LS of sorts. LS contains the special sort bool, along with the special sort location.
Each variable v has associated with it a sort in LS, denoted sort(v). Each function symbol f has an
associated arity and a sort: sort( f ) for an m-ary function symbol is an m+ 1-tuple < σ1, . . . ,σm,σ >
of sorts in LS, specifying the sorts of both the domain and range of f . Each predicate symbol B also
has an associated arity and sort: sort(B) for an m-ary predicate symbol is an m-tuple < σ1, . . . ,σm >
of sorts in LS. Constant symbols (denoted c, c1 etc.) are identified as the 0-ary function symbols, with
each constant symbol c associated with a sort, denoted sort(c), in LS. The vocabulary L also explicitly
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includes the distinguished equality predicate symbol =, used for comparing elements of the same sort.

Syntax of L-terms and L-atoms: Given any set of variables V ⊆ LV, we inductively construct the set of
L-terms and L-atoms over V , using sorted symbols, as follows:

• Every variable of sort σ is a term of sort σ .

• If f is a function symbol of sort < σ1, . . . ,σm,σ >, and t j is a term of sort σ j for j ∈ [1,m], then
f (t1, . . . , tm) is a term of sort σ . In particular, every constant of sort σ is a term of sort σ .

• If B is a predicate symbol of sort < σ1, . . . ,σm >, and t j is a term of sort σ j for j ∈ [1,m], then
B(t1, . . . , tm) is an atom.

• If t1, t2 are terms of the same sort, t1 = t2 is an atom.

Semantics of L-terms and L-atoms: Given any set of variables V ⊆ LV, an interpretation I of symbols of
L, and L-terms and L-atoms over V is a map satisfying the following:

• Every sort σ ∈ LS is mapped to a nonempty domain Dσ . In particular, the sort bool is mapped
to the Boolean domain Dbool : {T,F}, and the sort location is mapped to a domain of control
locations in a program.

• Every variable symbol v of sort σ is mapped to an element vI in Dσ .

• Every function symbol f , of sort < σ1, . . . ,σm,σ > is mapped to a function f I : Dσ1 × . . .Dσm →
Dσ . In particular, every constant symbol c of sort σ is mapped to an element cI ∈ Dσ .

• Every predicate symbol B of sort < σ1 . . .σm > is mapped to a function Dσ1× . . .Dσm → Dbool.

Given an interpretation I as defined above, the valuation valI[t] of an L-term t and the valuation
valI[G] of an L-atom G are defined as follows:

• For a term t which is a variable v, the valuation is vI .

• For a term f (t1, . . . , tm), the valuation valI[ f (t1, . . . , tm)] = f I(valI[t1], . . . ,valI[tm]).

• For an atom G(t1, . . . , tm), the valuation valI[G(t1, . . . , tm)] = T iff GI(valI[t1], . . . ,valI[tm]) = T.

• For an atom t1 = t2, valI[t1 = t2] = T iff valI[t1] = valI[t2].

In the rest of the paper, we assume that the interpretation of constant, function and predicate symbols
in L is known and fixed. We further assume that the interpretation of sort symbols to specific domains is
known and fixed. With some abuse of notation, we shall denote the interpretation of all constant, function
and predicate symbols simply by the symbol name, and identify sorts with their domains. Examples
of some constant, function and predicate symbols that may be included in L are: constant symbols
0,1,2, function symbols +,−, and predicate symbols <,> over the integers, function symbols ∨,¬ over
bool, the constant symbol ϕ (empty list), function symbol • (appending lists) and predicate symbol null
(emptiness test) over lists, etc.. Finally, when the interpretation is obvious from the context, we denote
the valuations valI[t], valI[G] of terms t and atoms G simply as val[t], val[G], respectively.
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2.2 Concurrent Programs

In our framework, we consider a (shared-memory) concurrent program to be an asynchronous composi-
tion of a non-empty, finite set of processes, equipped with a finite set of program variables that range over
finite domains. We assume a simple concurrent programming language with assignment, condition test,
unconditional goto, sequential and parallel composition, and the synchronization primitive - conditional
critical region (CCR) [12, 10]. A concurrent program P is written using the concurrent programming lan-
guage, in conjunction with L-terms and L-atoms. We assume that the sets of (data and control) variables,
functions and predicates available for writing P are each finite subsets of LV, LF and LB, respectively.

A concurrent program is given as P :: [declaration] [P1‖ . . .‖Pk], with k > 0. The declaration
consists of a finite sequence of declaration statements, specifying the set of shared data variables X ,
their domains, and possibly initializing them to specific values. For example, the declaration state-
ment, v1,v2 : {0,1,2,3} with v1 = 0, declares two variables v1, v2, each with (a finite integer) domain
{0,1,2,3}, and initializes the variable v1 to the value 0. The initial value of any uninitialized variable is
assumed to be a user/environment input from the domain of the variable.

A process Pi consists of a declaration of local data variables Yi (similar to the declaration of shared
data variables in P), and a finite sequence of labeled, atomic instructions, l : inst. We denote the unique
instruction at location l as inst(l). The set of data variables Vari accessible by Pi is given by X ∪Yi.
The set of labels or locations of Pi is denoted Li = {l0

i , . . . , l
ni
i }, with l0

i being a designated start location.
Unless specified otherwise1, an atomic instruction inst is an assignment, condition test, unconditional
goto, or CCR. An assignment instruction A, given by (vi1 , . . . ,viq) :=(t1, . . . , tq), is a parallel assignment
of L-terms t1, . . . , tq, over Vari, to the data variables vi1 , . . . ,viq in Vari. Upon completion, an assignment
statement at lr

i transfers control to the next location lr+1
i . A condition test, if (G) li f , lelse, consists of

an L-atom G over Vari, and a pair of locations li f , lelse in Li to transfer control to if G evaluates to T,
F, respectively. The instruction goto l is a transfer of control to location l ∈ Li. A CCR is a guarded
insruction block, G→ inst block, where the enabling guard G is an L-atom over Vari and inst block is
a sequence of assignment, conditional and goto statements. The guard G is evaluated atomically and
if found to be T, the corresponding inst block is executed atomically, and control is transferred to the
next location. If G is found to be F, the process waits at the same location till G evaluates to T. An
unsynchronized process does not contain CCRs.

We model the asynchronous composition of concurrent processes by the nondeterministic interleav-
ing of their atomic instructions. Hence, at each step of the computation, some process, with an en-
abled transition, is nondeterministically selected to be executed next by a scheduler. The set of program
variables is denoted V = Loc∪Var, where Loc = {loc1, . . . , lock} is the set of control variables and
Var =Var1∪ . . .∪Vark is the set of data variables. The semantics of the concurrent program P is given
by a transition system (S,S0,R), where S is a set of states, S0 ⊆ S is a set of initial states and R⊆ S×S is
the transition relation. Each state s ∈ S is a valuation of the program variables in V . We denote the value
of variable v in state s as vals[v], and the corresponding value of a term t and an atom G in state s as vals[t]
and vals[G], respectively. vals[t] and vals[G] are defined inductively as in Sec. 2.1. The domain of each
control variable loci ∈V is the set of locations Li, and the domain of each data variable is determined from
its declaration. The set of initial states S0 corresponds to all states s with vals[loci] = l0

i for all i ∈ [1,k],
and vals[v] = υinit , for every data variable v initialized in its declaration to some constant υinit . There
exists a transition from state s to s′ in R, with vals[loci] = li, vals′ [loci] = l′i and vals′ [loc j] = vals[loc j]
for all j 6= i, iff there exists a corresponding local move in process Pi involving instruction inst(li), such

1A user may define an atomic instruction (block) as a sequence of assignment, conditional and goto statements
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that:

1. inst(li) is the assignment instruction: (vi1 , . . . ,viq) :=(t1, . . . , tq), for each variable vi j with j ∈ [1,q]:
vals′ [vi j ] = vals[t j], for all other data variables v: vals′ [v] = vals[v], and l′i is the next location in Pi

after li, or,

2. inst(li) is the condition test: if (G) li f , lelse, the valuation of all data variables in s′ is the same as
that in s, and either vals[G] is T and l′i = li f , or vals[G] is F and l′i = lelse, or,

3. inst(li) is goto l, the valuation of all data variables in s′ is the same as that in s, and l′i = l, or,

4. inst(li) is the CCR G→ inst block, vals[G] is T, the valuation of all data variables in s′ correspond
to the atomic execution of inst block from state s, and l′i is the next location in Pi after li.

We assume that R is total. For terminating processes Pi, we assume that Pi ends with a special instruction,
halt : goto halt.

2.3 Specifications

Our specification language, LCTL, is an extension of propositonal CTL, with formulas composed from
L-atoms. While one can use propositional CTL for specifying properties of finite-state programs, LCTL
enables more natural specification of properties of concurrent programs communicating via typed shared
variables. We describe the syntax and semantics of this language below.

Syntax: Given a set of variables V ⊆ LV, we inductively construct the set of (LCTL) formulas over V ,
using L-atoms, in conjunction with the propositional operators¬,∨ and the temporal operators A,E,X,U,
along with the process-indexed next-time operator Xi:

• Every L-atom over V is a formula.

• If φ1, φ2 are formulas, then so are ¬φ1 and φ1∨φ2.

• If φ1, φ2 are formulas, then so are EXφ1, EXi φ1, A[φ1Uφ2] and E[φ1Uφ2].

We use the following standard abbreviations: φ1∧φ2 for¬(¬φ1∨¬φ2), φ1→ φ2 for¬φ1∨φ2, φ1↔ φ2
for (φ1→ φ2)∧ (φ2→ φ1), AXφ for ¬EX¬φ , AXi φ for ¬EXi¬φ , AFφ for A[TUφ ], EFφ for E[TUφ ],
EGφ for ¬AF¬φ , and AGφ for ¬EF¬φ .

Semantics: LCTL formulas over a set of variables V are interpreted over models of the form M =
(S,R,L), where S is a set of states and R is a a total, multi-process, binary relation R = ∪iRi over S,
composed of the transitions Ri of each process Pi. L is a labeling function that assigns to each state s ∈ S
a valuation of all variables in V . The value of a term t in a state s ∈ S of M is denoted as val(M,s)[t],
and is defined inductively as in Sec. 2.1. A path in M is a sequence π = (s0,s1, . . .) of states such that
(s j,s j+1) ∈ R, for all j ≥ 0. We denote the jth state in π as π j.

The satisfiability of a LCTL formula in a state s of M can be defined as follows:

• M,s |= G(t1, . . . , tm) iff G(val(M,s)[t1], . . . ,val(M,s)[tm]) = T.

• M,s |= t1 = t2 iff val(M,s)[t1] = val(M,s)[t2].

• M,s |= ¬φ iff it is not the case that M,s |= φ .

• M,s |= φ1∨φ2 iff M,s |= φ1 or M,s |= φ2.

• M,s |= EX φ iff for some s1 such that (s,s1) ∈ R, M,s1 |= φ .
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• M,s |= EXi φ iff for some s1 such that (s,s1) ∈ Ri, M,s1 |= φ .

• M,s |= A[φ1U φ2] iff for all paths π starting at s, ∃ j [M,π j |= φ2 and ∀k (k < j → M,πk |= φ1)].

• M,s |= E[φ1U φ2] iff there exists a path π starting at s such that ∃ j [M,π j |= φ2 and ∀k (k < j→
M,πk |= φ1)].

Programs as Models: A program P = (S,S0,R) can be viewed as a model M = (S,R,L), with the same
set of states and transitions as P, and the identity labeling function L that maps a state to itself. Given an
LCT L specification φ , we say P |= φ iff for each state s ∈ S0, M,s |= φ .

3 Basic Algorithmic Framework

In this section, for ease of exposition, we assume a simpler program model than the one described in
Sec. 2.2. We restrict the number of concurrent processes k to 2. We assume that all data variables are
initialized in the program to specific values from their respective domains. We further assume that all
program variables, including control variables, are shared variables. We explain our basic algorithmic
framework with these assumptions, and later describe extensions to handle the general program model
in Sec. 4.

Let us first review our problem definition. Given a concurrent program P, composed of unsynchro-
nized processes P1, P2, and an LCTL specification φspec of their desired global concurrent behaviour,
we wish to automatically generate synchronized processes Ps

1 , Ps
2 , such that the resulting concurrent pro-

gram Ps |= φspec. If P1, P2 consist of atomic instructions, we wish to obtain synchronization in the form
of CCRs, with each instruction enclosed in a CCR. In particular, the goal is to synthesize the guard for
each CCR, along with any necessary (synchronization) assignments to be performed within the CCR.

We propose an automated framework to do this in several steps.

1. Formulate an LCTL formula φP to specify the semantics of the concurrent program P.

2. Construct a tableau Tφ for the formula φ given by φP∧φspec. If Tφ is empty, declare specification
as inconsistent and halt.

3. If Tφ is non-empty, extract a model M for φ from it.

4. Decompose M to obtain CCRs to synchronize each process.

In what follows, we describe these steps in more detail.

3.1 Formulation of φP

A reader familiar with the early synthesis work in [7] will recall that the synthesis of a global model
requires a complete specification, which includes a temporal description φP of the concurrency and oper-
ational semantics of the unsynchronized concurrent program P, along with its desired global behaviour
φspec. We propose to automatically infer an LCTL formula for φP to help mitigate the user’s burden of
specification-writing. Let Var = {v1, . . . ,vh} be the set of data variables. {φP is then formulated as the
conjunction of the following (classes of) properties:

1. Initial condition:
val[loc1] = l0

1 ∧ val[loc2] = l0
2 ∧

∧
v∈Var val[v] = υinit .



R. Samanta 23

2. At any step, only one process can make a (local) move:
AG

∧ j=n1
j=1 ((val[loc1] = l j

1) ⇒ AX2 (val[loc1] = l j
1)) ∧

AG
∧ j=n2

j=1 ((val[loc2] = l j
2) ⇒ AX1 (val[loc2] = l j

2)).

3. Some process can always make a (local) move:
AG(EX1T ∨ EX2T).

4. A statement lr
i : {vi1, . . . ,viq} :={t1, . . . , tq} in Pi is formulated as:

AG(((val[loci] = lr
i ) ∧

∧ j=h
j=1 val[v j] = υ j) ⇒

AXi ((val[loci] = lr+1
i ) ∧

∧ j=q
j=1 val[vi j] = val[t j] ∧

∧
v j∈Var\{vi1,...,viq} val[v j] = υ j)).

5. A statement li : if (G) li f , lelse in Pi is formulated as:
AG(((val[loci] = li) ∧ (val[G] = T)) ⇒ AXi (val[loci] = li f )) ∧
AG(((val[loci] = li) ∧ (val[G] = F)) ⇒ AXi (val[loci] = lelse)).

6. A statement li : goto l in Pi is formulated as:
AG((val[loci] = li) ⇒ AXi (val[loci] = l))

3.2 Construction of Tφ

We assume the ability to evaluate L-atoms and L-terms over the set V of program variables. Note that
since we restrict ourselves to a finite subset of the symbols in L, this is a reasonable assumption. Let us
further assume that the formula φ = φP∧φspec is in a form in which only atoms appear negated.

An elementary formula of LCTL is an atom, negation of an atom or the formulas beginning with
AXi or EXi (we do not explicitly consider formulas beginning with AX or EX since AXψ =

∧
i AXi ψ ,

and EXψ =
∨

i EXi ψ . All other formulas are nonelementary. Every nonelementary formula is either a
conjunctive formula α ≡ α1∧α2 or a disjunctive formula β ≡ β1∨β2. For example, ψ1∧ψ2, AG(ψ) =
ψ ∧ AXAGψ are α formulas, and ψ1∨ψ2, AF(ψ) = ψ ∨ AXAFψ are β formulas.

The tableau Tφ for the formula φ is a finite, rooted, directed AND/OR graph with nodes labeled with
formulas such that when a node B is viewed as a state in a suitable structure, B |= ψ for all formulas
ψ ∈ B. The construction for Tφ is similar to the tableau-construction for propositional CTL in [7], while
accounting for the presence of L-atoms over V in the nodes of Tφ . Besides composite L-atoms and
LCTL formulas, each node of Tφ is labeled with simple atoms of the type loc = l and v = υ identifying
the values of the control and data variables in each node. Two OR-nodes B1 and B2 are identified as being
equivalent if B1, B2 are labeled with the same simple atoms, and the conjunction of all the formulas in B1
is valid iff the conjunction of all the formulas in B2 is valid. Equivalence of AND-nodes can be similarly
defined. We briefly summarize the tableau construction first, before explaining the individual steps in
more detail.

1. Initially, let the root node of Tφ be an OR-node labeled with φ .

2. If all nodes in Tφ have successors, go to the next step. Otherwise, pick a node B without successors.
Create appropriately labeled successors of B such that: if B is an OR-node, the formulas in B are
valid iff the formulas in some (AND-) successor node are valid, and if B is an AND-node, the
formulas in B are valid iff the formulas in all (OR-) successor nodes are valid. Merge all equivalent
AND-nodes and equivalent OR-nodes. Repeat this step.

3. Delete all inconsistent nodes in the tableau from the previous step to obtain the final Tφ .
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Successors of OR-nodes: To construct the set of AND-node successors of an OR-node B, first build a
temporary tree with labeled nodes rooted at B, repeating the following step until all leaf nodes are only
labeled with elementary formulas. For any leaf node C labeled with a non-elementary formula ψ: if ψ is
an α formula, add a single child node, labeled C\{ψ}∪{α1,α2}, to C, and if ψ is a β formula, add two
child nodes, labeled C \ {ψ}∪{β1} and C \ {ψ}∪{β2}, to C. Once the temporary tree is built, create
an AND-node successor D for B, corresponding to each leaf node in the tree, labeled with the set of all
formulas appearing in the path to the leaf node from the root of the tree. If there exists an atom of the
form v = t in D, where t is an L-term, and the valuation of t in D is υ , replace the atom v = t by the
simple atom v = υ .

Successors of AND-nodes: To construct the set of OR-node successors of an AND-node B, create an
OR-node labeled with {ψ} for each EXi ψ formula in B and label the transition to the OR-node with i.
Furthermore, label each such OR-node D (with an i-labeled transition into D) with

⋃
j ψ j for each AXi ψ j

formula in B. If there exists an atom of the form v = t in D, where t is an L-term, and the valuation of t
in D is υ , replace the atom v = t by the simple atom v = υ . Note that the requirement that some process
can always move ensures that there will be some successor for every AND-node.

Deletion rules: All nodes in the tableau that do not meet all criteria for a tableau for φ are identified as
inconsistent and deleted as follows:

1. Delete any node B which is internally inconsistent, i.e., the conjunction of all non-temporal ele-
mentary formulas in B evaluates to F.

2. Delete any node all of whose original successors have been deleted.

3. Delete any node B such that E[ψ1Uψ2] ∈ B, and there does not exist some path to an AND-node
D from B with ψ2 ∈ D, and ψ1 ∈C for all AND-nodes C in the path.

4. Delete any node B such that A[ψ1Uψ2] ∈ B, and there does not exist a full sub-DAG 2 such that for
all its frontier nodes D , ψ2 ∈ D and for all its non-frontier nodes C, ψ1 ∈C.

If the root node of the tableau is deleted, we halt and declare the specification φ as inconsistent
(unsatisfiable). If not, we proceed to the next step.

3.3 Obtaining a model M from Tφ

A model M is obtained by joining together model fragments rooted at AND-nodes of Tφ : each model
fragment is a rooted DAG of AND-nodes embeddable in Tφ such that all eventuality formulas labeling
the root node are fulfilled in the fragment. We do not explain this step in more detail, as it is identical to
the procedure in [7] 3. After extracting M from Tφ , we modify the labels of the states of M by eliminating
all labels other than simple atoms, identifying the values of the program variables in each state of M. If
there exist n states s1, . . . ,sn with the exact same labels after this step, we introduce an auxiliary variable

2A full sub-DAG T ′ is a directed acyclic sub-graph of a tableau T , rooted at a node of T such that all OR-nodes in T ′ have
exactly one (AND-node) successor from T in T ′, and all AND-nodes in T ′ either have no successors in T ′, or, have all their
(OR-node) successors from T in T ′.

3There may be multiple models embedded in Tφ . In [7], in order to construct model fragments, whenever there are multiple
sub-DAGs rooted at an OR-node B that fulfill the eventualities labeling B, one of minimal size is chosen, where size of a sub-
DAG is defined as the length of its longest path. There are other valid criteria for choosing models, exploring which is beyond
the scope of this paper.
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x with domain {0,1,2, . . . ,n} to distinguish between the states: x is assumed to be 0 in all states other
than s1, . . . ,sn; for each j ∈ {1, . . . ,n}, we set x to j in transitions into s j, and set x back to 0 in transitions
out of s j. This completes the model generation. M is guaranteed to satisfy φ by construction.

3.4 Decomposition of M into Ps
1 and Ps

2

Recall that P1 and P2 are unsynchronized processes with atomic instructions such as assignments, condi-
tion tests and gotos, and no CCRs. In this last step of our basic algorithmic framework, we generate Ps

1
and Ps

2 consisting of CCRs, enclosing each atomic instruction of P1 and P2.
Without loss of generality, consider location l1 in P1. The guard for the CCR for inst(l1) in Ps

1
corresponds to all states in M in which inst(l1) is enabled, i.e., states in which P1 is at location l1 and
from which there exists a P1 transition. To be precise, inst(l1) is enabled in state s in M iff there exists
a transition (s,s′) ∈ R such that vals[loc1] = l1, vals′ [loc2] = l′1 with l′1 being a valid next location for
P1, and, vals[loc2] = vals′ [loc2]. The guard Gs corresponding to such a state s is the valuation of all
program variables other than loc1 in state s. Thus, if vals[loc2] = l2 and for all v j ∈ Var = {v1, . . . ,vh},
vals[v j] = υ j, then Gs is given by (loc2 = l2) ∧

∧ j=h
j=1 v j = υ j.

If M does not contain an auxiliary variable, then the CCR for inst(l1) in Ps
1 is simply G1,1→ inst(l1),

where G1,1 is the disjunction of guards Gs corresponding to all states s in M in which inst(l1) is enabled.
However, if M contains an auxiliary variable x (with domain {0,1,2, . . . ,n}), then one may also need to
perform updates to x within the CCR instruction block. In particular, if inst(l1) is enabled on state s in
M, transition (s,s′) in M is a P1 transition, and if there is an assignment x := j for some j ∈ {0, . . . ,n}
along transition (s,s′), then besides inst(l1), the instruction block of the CCR for inst(l1) in Ps

1 includes
instructions in our programming language corresponding to: if Gs x := j.

The synchronized process Ps
1 (and similarly Ps

2) can be generated by inserting a similarly gen-
erated CCR at each location in P1 (and P2). The modified concurrent program Ps is given by Ps ::
[declaration] [Ps

1‖Ps
2 ], where the declaration includes auxiliary variable x with domain {0,1,2, . . . ,n}

if M contains x with domain {0,1,2, . . . ,n}.

3.5 Correctness and Complexity

The following theorems assert the correctness of our basic algorithmic framework for synthesizing syn-
chronization for unsynchronized processes P1, P2, as defined in Sec. 2.2, with the restriction that all
program variables are shared variables that are initialized to specific values.

Theorem 1 Given unsynchronized processes P1, P2 and an LCT L formula φspec, if our basic algorithm
generates Ps, then Ps |= φspec.

Theorem 2 Given unsynchronized processes P1, P2, and an LCT L formula φspec, if the temporal speci-
fication φ = φspec∧φP is consistent as a whole, then our method constructs Ps such that Ps |= φspec.

The complexity of our method is exponential in the size of φ , i.e., exponential in the size of φspec and
the number of program variables V .

4 Extensions

In this section, we demonstrate the adaptability of our basic algorithmic framework by considering more
general program models. In particular, we discuss extensions for synthesizing correct synchronization in
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the presence of uninitialized variables and local variables. Furthermore, we extend our framework to pro-
gramming languages with locks and wait/signal over condition variables by presenting an automatic
compilation of CCRs into synchronization code based on these lower-level synchronization primitives.
We conclude with an extension of the framework to multiple processes.

4.1 Uninitialized Variables

In Sec. 3, we assumed that all data variables are initialized to specific values over their domains. This
assumption may not be satisfied in general as it disallows any kind of user or environment input to a
concurrent program. In the program model presented in Sec. 2, only some (or even none) of the data
variables may be initialized to specific values within the program. This is a more realistic setting, which
allows a user or environment to choose the initial values of the remaining data variables. In this subsec-
tion, we present a simple, brute-force extension of our basic algorithm for synthesizing synchronization
in the presence of uninitialized variables.

The formula φP, expressing the concurrency and operational semantics of P, remains the same, except
for the initial condition. Instead of a single initial state, the initial condition in φP specifies the set of all
possible initial states, with the control and initialized data variables set to their initial values, and the
remaining data variables ranging over all possible values in their respective domains. Let us denote by
Varinp this remaining set of data variables, that are, essentially, inputs to the program P. The set of
program-initialized data variables is then Var \Varinp. The initial condition in φP is expressed as:∧

i val[loci] = l0
i ∧

∧
v∈Var\Varinp

(v = υinit) ∧
∧

v∈Varinp

∨
υ j∈Dv

(v = υ j),
where Dv is the domain of v.

The root node of the tableau Tφ is now an AND-node with multiple OR-node successors, each cor-
responding to a particular valuation υ of all the data variables (the values of the control variable and
initialized data variables are the same in any such valuation). Each such OR-node yields a model Mυ for
the formula φ , and a corresponding decomposition of Mυ into synchronized processes Ps

1υ
and Ps

2υ
.

To generate synchronized processes Ps
1 and Ps

2 such that for all possible initial valuations υ of the
data variables, Ps |= φspec, we propose to unify the CCRs corresponding to each valuation υ as follows:

1. Introduce a new variable v0 for every input data variable v in Varinp. Declare v0 as a variable with
the same domain as v. Assign v0 the input value of v.

2. Replace every CCR guard G in Ps
iυ with the guard Gυ given by

∧
v∈Varinp

(v0 = υv) ∧ G, where the
valuation of v in υ is υv. Similarly, update every conditional guard accompanying an auxiliary
variable assignment within a CCR instruction block in Ps

iυ .

3. The unified guard for each CCR in Ps
1 and Ps

2 is given by the disjunction of the corresponding
guards Gυ in all Ps

1υ
and Ps

2υ
. The unified conditional guards for auxiliary variable updates in the

CCR instruction blocks are computed similarly.

Note that the unified guards inferred above, as well as in Sec. 3.4, may not in general be pleasant.
However, since each guard is expected to an L-term over a finite set of variable, function and predicate
symbols with known interpretations, it is possible to obtain a simplified L-term with the same value as
the guard. This translation is beyond the scope of this paper, but we refer the reader to [14] for a similar
approach.
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4.2 Local Variables

Another assumption in Sec. 3 was that all program variables, including control variables, were shared
variables. Since one typically associates a cost with each shared variable access, it is impractical to
expect all program variables to be shared variables. This is especially true of control variables, which
are generally never declared explicitly or accessed in programs. Thus, the guards inferred in Sec. 3.4,
ranging over locations of the other process, are somewhat irregular. Indeed, any guard for a process Pi

must only be defined over the data variables Vari accessible by Pi. In what follows, we discuss various
solutions to address this issue.

Let us assume that we have a model M = (S,R,L) for φ , with states labeled by the valuations of the
control variables Loc, the shared data variables X , the local data variables Y =

⋃
iYi, and possibly an

auxiliary variable x. For the purpose of this subsection, let x be included in the set X . We first check
if the set of states S of M has the property that for any two states s1, s2 in S: [

∧
loc∈Loc vals1 [loc] =

vals2 [loc] ∧
∧

y∈Y vals1 [y] = vals2 [y]] ⇔
∧

x∈X vals1 [x] = vals2 [x]. If this is true, then each state s ∈ S is
uniquely identified by its valuation of the shared data variables X . We can then simply factor out guards
from M for each process that only range over X , without missing out on any permitted behaviour in M. If
this is not true, we can perform other similar checks. For instance, we can check if for a particular i: any
two states in S match in their valuations of the variables {loci}∪Yi∪X iff they match in their valuations
of the other program variables. If this is true, then the process Pi can distinguish between states in S by
the valuations of its variables Vari∪{loci}. Thus, we can infer guards for Pi, that are equivalent to the
guards inferred in Sec. 3.4, but only range over Vari.

In general, however, there will be states s1, s2 in S which cannot be distinguished by the valuations
of a particular process’s, or worse, by any process’s variables. This general situation presents us with a
trade-off between synchronization cost and concurrency: we can introduce additional shared variables
to distinguish between such states, thereby increasing the synchronization cost and allowing more be-
haviours of M to be preserved in Ps, or, we can resign to limited observability [24] of global states,
resulting in lower synchronization cost and fewer permitted behaviours of M. In particular, for the latter
case, we implement a safe subset of the behaviours of M by inferring synchronization guards correspond-
ing to the negation of variable valuations (states) that are not present in M. Since a global state u 6∈M
may be indistinguishable over some Vari from a state s∈M, when eliminating behaviours rooted at u, we
also eliminate all (good) behaviours of M, rooted at s. We refer the reader to [24] for a detailed treatment
of this trade-off.

4.3 Synchronization using Locks and Condition Variables

While CCRs provide an elegant high-level synchronization solution, many programming languages pre-
fer and only provide lower-level synchronization primitives such as locks for mutual exclusion, and
wait/signal over condition variables for condition synchronization. In what follows, we present an au-
tomatic compilation of the CCRs inferred in Sec. 3.4 for Ps

1 , Ps
2 into both coarse-grained and fine-grained

synchronization code based on these lower-level primitives. The resulting processes are denoted as Pc
1 ,

Pc
2 (coarse-grained) and P f

1 , P f
2 (fine-grained).

In both cases, we declare locks and conditions variables for synchronization. For the program Pc,
which has a coarser level of lock granularity, we declare a single lock l for controlling access to shared
variables and condition variables. For the program P f

1 ‖ P f
2 with a finer level of lock granularity, we

declare separate locks lv, lx for controlling access to each shared data variable v ∈ X and the shared
auxiliary variable x, respectively. We further define a separate lock lcv1,i , lcv2, j for each condition variable
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li
1:

lock(l) {
while (!G1,i)

wait(cv1,i,l);
if (Gaux

1,i )

x:=1;
if (Greset

1,i )

x:=0;
inst(li

1);
signal(cv2,r);

. . .
signal(cv2,s);

}

(a) Coarse-grained

li
1:

lock(lcv1,i) {
while (!Guard1,i)

wait(cv1,i,lcv1,i);

}
lock(lcv2,r) {

signal(cv2,r);

}
. . .
lock(lcv2,s) {

signal(cv2,s);

}

boolean Guard1,i() {
lock(lv1 , lv2 , . . ., lx) {
if (G1,i) {
if (Gaux

1,i )

x := 1;
if (Greset

1,i )

x := 0;
inst(li

1);
return(true);

}
else return(false);

}}

(b) Fine-grained

Figure 1: Coarse and fine-grained synchronization code corresponding to an example CCR at location li
1

of P1. Guards Gaux
1,i , Greset

1,i above corresponds to all states in M on which inst(li
1) is enabled, and there’s

an assignment x:=1, x:=0, respectively, along a P1 transition out of the states.

cv1,i, cv2, j to allow simultaneous processing of different condition variables.
We refer the reader to Fig. 1a for an example of coarse-grained synchronization code corresponding

to the CCR at location li
1 of P1. Note that, for ease of presentation, we have used conventional pseu-

docode, instead of our programming language. Further note that we find it convenient to express locks,
as lock(l){. . .} (in a manner similar to Java’s synchronized keyword), wherein l is a lock variable,
‘{’ denotes lock acquisition and ‘}’ denotes lock release. This simple implementation involves acquiring
the lock l and checking if the overall guard G1,i for executing inst(li

1) is enabled. While the guard is F, Pc
1

waits for it to change to T. This is implemented by associating a condition variable cv1,i with the overall
guard G1,i: Pc

1 releases the lock l and waits till Pc
2 signals it that G1,i could be T; Pc

1 then reacquires the
lock and rechecks the guard. If the overall guard is T, P1

c enters the instruction block of the CCR and
executes the instructions while holding the lock l. Finally, Pc

1 sends a notification signal corresponding to
every guard (i.e. condition variable) of Pc

2 which may be changed to T by Pc
1 ’s shared variables updates,

and releases the lock.
While fine-grained locking can typically be achieved by careful definition and nesting of multiple

locks, one needs to be especially cautious in the presence of condition variables for various reasons.
For instance, upon execution of wait(c,l) in a nested locking scheme, a process only releases the lock l
before going to sleep, while still holding all outer locks. This can potentially lead to a deadlock. The fine-
grained synchronization code in P f

1 , shown in Fig. 1b, circumvents these issues by utilizing a separate
subroutine to evaluate the overall guard G1,i. In this subroutine, P f

1 first acquires all necessary locks,
corresponding to all shared variables accessed in the subroutine. These locks are acquired in a strictly
nested fashion and in a predecided fixed order to prevent deadlocks. We use lock(l1, l2, . . .){. . .} to
denote the nested locks lock(l1){ lock(l2){ . . .}}, with l1 being the outermost lock variable. The
subroutine then evaluates G1,i and returns its value to the main body of P f

1 . If found T, the subroutine
also executes the instruction block of the CCR. The synchronization code in the main body of P f

1 acquires
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the relevant lock lcv1,i and calls its guard-computing subroutine within a while loop till it returns T, after
which it releases the lock. If the subroutine returns F, the process releases lcv1,i and waits on the associated
condition variable cv1,i . Each notification signal for a condition variable, on which the other process may
be waiting, is sent out by acquiring the corresponding lock.

We emphasize certain optimizations implemented in our compilations that potentially improve the
performance of the synthesized concurrent program: (a) declaration of condition variables only when
necessary, and (b) sending notification signals only when some guard in the other process may have
changed. We refer the reader to [8] for more details of this compilation.

4.4 Multiple (k > 2) Processes

Our basic algorithmic framework can be extended in a straight-forward manner to the synthesis of syn-
chronization for concurrent programs with an arbitrary (but fixed) number k of processes. But since this
involves building a global model M, with size exponential in k, it exhibits a state explosion problem.
There has, however, been work [3, 2] on improving the scalability of the approach by avoiding building
the entire global model, and instead composing interacting process pairs to generate synchronized pro-
cesses. Hence, for k > 2 processes, we can adapt the more scalable synthesis algorithms to the synthesis
of LCT L formulas.

The compilation of CCRs into coarse-grained and fine-grained synchronization code can be extended
in a straight-forward manner to k > 2 processes. We emphasize that this compilation acts on individual
processes directly, without construction or manipulation of the global model, and hence circumvents the
state-explosion problem for arbitrary k.

5 Discussion

Related work: Early work on synthesis of synchronization for shared-memory concurrent programs from
temporal specifications [7] utilized a tableau-based decision procedure for extracting synchronization
skeletons from unsynchronized process skeletons. While the core technique has great potential, the orig-
inal work had little practical impact due to its remoteness from realistic concurrent programs and pro-
gramming languages. The limited modeling of shared-memory concurrency in this work did not include
local and shared data variables, and hence, could not support semantic specifications over the values of
program variables. There was no explicit treatment of process skeletons with branching, observability of
program counters or local variables, and no attempt to synthesize synchronization based on lower-level
synchronization primitives.

More recently, practically viable synthesis of synchronization has been proposed for both finite-
state [24] and infinite-state concurrent programs [25]. However, in both [24], [25], the authors only
handle safety specifications; in fact, it can be shown that synthesis methods that rely on pruning a global
product graph ([13, 24, 25]) cannot, in general, work for liveness. Moreover, these papers do not support
any kind of external environment; in particular, these papers do not account for different (environment-
enabled) initializations of the program variables. Finally, similar to [7], these papers only synthesize
high-level synchronization in the form in CCRs [24] and atomic sections [25], and do not attempt to
synthesize synchronization based on lower-level synchronization primitives available in commonly used
programming languages.

On the other end of the spectrum, there has been some important work on automatic synthesis of
lower-level synchronization, in the form of memory fences, for concurrent programs running on relaxed
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memory models [16, 15]. There has also been work on mapping high-level synchronization into lower-
level synchronization [6, 26] - these papers do not treat liveness properties, are not fully algorithmic,
and are verification-driven. Among papers that address refinement of locking granularity, are [4], which
translates guarded commands, into synchronization based on atomic reads and atomic writes, and papers
on compiler-based lock inference for atomic sections ([9], [5] etc.). The lock-inference papers [9], [5]
rely on the availability of high-level synchronization in the form of atomic sections, and do not, in gen-
eral, support condition synchronization. Sketching [22], a search-based program synthesis technique, is
a verification-driven approach, which can be used to synthesize optimized implementations of synchro-
nization primitives, e.g. barriers, from partial program sketches.

A note on reactive systems: A shared-memory concurrent program can also be viewed as a reactive sys-
tem. A reactive system [11, 19] is described as one that maintains an ongoing interaction with an external
environment or within its internal concurrent modules. Such systems cannot be adequately described by
relational specifications over initial and final states - this distinguishes them from transformational or
relational programs. An adequate description of a reactive system must refer to its ongoing desired be-
haviour, throughout its (possibly non-terminating) activity - temporal logic [18] has been recognized as
convenient for this purpose.

A reactive system may be terminating or not, sequential or concurrent, and implemented on a mono-
lithic or distributed architecture. A reactive system can also be open or closed [20, 21]. This has been
a somewhat overlooked dichotomy in recent years. We have observed that it is not uncommon to view
reactive systems exclusively as open systems; this is especially true in the context of synthesis. While the
first algorithms on synthesis of concurrent programs [7, 17, 3] were proposed for closed reactive systems,
the foundational work in [20, 21] set the stage for an extensive body of impressive results on synthesis
of open reactive systems (see [23] for a survey).

We contend that the relatively simpler problem of synthesis of closed reactive systems is an important
problem in its own right. This is especially true in the context of shared-memory concurrent programs,
where it is sometimes sufficient and desirable to model programs as closed systems and force the compo-
nent processes to cooperate with each other for achieving a common goal. If one must model an external
environment, it is also often sufficient to model the environment in a restricted manner (as in this paper)
or optimistically assume a helpful environment (see [1]).

Concluding Remarks: In this paper, we have presented a general tableau-based framework for the synthe-
sis of synchronization for shared memory concurrent programs. While we have identified and explored
initial solutions for issues such as environment-initialized variables, limited observability of local vari-
ables, pleasantness of guards, much work remains to be done. We also wish to extend the basic program
model to handle nondeterministic programs, infinite-state programs as well as dynamic allocation of
threads. Finally, we want to investigate techniques to reduce the overall complexity of the method.

Acknowledgements: The author wishes to thank Jyotirmoy Deshmukh for many insightful discussions
during the course of writing this paper, and an anonymous reviewer for pointing out interesting future
research directions.
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