
F. Cassez, R. Huuck, G. Klein and B. Schlich (eds.):
Systems Software Verification Conference 2012 (SSV 2012)
EPTCS 102, 2012, pp. 4–17, doi:10.4204/EPTCS.102.3

c© Sidney Amani et al.
This work is licensed under the
Creative Commons Attribution License.

Automatic Verification of Message-Based Device Drivers

Sidney Amani‡§ Peter Chubb‡§ Alastair F. Donaldson¶

Alexander Legg‡ Leonid Ryzhyk‡§ Yanjin Zhu‡§

‡NICTA §University of New South Wales ¶Imperial College London
sidney.amani@nicta.com.au

We develop a practical solution to the problem of automatic verification of the interface between
device drivers and the OS. Our solution relies on a combination of improved driver architecture and
verification tools. It supports drivers written in C and can be implemented in any existing OS, which
sets it apart from previous proposals for verification-friendly drivers. Our Linux-based evaluation
shows that this methodology amplifies the power of existing verification tools in detecting driver
bugs, making it possible to verify properties beyond the reach of traditional techniques.

1 Introduction

Faulty device drivers are a major source of operating system(OS) failures [14, 7]. Recent studies of
Windows and Linux drivers show that over a third of driver bugs result from the complex interface
between driver and OS [21, 3]. The OS defines numerous rules onthe ordering and arguments of driver
invocations, rules that often are neither well documented nor are stable across OS releases. Worse, the OS
can invoke driver functions from multiple concurrent threads, and so driver developers must implement
complex synchronisation logic to avoid races and deadlocks.

In addition to causing numerous programming errors, these problems complicate formal analysis of
device driver code. While automatic verification has proveduseful in detecting OS interface violations in
device drivers, driver verification tools remain limited inthe complexity of properties that can be verified
efficiently [3, 9, 8, 16, 11].

One way to address the problem is through an improved device driver architecture that simplifies
driver development and makes them more amenable to automatic verification [12, 4]. In this architecture
each driver has its own thread and communicates with the OS using message passing, which makes the
driver control flow and its interactions with the OS easier tounderstand and analyse. We refer to such
drivers asactive drivers, in contrast to conventional,passive, drivers that are structured as collections of
entry points invoked by OS threads.

Previous implementations of active drivers in Singularity[12] and RMoX [4] OSs rely on OS and
language support for improved verifiability. As such, they do not help address the driver reliability
problem in mainstream operating systems written in C.

In this paper we show that the benefits of active drivers can beachieved while writing drivers in C for
a conventional OS. To this end, we present an implementationof an active driver framework for Linux
along with a new verification method that enables efficient, automatic checking of active driver protocols.
Our method leverages existing verification tools for C, extended with several novel optimisations geared
towards making active driver verification tractable. Like other existing automatic verification techniques,
the method is not complete—it helps to find bugs, but does not guarantee their absence.

Through experiments involving verification of several complex drivers for Linux, we demonstrate
that our driver design and verification methodology amplifies the power of verification tools in finding
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driver bugs. In particular, many properties that are hard orimpossible to verify in conventional drivers
can be easily checked on active drivers.

In this paper we focus on verification of active device drivers. A detailed account of the design and
implementation of the active driver framework for Linux andits peformance evaluation can be found in
the accompanying technical report [2].

The rest of the paper is structured as follows. Section 2 introduces the active driver architecture.
Section 3 presents our visual formalism for specifying active driver protocols. Section 4 describes our
verification methodology. Section 5 outlines the design andimplementation of the active driver frame-
work for Linux. Section 6 presents experimental results. Section 7 surveys related work on device driver
verification. Section 8 concludes the paper.

2 Passive vs active drivers

In this section we discuss the shortcomings of the conventional driver architecture and show how active
drivers address these shortcomings.

Passive drivers The passive driver architecture supported by all mainstream OSs suffers from two
problems that complicate verification of the driver-OS interface:stack rippingandconcurrency.

A passive device driver comprises a collection of entry points invoked by the OS. When writing the
driver, the programmer makes assumptions about possible orders in which its entry points are going to
be activated; however these assumptions remain implicit inthe implementation. As a result, the control
flow of the driver is scattered across multiple entry points and cannot be reconstructed from its source
code. This phenomenon is known as stack ripping [1].

To complicate things further, the OS can invoke driver entrypoints from multiple concurrent threads,
forcing driver developers to implement intricate synchronisation logic to avoid races and deadlocks.
Multithreading further complicates automatic verification of device drivers, as thread interleaving leads
to dramatic state explosion.

Previous research [21] has shown that the vast majority of device drivers do not get any performance
benefits from multithreading. The performance of most drivers is bound by I/O bandwidth rather than
CPU speed, therefore they do not require true multiprocessor parallelism. Device drivers are multi-
threaded simply by virtue of executing within the multithreaded kernel environment and not because
they require multithreading for performance or functionality.

Active drivers In contrast to passive drivers, an active driver runs in the context of its own thread.
Communication between the driver and the OS occurs via message passing. The OS sends I/O requests
and interrupt notifications to the driver using messages. The driver notifies the OS about completed
requests via reply messages.

In an active device driver, the order in which the driver handles and responds to OS requests is
defined explicitly in its source code and can be readily analysed automatically. Since the driver handles
I/O requests sequentially, such analysis can be performed without running into state explosion due to
thread interleaving.

We present our instantiation of the active driver architecture for Linux. Our design is based on the
Dingo active driver framework [21], improving upon it in twoways. First, Dingo’s message passing
primitives are implemented as C language extensions. In contrast, our framework supports drivers in
pure C. Second, Dingo does not support automatic driver protocol verification.

In our framework, the driver-OS interface consists of a set of mailboxes, where each mailbox is
used for a particular type of message. The driver exchanges messages with the OS viaEMIT andAWAIT
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1mb=AWAIT(suspend ,unplug ,..);

2if (mb==suspend) {

3 dev_suspend();

4 EMIT(suspend_complete ,msg);

5 //Bug! Uncomment to fix

6 mb=AWAIT(resume /*,unplug */);

7 ...

8} else if (mb==unplug) {

9 ...

10}

(a) Faulty code (b) Protocol

Figure 1: Fragment of active driver code and the matching protocol specification.

primitives, that operate on messages and mailboxes. TheEMIT function takes a pointer to a mailbox, a
message structure, and a list of message arguments. It places the message in the mailbox and returns
control to the caller without blocking. TheAWAIT function takes references to one or more mailboxes
and blocks until a message arrives in one of them. It returns areference to the mailbox containing the
message. A mailbox can queue multiple messages.AWAIT always dequeues the first message in the
mailbox. This message is accessible via a pointer in the returned mailbox.

Figure 1(a) shows a fragment of an active driver. In line 1 thedriver waits onsuspend andunplug
mailboxes. After receiving a suspend request (checked by the condition at line 2) the driver suspends
the device (line 3) and notifies the OS about completion of therequest by sending a message to the
suspend complete mailbox (line 4). It then waits for aresume request at line 7. As can be seen from
this example, requests that the driver accepts in each stateare explicitly listed in the driver source code,
which simplifies the analysis of driver behaviour and in particular its interaction with the OS.

3 Specifying driver protocols

This section presents our visual formalism for specifying active driver protocols. The formalism is
similar to protocol state machines of Dingo [21] and Singularity [12], extended with additional means to
capture liveness and fairness constraints, which enable the detection of additional types of driver bugs.

The active driver framework associates a protocol with eachdriver interface. The protocol specifies
legal sequences of messages exchanged by the driver and the OS. Protocols are defined by the driver
framework designer and are generic in the sense that every driver that implements the given interface
must comply with the associated protocol. In the case when the active driver framework is implemented
within an existing OS, the framework includes wrapper components that perform the translation between
the native function-based interface and message-based active driver protocols.

We specify driver protocols using deterministic finite state machines (FSMs). The protocol state
machine conceptually runs in parallel with the driver: whenever the driver sends or receives a message
that belongs to the given protocol, this triggers a matchingstate transition in the protocol state machine.
Figure 1(b) shows a state machine for the protocol used by theexample driver, describing the handling
of power management and hot unplug requests. Each protocol state transition is labelled with the name
of the mailbox through which the driver sends (‘!’) or receives (‘?’) a message. We represent complex
protocol state machines compactly using Statecharts [15],which organise states into a hierarchy so that
several primitive states can be clustered into a super-state.
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In some protocol states the OS is waiting for the driver to complete a request. The driver cannot
remain in such a state indefinitely, but must eventually leave the state by sending a response message to
the OS. Such states are calledtimedstates and are labelled with the clock symbol in Figure 1(b).

In order to ensure that the driver does not deadlock in anAWAIT statement, the developer must rely
on an additional assumption that if the driver waits for all incoming OS messages enabled in the current
state, then one of them will eventually arrive. This is a formof weak fairnessconstraint [18] on the OS
behaviour, which means that if some event (in this case, arrival of a message) is continuously enabled, it
will finally occur. Not all protocol states have the weak fairness property. In the protocol state machine,
we show fair states with dashed border. For example, theSUSPENDED state in Figure 1b is fair, which
guarantees that at least one ofresume andunplug messages will eventually arrive in this state.

A protocol-compliant device driver must obey the following5 rules.

Rule 1. (EMIT) The driver is allowed to emit a message to a mailbox iffthis message triggers a valid
state transition in the protocol state machine.

Rule 2. (AWAIT1) When in a state where there is an enabled incoming message, the driver must even-
tually issue anAWAIT on the corresponding mailbox or transition into a state where this message is not
enabled.

Rule 3. (AWAIT2) AllAWAIT operations eventually terminate. Equivalently, wheneverthe driver per-
forms anAWAIT operation, at least one of its protocols must be in a fair state and theAWAIT must wait
for all enabled messages of this protocol.

Rule 4. (Timed) The driver must not remain in a timed state forever.

Rule 5. (Termination) When the main driver function returns, the protocol state machine must be in a
final state. Note that this rule does not require that every driver run terminates, merely that if it does
terminate then all protocols must be in their final states.

Rules 1, 3 and 5 describesafetyproperties, whose violation can be demonstrated by a finite execution
trace. Rules 2 and 4 arelivenessrules, for which counterexamples are infinite runs.

Going back to the example in Figure 1, we can see that theAWAIT statement in line 6 violates Rule 3.
This line corresponds to theSUSPENDED state of the protocol, where the driver can receiveunplug and
resume messages. By waiting for only one of these messages, the driver can potentially deadlock.

4 Verifying driver protocols

The goal of driver protocol verification is to check whether the driver meets all safety and liveness
requirements assuming fair OS behaviour. We use two tools tothis end: SATABS [8], geared towards
safety analysis, and GOANNA [13], geared towards liveness analysis. These tools provide complementary
capabilities that, when combined, enable full verificationof many driver protocols. We use SATABS to
check safety rules 1, 3, and 5 and GOANNA to check liveness rules 2 and 4. This combination works
well in practice, yielding a low overall false positive rate. Our methodology is compatible with other
similar tools. We use SATABS and GOANNA because our team is familiar with their internals and has
the expertise required to implement novel performance optimisations for these tools.

4.1 Checking safety

SATABS is an abstraction-refinement based model checker for C and C++ for checkingsafetyproperties.
It is designed to perform best when checking control-flow dominated properties with a small number of
data dependencies. Active driver protocol-compliance safety checks fall into this category.
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Given a program to verify, SATABS iteratively computes and verifies its finite-state abstraction with
respect to a set of predicates over program variables. At each iteration it either terminates (by discovering
a bug or proving that the program is correct) or generates a spurious counterexample. In the latter case,
the counterexample is analysed by the tool to discover new predicates, used to construct a refined program
abstraction. Abstraction and refinement are both fully automatic.

SATABS verifies program properties expressed as source code assertions. We encode rules 1 and 3 as
assertions embedded in modified versions ofAWAIT andEMIT functions. These functions keep track of
the protocol state using a global state variable. TheAWAIT function simulates the receiving of a message
by randomly selecting one of incoming mailboxes enabled in the current state and updating the state
variable based on the current state and the message selected. Similarly, theEMIT function updates the
state variable based on the current state and the message being sent. It contains an assertion that triggers
an error when the driver is trying to send a message that is notallowed in the current state. To verify
rule 5, we append to the driver’s main function a check to ensure that, if the driver does terminate, the
protocol state machine is in a final state.

Our preliminary experiments show that straightforward application of SATABS to active drivers re-
sults in very long verification times. This is in part due to the complexity of driver protocols being
verified and in part because predicate selection heuristicsimplemented in SATABS introduce large num-
bers of unnecessary predicates, leading to overly complex abstractions. The problem is not unique to
SATABS. Our preliminary experiments with SLAM [3], another state-of-the-art abstraction-refinement
tool, produced similar results. We describe several novel strategies that exploit the properties of active
drivers to make their safety verification feasible. We believe that these techniques will also be useful in
other software protocol verification tasks.

Protocol decomposition The abstraction-refinement technique is highly sensitive to the size of the
property being checked. Complex properties require many predicates. Since verification time grows
exponentially with the number of predicates, it is beneficial to decompose complex properties into simple
ones that can be verified independenly.

We decompose each driver protocol state machine into a set ofmuch simpler subprotocols as a pre-
processing step. The decomposition is constructed in such away that the driver satisfies safety constraints
of the original protocol if and only if it does so for each protocol in the decomposition. The following
proposition (stated informally) gives a sufficient condition for correctness of decomposition.
Proposition 1. Consider a protocol P and its decomposition into protocols P1, . . . , Pn. If the following
conditions hold then a driver satisfies P if and only if it satisfies each of P1, . . . , Pn:

1. The regular language generated by the protocol state machine of P is equivalent to the intersection
of languages generated by P1, . . . , Pn.

2. There exists a bijection between fair states of P and the union of fair states of P1, . . . , Pn, such that
for each fair state s of P and the corresponding fair state s′ of Pi, the set of incoming messages
enabled in s is equal to the set of incoming messages in s′.

Figure 2 shows one possible decomposition of the protocol inFigure 1(b). Every subprotocol in
the decomposition captures a simple rule related to a singletype of message, shown in bold italics in
the diagram. For instance, the third protocol from the left describes the occurrence of thesuspend
message:suspend can arrive in the initial state, is reenabled by theresume complete message, and is
permanently disabled by theunplug message. Messages that do not participate in the subprotocol are
allowed in any state (as they are constrained by separate subprotocols) and are omitted in the diagram.

In our experience, even complex driver protocols allow decomposition into simple subprotocols with
no more than four states and only a few transitions. Verifying each subprotocol requires a small subset
of predicates involved in checking the monolithic protocol, leading to exponentially faster verification.
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?unplug
!unplug complete ?suspend

!suspend complete
?resume !resume complete

Figure 2: Decomposition of the protocol in Figure 1(b).

Correctness of a decomposition can be automatically checked based on Proposition 1. Furthermore,
we found construction of protocol decompositions to be a largely mechanical task. As part of future
work on the project we will investigate approaches to automating this task.

Automatically provide key predicates One way to speed-up the abstraction-refinement algorithm isto
seed it with a small set of key predicates that avoid large families of spurious counterexamples. Guessing
such key predicatesin generalis extremely difficult. In case of active driver verification, an important
class of key predicates can be provided to SATABS automatically.

As mentioned above, when checking a driver protocol, we introduce a global variable that keeps track
of protocol state. During verification, SATABS eventually discovers predicates over this variable of the
form (state==1), (state==2), . . . , one for each state of the protocol. These predicates are important
to establishing the correspondence between the driver control flow and the protocol state machine. We
therefore provide these predicates to SATABS on startup, which accelerates verification significantly.

Control-flow transformations We found that it often takes SATABS many iterations to correlate
dependent program branches. This problem frequently occurs in active drivers when the driverAWAITs on
multiple mailboxes and then checks the returned value (e.g., line 2 in Figure 1(a)). If the driver executes
the same comparison later in the execution, then both checksmust produce the same outcome. SATABS

does not know about this correlation initially, leading to aspurious counterexample trace that takes
inconsistent branches, potentially leading to spurious counteraexample traces. These counterexamples
can be refuted using predicatep ↔ (mb== suspend). In practice, however, SATABS may introduce
many predicates that only refute a subset of these counterexamples before discoveringp, which allows
refuting all of them.

To remedy the problem, we have implemented a novel control-flow graph transformation that uses
static analysis to identify correlated branches, and merges them. The analysis identifies, through inspect-
ing the use of theAWAIT function, where to apply the transformation. Then infeasible paths through
each candidate region are identified by generating Boolean satisfiability queries which are discharged to
a SAT solver. The CFG region is then rewritten to eliminate infeasible paths. The effect of the rewriting
on the CFG is shown in Figure 3.

This technique effectively avoids the expensive search foradditional predicates using much cheaper
static program analysis. In our experiments, SATABS performs orders of magnitude more effectively
over the new program structure, being able to quickly infer key predicates that could previously only be
inferred after many abstraction refinement iterations and the inference of many redundant predicates.
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Figure 3: CFG transformation example.

4.2 Checking liveness

As SATABS is restricted to analysis of safety properties, the GOANNA tool comes into play for analysis of
liveness properties. GOANNA is a C and C++ bug finding tool that supports user-defined ruleswritten in
the CTL temporal logic [10], which allows natural specification of safety and liveness properties. Unlike
SATABS, GOANNA is intended as a fast compile-time checker and therefore does not perform data-flow
analysis.

Properties to be checked for each protocol are extracted from the protocol specification. In particular,
we apply theAWAIT1rule to every incoming mailbox and theTimedrule to every timed state of the
protocol.

Describing a temporal property using the GOANNA specification language involves two steps. First,
we identify a set of important program events related to the property being verified, such as sending and
receiving of messages. We use syntactic pattern matching tolabel program locations that correspond to
these events. Second, we encode the property to be checked asa temporal logic formula in a dialect of
CTL, defined over events identified at the previous step. Due to limited space, we omit the details of this
encoding.

5 Implementation

We implemented the active driver framework along with threeactive device drivers in Linux 2.6.38. The
framework consists of loadable kernel modules and does not require any changes to other kernel compo-
nents. The framework provides services required by all active drivers, including cooperative scheduling,
message passing, and message-based interrupt delivery. Inaddition it defines protocols for supported
classes of drivers and provides wrappers to perform the translation between the Linux driver interface
and message-based active driver protocols. Wrappers enable conventional and active drivers to co-exist
within the kernel.

The generic part of the framework shared by all active drivers provides support for scheduling and
message passing. It implements thecooperative domainabstraction, which constitutes a collection of
cooperatively scheduled kernel threads hosting an active driver. Threads inside the domain communicate
with the kernel via a shared message queue. The framework guarantees that at most one thread in the
domain is runnable at any time. The thread keeps executing until it blocks in theAWAIT function.AWAIT
checks whether there is a message available in one of the mailboxes specified by the caller and, if so,
returns without blocking. Otherwise it calls the thread dispatcher function, which finds a thread for which
a message has arrived. The dispatcher uses the kernel scheduler interface to suspend the current thread
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driver protocol #states #transitions #subprotocols
PCI bus 13 41 11
Ethernet 17 36 6
Serial ATA (SATA) 39 70 22
Digital Audio Interface (DAI) 8 20 6

Table 1: Implemented active driver protocols.

and make the new thread runnable. In the future this design can be optimised by implementing native
support for light-weight threads in the kernel.

EMIT andAWAIT functions do not perform memory allocation and therefore never fail. This simplifies
driver development, as the driver does not need to implementerror handling logic for each invocation
of these ubiquitous operations. On the other hand this meansthat the driver is responsible for allocating
messages sent to the OS and deallocating messages received from the OS. By design of driver protocols,
most mailboxes can contain at most one message, since the sender can only emit a new message to
the mailbox after receiving a completion notification for the previous request. Such messages can be
pre-allocated statically.

Interrupt handling in active drivers is separated into top and bottom halves. The driver registers with
the framework a top-half function that is invoked by the kernel in the primary interrupt context (outside
the cooperative domain). A typical top-half handler reads the interrupt status register, acknowledges the
interrupt in the device, and sends an IRQ message to the driver. The actual interrupt handling happens
inside the cooperative domain in the context of the driver thread that receives the IRQ message. IRQ
delivery latency can be minimised by queueing interrupt messages at the head of the message queue;
alternatively interrupts can be queued as normal messages,which avoids interrupt livelock an ensures
fair scheduling of interrupts with respect to other driver tasks.

In addition to the generic functionality described above, the active driver framework defines protocols
for supported classes of drivers and provides wrappers to perform the translation between the Linux
driver interface and message-based active driver protocols. Wrappers enable conventional and active
drivers to co-exist within the kernel.

Active driver protocols are derived from the correspondingLinux interfaces by replacing every inter-
face function with a message or a pair of request/response messages. While multiple function calls can
occur concurrently, messages are serialised by the wrapper.

Since Linux lacks a formal or informal specification of driver interfaces, deriving protocol state
machines often required tedious inspection of the kernel source. On the positive side, we found that,
compared to building an OS model as a C program, state machines provide a natural way to capture
protocol constraints and are useful not only for automatic verification, but also as documentation for
driver developers.

Table 1 lists protocols we have specified and implemented wrappers for. For each protocol, it gives
the number of protocol states and transitions, and the number of subprotocols in its decomposition (see
Section 4.1). Table 2 lists active device drivers we have implemented along with protocols that each
driver supports. All three drivers control common types of devices found in virtually every computer
system. These drivers were obtained by porting native Linuxdrivers to the active architecture, which
allows direct comparison of their performance and verifiability against conventional drivers.
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driver supported
protocols

LOC
(native)

LOC
(active)

avg(max)
time(minutes)

avg(max)
refinements

avg(max)
predicates

RTL8169 1Gb Ethernet PCI, Ethernet 4,220 4,317 29 (103) 3 (7) 3 (8)
AHCI SATA controller PCI, SATA 2,268 2,487 123 (335) 2 (6) 2 (19)
OMAP DAI audio DAI 583 705 5 (13) 2 (5) 2 (0)

Table 2: Active device driver case studies, protocols that each driver implements, size of the native
Linux and active versions of the driver in lines of code (LOC)(measured usingsloccount), along with
statistics for checking safety properties using SATABS for each driver.

6 Evaluation

6.1 Verification

We applied the verification methodology described in Section 4 to RTL8169, AHCI, and OMAP DAI
drivers. Verification was performed on machines with 2GHz quad-core Intel Xeon CPUs.

Verification using SATABS and GOANNA For each of the three drivers we were able to verify all safety
properties defined by their protocols using SATABS with zero false positives. The last three columns of
Table 2 show statistics for verifying safety properties using SATABS for each driver: average and maxi-
mum time, the number of abstraction refinement loop iterations and the number of predicates required for
verification to succeed, across all subprotocols of the driver. The number of predicates reflects predicates
discovered dynamically by the abstraction refinement loop and does not include candidate predicates
with which SATABS is initialised (see Section 4.1).

The small number of predicates involved in checking these properties indicates that the control skele-
ton of an active driver responsible for interaction with theOS has few data dependencies. This confirms
that the active driver architecture achieves its goal of making the driver-OS interface amenable to effi-
cient automatic verification. At the same time, the fact thatseveral refinements are required in most cases
indicates that the power of the abstraction refinement method is necessary to avoid false positives when
checking safety.

Despite the small number of predicates required, verification times are relatively high for our bench-
marks. This is due to the large size of our drivers, and the fact that SMV [20], the model checker used
by SATABS, was not designed primarily for model checking boolean programs. We experimented with
the BOOM model checker [5], which is geared towards boolean program verification. While in many
cases verification using BOOM was several times faster than with SMV, we did not use it in our final
experiments due to stability issues.

All optimisations described in Section 4.1 proved essential to making verification tractable. Disabling
any one of them led to overly large abstractions that could not be analysed within reasonable time.

We used GOANNA to verify liveness properties of drivers as explained in Section 4.2. GOANNA

performs a less precise analysis than SATABS and is therefore much faster. It verified all drivers in less
than 1 minute while generating 8 false positives due to imprecise data flow analysis.

These results demonstrate that active drivers’ protocol compliance can be verified using existing
tools. At the same time they suggest that an optimal combination of accuracy and verification time
requires a trade-off between full-blown predicate abstraction of SATABS and purely syntactic analysis of
GOANNA.

Comparison with conventional driver verification In order to compare the effectiveness of our
verification methodology against conventional verification techniques for passive drivers, we carried out
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a case study using the native Linux version of the RTL8169 Ethernet controller driver. We analysed the
history of bug fixes made to this driver, and identified those fixes that address OS interface violation bugs.
A typical example involves the driver attempting to use an OSresource such as timer after it has been
destroyed by a racing thread. We found 12 such bugs. We apply SATABS to detect these bugs. SATABS

has been successfully applied to Linux drivers in the past [22]. Using SATABS as a model checker for
both active and traditional drivers provides a fair comparison.

Detecting OS interface bugs in a passive driver requires a model of the OS. We built a series of
such models of increasing complexity so that each new model reveals additional errors but introduces
additional execution traces and is therefore harder to verify. This way we explore the best-case scenario
for the passive driver verification methodology: using our knowledge of the error we tune the model for
this exact error. In practice more general and hence less efficient models are used in driver verification.

By gradually improving the OS model, we were able to find 8 out of 12 bugs. However, when being
provided a model accurate enough to trigger the remaining 4 errors, SATABS was not able to find the
bugs before being interrupted after 12 hours.

We carried out an equivalent case study on the active versionof the RTL8169 driver. To this end,
we simulated the 12 OS protocol violations found in the native Linux driver in the active driver. We
were able to detect each of the 12 protocol violation bugs within 3 minutes per bug. This result confirms
that the active driver architecture along with the verification methodology presented above lead to device
drivers that are more amenable to automatic verification than passive drivers.

6.2 Performance

Microbenchmarks The performance of active drivers depends on the overhead introduced by thread
switching and message passing. We measure this overhead on amachine with 2 quad-core 1.5GHz Xeon
CPUs.

In the first set of experiments, we measure the communicationthroughput by sending a stream of
messages from a normal kernel thread to a thread inside a cooperative domain. Messages are buffered in
the message queue and delivered in batches when the cooperative domain is activated by the scheduler.
This setup simulates streaming of network packets through an Ethernet driver. The achieved throughput is
2·106 messages/s (500 ns/message) with both threads running on the same core and 1.2·106 messages/s
(800 ns/message) with the two threads assigned to differentcores on the same chip.

Second, we run the same experiment with varying number of kernel threads distributed across avail-
able CPU cores (without enforcing CPU affinity), with each Linux thread communicating with the co-
operative thread through a separate mailbox. As shown in Figure 4, we do not observe any noticeable
degradation of the throughput or CPU utilisation as the number of clients contending to communicate
with the single server thread increases (the drop between one and two client threads is due to the higher
cost of inter-CPU communication). This shows that our implementation of message queueing scales well
with the number of clients.

Third, we measure the communication latency between a Linuxthread and an active driver thread
running on the same CPU by bouncing a message between them in aping-pong fashion. The average
measured roundtrip latency is 1.8µs. For comparison, the roundtrip latency of a Gigabit network link is
at least 55µs [19].

Macrobenchmarks We compare the performance of the active RTL8169 Ethernet controller driver
against equivalent native Linux driver using the Netperf benchmark suite on a 2.9GHz quad-core Intel
Core i7 machine. Results of the comparison are shown in Figure 5. In the first set of experiments
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Figure 4: Message throughput and aggregate CPU utilisationover 8 CPUs for varying number of clients.
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(a) UDP throughput for varying
packet sizes for a single client. The
top graph shows achieved throughput;
the bottom graph shows CPU utilisa-
tion.

(b) UDP throughput for multiple
clients (packet size=64 bytes). The
top graph shows aggregate through-
put; the bottom graph shows average
CPU utilisation across 8 cores.

(c) UDP latency for varying packet
sizes for a single client. The top graph
shows average round-trip latency; the
bottom graph show CPU utilisation.

Figure 5: Performance of the RTL8169 Ethernet driver measured with Netperf.

we send a stream of UDP packets from the client to the host machine, measuring achieved throughput
(using Netperf) and CPU utilisation (usingoprofile) for different payload sizes. The client machine
is equipped with a 2GHz AMD Opteron CPU and a Broadcom NetXtreme BCM5704 NIC. The active
driver achieved the same throughput as the native Linux driver on all packet sizes, while using 20% more
CPU in the worst case (Figure 5(a)).

In the second set of experiments, we fix payload size to 64 bytes and vary the number of clients
generating UDP traffic to the host between 1 and 8. The clientsare distributed across four 2GHz Intel
Celeron machines with an Intel PRO/1000 MT NIC. The results (Figure 5(b)) show that the active driver
sustains up to 10% higher throughput while using proportionally more CPU. Further analysis revealed
that the throughput improvement is due to slightly higher IRQ latency, which allows the driver to handle
more packets per interrupt, leading to lower packet loss rate.

The third set of experiments measures the round trip communication latency between the host and a
remote client with 2GHz AMD Opteron and NetXtreme BCM5704 NIC. Figure 5(c) shows that the la-
tency introduced by message passing is completely masked bythe network latency in these experiments.
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Figure 6: Native vs. active AHCI and ATA framework driver performance on the iozone benchmark.

We evaluate the performance of the AHCI SATA controller driver using theiozone benchmark
suite running on a system with a 2.33GHz Intel Core 2 Duo CPU, Marvell 88SE9123 PCIe 2.0 SATA
controller, and WD Caviar SATA-II 7200 RPM hard disk. We run the benchmark with working set of
500MB on top of the raw disk.

We benchmark the driver against equivalent Linux driver. Both drivers achieved the same I/O
throughput on all tests, while the active driver’s CPU utilisation was slightly higher (Figure 6). This
overhead can be reduced through improved protocol design. Our SATA driver protocol, based on the
equivalent Linux interface requires 10 messages for each I/O operation. A clean-slate redesign of this
protocol would involve much fewer messages.

We did not benchmark the DAI driver, as it has trivial performance requirements and uses less than
5% of CPU.

7 Related work

Active drivers Singularity [12] is a research OS written in the Sing# programming language. It
comprises a collection of processes communicating over message channels. Sing# supports a state-
machine-based notation for specifying communication protocols between various OS components, in-
cluding device drivers. The Sing# compiler checks protocolcompliance at compile time. RMoX [4] is
a process-based OS written in occam-pi. RMoX processes communicate using synchronous rendezvous.
Communication protocols are formalised using the CSP process algebra and verified using the FDR tool.

The Dingo [21] active driver framework for Linux aims to simplify driver programming in order to
help driver developers avoid errors. It relies on a C language extension to provide language-level support
for messages and threads. Dingo uses a Statechart-based language to specify driver protocols; however
it only supports runtime protocol checking and does not implement any form of static verification.

The CLARITY [6] programming language is designed to make passive drivers more amenable to
automatic verification. To this end it provides constructs that allow writing event-based code in a se-
quential style, which reduces stack ripping. It simplifies reasoning about concurrency by encapsulating
thread synchronisations insidecoordobjects that expose well-defined sequential protocols to the user.

Verification tools Automatic verification tools for C [3, 9, 8, 16]is an active area of research, which is
complementary to our work on making drivers amenable to formal analysis using such tools. Several ver-
ification tools, including SPIN [18], focus on checking message-based protocols in distributed systems.
These tools work on an abstract model of the system that is either written by the user or extracted from
the program source code [17]. Such a model constitutes a fixedabstraction of the system that cannot be
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automatically refined if it proves too coarse to verify the property in question. Our experiments show
that abstraction refinement is essential to avoiding false positives in active driver verification; therefore
we do not expect these tools to perform well on active driver verification tasks.

8 Conclusion

Improvements in automatic device driver verification cannot rely solely on smarter verification tools and
require an improved driver architecture. Previous proposals for verification-friendly drivers were based
on specialised language and OS support and were not compatible with existing systems. Based on ideas
from this earlier research, we developed a driver architecture and verification methodology that can be
implemented in any existing OS. Our experiments confirm thatthis methodology enables more thorough
verification of the driver-OS interface than what is possible for conventional drivers.
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