
A. Lomuscio & M. Y. Vardi (Eds.): SR 2016
EPTCS 218, 2016, pp. 27–40, doi:10.4204/EPTCS.218.3

c© S. Le Roux & A. Pauly
This work is licensed under the
Creative Commons Attribution License.

Extending Finite Memory Determinacy to Multiplayer Games

Stéphane Le Roux
Département d’Informatique

Université Libre de Bruxelles, Belgique
Stephane.Le.Roux@ulb.ac.be

Arno Pauly
Département d’Informatique

Université Libre de Bruxelles, Belgium
Arno.Pauly@cl.cam.ac.uk

We show that under some general conditions the finite memory determinacy of a class of two-player
win/lose games played on finite graphs implies the existence of a Nash equilibrium built from finite
memory strategies for the corresponding class of multi-player multi-outcome games. This gener-
alizes a previous result by Brihaye, De Pril and Schewe. For most of our conditions we provide
counterexamples showing that they cannot be dispensed with.

Our proofs are generally constructive, that is, provide upper bounds for the memory required, as
well as algorithms to compute the relevant winning strategies.

1 Introduction

The usual model employed for synthesis are sequential two-player win/lose games played on finite
graphs. The vertices of the graph correspond to states of a system, and the two players jointly gen-
erate an infinite path through the graph (the run). One player, the protagonist, models the aspects of
the system under the control of the designer. In particular, the protagonist will win the game iff the run
satisfies the intended specification. The other player is assumed to be fully antagonistic, thus wins iff the
protagonist loses. One then would like to find winning strategies of the protagonist, that is, a strategy for
her to play the game in such a way that she will win regardless of the antagonist’s moves. Particularly
desirable winning strategies are those which can be executed by a finite automaton.

Classes of games are distinguished by the way the winning conditions (or more generally, preferences
of the players) are specified. Typical examples include:

• Muller conditions, where only the set of vertices visited infinitely many times matters;

• Parity conditions, where each vertex has a priority, and the winner is decided by the parity of the
least priority visited infinitely many times;

• Energy conditions, where each vertex has an energy delta (positive or negative), and the protagonist
loses if the cumulative energy values ever drop below 0;

• Discounted payoff conditions, where each vertex has a payoff value, and the outcome is determined
by the discounted sum of all payoffs visited with some discount factor 0 < λ < 1;

• Combinations of these, such as energy parity games, where the protagonist has to simultaneously
ensure that the least parity visited infinitely many times is odd and that the cumulative energy value
is never negative.

Our goal is to dispose of two restrictions of this setting: First, we would like to consider any number
of players; and second allow them to have far more complicated preferences than just preferring winning
over losing. The former generalization is crucial in a distributed setting (also e.g. [4, 6]): If different
designers control different parts of the system, they may have different specifications they would like to
enforce, which may be partially but not entirely overlapping. The latter seems desirable in a broad range

http://dx.doi.org/10.4204/EPTCS.218.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

28 Extending Finite Memory Determinacy

of contexts. Indeed, rarely is the intention for the behaviour of a system formulated entirely in black and
white: We prefer a programm just crashing to accidently erasing our hard-drive; we prefer a programm
to complete its task in 1 minute to it taking 5 minutes, etc. We point to [13] for a recent survey on such
notions of quality in synthesis.

Rather than achieving this goal by revisiting each individual type of game and proving the desired
results directly (e.g. by generalizing the original proofs of the existence of winning strategies), we shall
provide a transfer theorem: In Theorem 5, we will show that (under some conditions), if the two-player
win/lose version of a game is finite memory determined, the corresponding multi-player multi-outcome
games all have finite memory Nash equilibria.

This result is more general than a similar one obtained by BRIHAYE, DE PRIL and SCHEWE [4],[20,
Theorem 4.4.14]. A particular class of games covered by our result but not the previous one are (a variant
of) energy parity games as introduced by CHATTERJEE and DOYEN [8]. The high-level proof idea
follows earlier work by the authors on equilibria in infinite sequential games, using Borel determinacy
as a blackbox [15]1 – unlike the constructions there (cf. [16]), the present ones however are constructive
and thus give rise to algorithms computing the equilibria in the multi-player multi-outcome games given
suitable winning strategies in the two-player win/lose versions.

Echoing DE PRIL in [20], we would like to stress that our conditions apply to the preferences of each
player individually. For example, some players could pursue energy parity conditions, whereas others
have preferences based on Muller conditions: Our results apply just as they would do if all players had
preferences of the same type.

For several of the conditions in our main theorem we also provide examples showing that they cannot
be removed.

2 Background

A two-player win/lose game played on a finite graph is specified by a directed graph (V,E) where every
vertex has an outgoing edge, a starting vertex v0 ∈ V , two sets V1 ⊆ V and V2 := V \V1, and a winning
condition W ⊆ V ω . Starting from v0, the players move a token along the graph, ω times, with player
a ∈ {1,2} picking and following an outgoing edge whenever the current vertex lies in Va. Player 1 wins
iff the infinite sequence of visited vertices is in W .

For a ∈ {1,2} let Ha be the set of finite paths in (V,E) starting at v0 and ending in Va. Let H :=
H1∪H2 be the possible finite histories of the game, and let [H] be the infinite ones. For clarity we may
write [Hg] instead of [H] for a game g. A strategy of player a ∈ {1,2} is a function of type Ha→ V
such that (v,s(hv)) ∈ E for all hv ∈Ha. A pair of strategies (s1,s2) for the two players induces a run
ρ ∈ V ω : Let s := s1 ∪ s2 and set ρ(0) := v0 and ρ(n+ 1) := s(ρ(0)ρ(1) . . .ρ(n)). For all strategies sa

of player a let H (sa) be the finite histories in H that are compatible with sa, and let [H (sa)] be the
infinite ones. A strategy sa is said to be winning if [H (sa)]⊆W , i.e. a wins regardless of her opponent’s
moves.

A strategic implementation for player a using m bits of memory is a function σ : V ×{0,1}m →
V ×{0,1}m that describes the two simultaneous updates of player a upon arrival at a vertex v if its
memory content was M just before arrival: (v,M) 7→ π2 ◦ σ(v,M) describes the memory update and
(v,M) 7→ π1 ◦ σ(v,M) the choice for the next vertex. This choice will be ultimately relevant only if
v ∈Va, in which case we require that (v,π1 ◦σ(v,M)) ∈ E.

1Precursor ideas are also present in [14] and [18] (the specific result in the latter was joint work with Neymann).

S. Le Roux & A. Pauly 29

Together with an initial memory content Mε ∈ {0,1}m, a strategic implementation provides a finite
memory strategy. The memory content after some history is defined by induction: Mσ (Mε ,ε) := Mε

and Mσ (Mε ,hv) := π2 ◦ σ(v,Mσ (Mε ,h)) for all hv ∈ H . The finite-memory strategy sa induced by
the strategic implementation σ together with initial memory content Mε is defined by sa(hv) := π1 ◦
σ(v,Mσ (Mε ,h)) for all hv ∈Ha. If not stated otherwise, we will assume the initial memory to be 0m.

A (general) game played on a finite graph is specified by a directed graph (V,E), a set of agents A,
a cover {Va}a∈A of V via pairwise disjoint sets, the starting vertex v0, and for each player a a preference
relation ≺a⊆ [H]× [H]. The notions of strategies and induced runs generalize in the obvious way. In
particular, instead of a pair of strategies (one per player), we consider families (sa)a∈A, which are called
strategy profiles.

The concept of a winning strategy no longer applies though. Instead, we use the more general notion
of a Nash equilibrium: A family of strategies (sa)a∈A is a Nash equilibrium, if there is no player a0 ∈ A
and alternate strategy s′a0

such that a would prefer the run induced by (sa)a∈A\{a0}∪ (s′a)a∈{a0} to the run
induced by (sa)a∈A. Intuitively, no player can gain by unilaterally deviating from a Nash equilibrium.
Note that the Nash equilibria in two-player win/lose games are precisely those pairs of strategy where
one strategy is a winning strategy.

The transfer of results from the two-player win/lose case to the general case relies on the idea that
each general game induces a collection of two-player win/lose games, namely the threshold games of the
future games, as below.

Definition 1 (Future game and one-vs-all threshold game).
Let g = 〈(V,E),v0,A,{Va}a∈A,(≺a)a∈A〉 be a game played on a finite graph.

• Let a0 ∈ A and ρ ∈ [H], the one-vs-all threshold game ga0,ρ for a0 and ρ is the win-lose two-
player game played on (V,E), starting at v0, with vertex subsets Va0 and

⋃
a∈A\{a0}Va, and with

winning set {ρ ′ ∈ [H] | ρ ≺a0 ρ ′} for Player 1.

• Let v ∈V . For paths hv and vh′ in (V,E) let hv̂vh′ := hvh′.

• For all h ∈H with last vertex v let gh := 〈(V,E),v,A,{Va}a∈A,(≺h
a)a∈A〉 be called the future game

of g after h, where for all ρ,ρ ′ ∈ [Hgh] we set ρ ≺h
a ρ ′ iff ĥρ ≺a ĥρ ′. If s is a strategy in g, let sh

be the strategy in gh such that sh(h′) := s(ĥh′) for all h′ ∈Hgh .

Observation 2. Let g = 〈(V,E),v0,A,{Va}a∈A,(≺a)a∈A〉 be a game played on a finite graph.

1. g and its thresholds games have the same strategies.

2. for all h,h′ ∈H ending with the same vertex the games gh and gh′ have the same (finite-memory)
strategies.

3. g, its future games, and their thresholds games have the same strategic implementations.

4. If a strategy sa in g is finite-memory, for all h ∈H the strategy sh
a is also finite-memory.

Proof. We only prove the fourth claim. Since sa is a finite-memory strategy, it comes from some strategic
implementation σ with initial memory Mε . We argue that σ with initial memory Mσ (Mε ,h)) implements
shv

a : First, shv
a (v) = sa(hv) = π1 ◦σ(v,Mσ (Mε ,h)) = π1 ◦σ(v,Mσ (Mσ (Mε ,h),ε)); second, for all h′v′ ∈

H hv we have shv
a (vh′v′) = sa(hvh′v′) = π1 ◦σ(v′,Mσ (Mε ,hvh′)) = π1 ◦σ(v′,Mσ (Mσ (Mε ,h),vh′)).

We will employ some additional restrictions on preferences: a preference relation ≺⊆ [H]× [H]
is called prefix-linear, if ρ ≺ ρ ′ ⇔ ĥρ ≺ ĥρ ′ for all ρ,ρ ′, ĥρ ∈ [H]. It is prefix-independent, if ρ ≺
ρ ′⇔ ĥρ ≺ ρ ′ and ρ ′ ≺ ρ ⇔ ρ ′ ≺ ĥρ for all ρ,ρ ′, ĥρ ∈ [H]. Clearly, a prefix-independent preference
is prefix-linear.

30 Extending Finite Memory Determinacy

As a further generalization, we will consider automatic-piecewise prefix-linear preferences ≺. Here,
there is an equivalence relation on H with equivalence classes (pieces for short) in H and satisfying
three constraints: First, the histories in the same piece end with the same vertex. Second, there exists a
deterministic finite automaton, without accepting states, that reads histories and such that two histories
are equivalent iff reading them leads to the same states. Third, for all ĥρ, ĥρ ′,h′̂ρ,h′̂ρ ′ ∈ [H], if
h′ = h ∈H , then ĥρ ≺ ĥρ ′⇔ h′̂ρ ≺ h′̂ρ ′.

Definition 3. A preference relation ≺ is automatic-piecewise Mont if there is an equivalence relation
on H that is decidable by a finite automaton (with the first two constraints as for automatic-piecewise
prefix linearity) such that the following holds. For every run h0̂ ρ ∈ [H] that is regular (as a singleton
language) and for every family (hn)n∈N of paths in (V,E) such that h0̂ h1̂ . . . ĥn ∈ h0 for all n, and such
that h0̂ . . . ĥn̂ ρ ∈ [H] for all n, if h0̂ . . . ĥn̂ ρ ≺ h0̂ . . . ĥn+1̂ ρ for all n then h0̂ ρ ≺ h0̂ h1̂ h2̂ h3

For a cycle h starting and ending in some v ∈ V , let h[0] = v and h[n+1] = h[n]̂ h, and finally h[ω] =
limn→∞ h[n]. We call ≺ automatic-piecewise regular-Mont, if for any regular h0̂ ρ ∈ [H] and cycle h in
(V,E), if ∀n ∈ N h0̂ h[n] ∈ h0 and ∀n ∈ N h0̂ h[n]̂ ρ ≺ h0̂ h[n+1]̂ ρ , then h0̂ ρ ≺ h0̂ h[ω].

Definition 4 (Strict weak order). Recall that a relation ≺ is called a strict weak order if it satisfies:

∀x, ¬(x≺ x)
∀x,y,z, x≺ y ∧ y≺ z ⇒ x≺ z
∀x,y,z, ¬(x≺ y) ∧ ¬(y≺ z) ⇒ ¬(x≺ z)

Strict weak orders capture in particular the situation where each player cares only about a particular
aspect of the run (e.g. her associated personal payoff), and is indifferent between runs that coincide in
this aspect but not others (e.g. the runs with identical associated payoffs for her, but different payoffs for
the other players).

3 The transfer theorem

We will start this section with the statement of our first main result, showing how to transfer finite-
memory determinacy from class of two-player win/lose games to the corresponding multi-player multi-
outcome version. We informally sketch the proof. This is followed by the technical definitions and
lemmata used in the formal proof, and then the proof itself. The section is completed by a discussion of
the relevance and a comparison to prior results.

Theorem 5. Consider a game played by a set of players A on a finite graph such that

1. The ≺a are automatic-piecewise prefix-linear Mont strict weak orders with k pieces.

2. All one-vs-all threshold games of all future games are determined via strategies using m bits of
memory.

Then the game has a Nash equilibrium in finite-memory strategies requiring |A|(m+2logk)+1 bits of
memory.

Definition 6 below rephrases Definitions 2.3 and 2.5 from [14]: The guarantee of a player is the
smallest set of runs that is upper-closed w.r.t. the strict-weak-order preference of the player and includes
every incomparability class (of the preference) that contains any run compatible with a given strategy of
the player in the subgame at any given finite history of the game. The best guarantee of a player consists
of the intersection of all her guarantees over the set of strategies.

S. Le Roux & A. Pauly 31

astart b

x y

(a)

bstart g

1

0

0

0

(b)

Figure 1

More plainly spoken, the best guarantee for a player at some history is the set of runs such that the
player cannot unilaterally enforce something better (for him). We will then show that each player has
indeed a strategy enforcing her guarantee. Note that the notion of best guarantee for a player does not
at all depend on the preferences of the other players; and as such, it is rather strenuous to consider such
runs to be optimal in some sense (cf. Example 7). However, we can construct a Nash equilibrium by
starting with a strategy profile where everyone is realizing their guarantee, and then adding punishments
against any deviators.

Definition 6 (Player (best) future guarantee). Let g be the game
〈(V,E),v0,A,{Va}a∈A,(≺a)a∈A〉 where ≺a is a strict weak order for some a ∈ A. For all h ∈H and
strategies sa for a in gh let γa(h,sa) := {ρ ∈ [Hgh] | ∃ρ ′ ∈ [Hgh(sa)], ¬(ρ ≺h

a ρ ′)} be the player future
guarantee by sa in gh. Let Γa(h) :=

⋂
sa

γa(h,sa) be the best future guarantee of a in gh.

Example 7. Let the underlying graph be as in Figure 1a, where circle vertices are controlled by Player
1 and diamond vertices are controlled by Player 2. The preference relation of Player 1 is (ab)ω �1
a(ba)nxω �1 (ab)nyω and the preference relation of Player 2 is (ab)ω �2 (ab)nyω �2 a(ba)nxω (in par-
ticular, both players care only about the tail of the run).

Then Γ1(a) = {(ab)ω} ∪ {a(ba)nxω | n ∈ N} and Γ2(a) = [H]. Player 1 realizing her guarantee
means for her to move to x immediately, thus forgoing any chance of realizing the run (ab)ω . The Nash
equilibrium constructed in the proof of Theorem 5 will be Player 1 moving to x and Player 2 moving
to y. Note that in this particular game, the preferences of Player 2 have no impact at all on the Nash
equilibrium that will be constructed.

Lemma 8. Let g be a game on a graph, let ≺a be a strict weak order preference for some player a, let
h ∈H , let sa be a strategy for a in gh, let h′ ∈H (sa), and let s′a be a strategy for a in gĥh′ .

1. Then h′̂ γa(ĥh′,sh′
a)⊆ γa(h,sa) for all h′ ∈H (sa).

2. If γa(ĥh′,s′a)(γa(ĥh′,sh′
a), there exists ρ ∈ γa(ĥh′,sh′

a) such that ρ ≺ĥh′
a ρ ′ for all ρ ′ ∈ γa(ĥh′,s′a).

3. If γa(ĥh′,s′a)⊆ γa(ĥh′,sh′
a) then h′̂ γa(ĥh′,s′a)⊆ γa(h,sa).

Proof. 1. Let ρ ∈ γa(ĥh′,sh′
a), so by Definition 6 there exists ρ ′ ∈ [H (sh′

a)] such that ¬(ρ ≺ĥh′
a ρ ′),

i.e. ¬(h′̂ρ ≺h
a h′̂ρ ′). So h′̂ρ ∈ γa(h,sa) since h′̂ρ ′ ∈ [H (sa)]⊆ γa(h,sa).

2. Let ρ ∈ γa(ĥh′,sh′
a)\ γa(ĥh′,s′a), so ρ ≺ĥh′

a ρ ′ for all ρ ′ ∈ γa(ĥh′,s′a) by Definition 6.

3. Let ρ ∈ γa(ĥh′,s′a), so h′̂ρ ∈ h′̂ γa(ĥh′,sh′
a) by assumption, so h′̂ρ ∈ γa(h,sa) by Lemma 8.1.

32 Extending Finite Memory Determinacy

Lemma 9. Let g be a game on a finite graph with strict weak order ≺a for some a ∈ A, and let m ∈ N.
In each of the threshold games for a of the future games let us assume that

1. if Player 1 has a winning strategy, she has one with memory size m. Then for all h ∈H there
exists a strategy sa with memory size m such that γa(h,sa) = Γa(h).

2. one of the players has a winning strategy with memory size m. Then Γa(h) has a regular ≺h
a-

minimum for all h ∈H .

Proof. 1. For all ρ ∈ [Hgh], we have ρ /∈ Γa(h) iff Player 1 has a winning strategy in the threshold
game for a and ρ in gh. In this case let sp

a be a winning strategy with memory size m. For a game
with n vertices there are at most (n2m)(n2m) strategy profiles using m bits of memory (by the σ

representation), so the sp
a are finitely many, so at least one of them, which we name sa, wins the

threshold games for all ρ /∈ Γa(h). This shows that γa(h,sa)⊆ Γa(h), so equality holds.

2. Towards a contradiction let us assume that Γa(h) has a no ≺h
a-least element, and let ρ ∈ Γa(h),

so there exists a ≺h
a-smaller ρ ′ ∈ Γa(h). Since a has no winning strategy for the threshold game

for ρ ′ (of the future game at h), the determinacy assumption implies that the coalition of her
opponents has one with memory size m. These strategies are finitely many, so one of them, s−a,
wins the threshold game for all ρ ∈Γa(h). So Hgh(s−a)∩Γa(h)= /0, which contradicts Lemma 9.1.
Furthermore, the run induced by s−a and one finite-memory sa from Lemma 9.1 is regular.

Lemma 10. Let g be a game on a finite graph with automatic piecewise prefix-linear strict weak order
≺a for some a ∈ A. If h,h′ ∈ H ∈H , then γa(h,sa) = γa(h′,sa) for all strategies sa for a in gh, and
Γa(h) = Γa(h′).

Proof. By definition of the future games and automatic-piecewise prefix-linearity ρ ≺h
a ρ ′ iff ĥρ ≺a ĥρ ′

iff h′̂ρ ≺a h′̂ρ ′ iff ρ ≺h′
a ρ ′, so ≺h

a=≺h′
a .

Lemma 11. Let g be a game on a finite graph with automatic-piecewise prefix-linear strict weak order≺a

for some a ∈ A. Let m ∈N and assume that the threshold games for a of the future games are determined
via size-m strategies. Let H ∈H .

1. There exists a strategy sH
a with memory size m such that γa(h,sH

a) = Γa(h) for all h ∈ H.

2. There exists a size-m strategy sH
−a for Player 2 in gH (i.e. gh for any h ∈ H) that is winning the

threshold game for a and ρ in gH for all ρ ∈ Γa(H) (i.e. Γa(h) for any h ∈ H).

Proof. 1. Lemma 9.1 provides a candidate, Lemma 10 shows that it works.

2. Let h ∈ H and let ρ be one ≺h
a-minimum of Γa(h) by Lemma 9.2. Since Player 1 has no winning

strategy in the threshold game for a and ρ in gh, there exists a size-m strategy sH
−a that makes

Player 2 win. By Lemma 10 this strategy works also for gh′ for all h′ ∈ H.

Lemma 12 below already uses all the assumptions used in Theorem 5, but only for one given player.

Lemma 12. Let g be a game on a finite graph, and let some ≺a be an automatic-piecewise prefix-
linear regular-Mont strict weak order with k pieces. Let m ∈ N and assume that the threshold games
for a of the future games are determined via size-m strategies. There is a strategy s in g such that

S. Le Roux & A. Pauly 33

Reg∩γa(h,sh) = Reg∩Γa(h) for all h∈H , and that uses m+2logk bits of memory, where Reg denotes
the set of all regular runs ρ ∈ [H].

If ≺a is as above, but even fulfills the Mont condition, then we can ensure γa(h,sh) = Γa(h) for all
h ∈H .

Proof. We define a strategic implementation for s in pseudocode in Algorithm 1. The algorithm uses
in particular that by Lemma 11.1 for any piece h there is a strategic implementation using m bits for a
strategy sh

a such that γa(h,sh
a) = Γ(h) for all h ∈ h. An index of one of these strategic implementations is

always stored, and the combined strategic implementation then follows the stored strategy as long as this
one continues to realize the guarantee. If this is no longer the case, all of the k strategic implementations
are checked, and one is chosen that does realize the guarantee, and this one is followed from there
onwards.

Claim: The strategy implemented by the Algorithm 1 indeed satisfies the criteria.

Proof. Let h0 ∈H . To show that γa(h0,sh0) = Γa(h0) (Reg∩γa(h0,sh0) =Reg∩Γa(h0)), let ρ ∈H (sh0)
(ρ ∈ Reg∩H (sh0)) and let us make a case distinction. First case, a changes strategies finitely many
times along ρ . Let h1, . . . ,hn be such that for all 1≤ i≤ n the i-th update along ρ occurs at history h′i :=
h0̂ h1̂ . . . ĥi. Applying Lemma 8.3 n times yields h1̂ . . . ĥn̂ γa(h′n, th′n) ⊆ ·· · ⊆ h1̂ γa(h′1, th′1) ⊆ γa(h0, th0) ⊆
Γa(h0). So ρ ∈ Γa(h0) since ρ ∈ h1̂ . . . ĥn̂ γa(h′n, th′n).

Second case, a changes strategies infinitely many times along ρ . Let (hn)n≥1 be the paths in (V,E)
such that the n-th change occurring strictly after h0 occurs at history h′n := h0̂ h1̂ . . . ĥn. By Lemmas 9.2
and 10, for all H ∈H let ρH

a be a regular ≺H
a -minimum of Γa(H). By Lemma 8.2, for all 1 ≤ n there

exists ρ ′ ∈ γa(h′n+1, t
hn+1
h′n

) such that ρ ′ ≺h′n+1
a ρ ′′ for all ρ ′′ ∈ γa(h′n+1, th′n+1

), especially ρ ′ ≺h′n+1
a ρ

h′n+1
a .

Since hn+1ρ ′ ∈ γa(h′n, th′n) by Lemma 8.1, we find ρ
h′n
a ≺h′n

a hn+1̂ ρ
h′n+1
a . By finiteness of H one H ∈H

occurs infinitely many times as a h′n. For all n≥ 1 let h′
ϕ(n) be the n-th corresponding history.

If ρ is regular, there is some f : N→ N, finite path h′ and cycle h such that h0̂ h′̂ h[n] = h′
ϕ(f (n)) (and

thus h′̂ h[ω] = ρ). The inequality above can then be rewritten h0̂ h′̂ h[n]̂ ρh
a ≺a h0̂ h′̂ h[n+1]̂ ρh

a for all n ≥ 1,
so h0̂ h′̂ρh

a ≺a h0̂ ρ by the regular-Mont condition, so h′̂ρh
a ≺h0

a ρ .
In the general case, let h = h′

ϕ(1), and let h′ be such that h = h0̂ h′. The inequality above can then be

rewritten h′
ϕ(n)̂ ρh

a ≺a h′
ϕ(n+1)̂ ρh

a for all n≥ 1, so ĥρh
a ≺a h0̂ ρ by the Mont condition, so h′̂ρh

a ≺h0
a ρ .

Since h′̂ρh
a ∈ Γa(h0) by the finite case above, ρ ∈ Γa(h0) .

Let us now analyze the pseudo-code in Algorithm 1 and find out how much memory suffices. The
algorithm keeps track of the current piece H of history so far, which by assumption requires logk bits. It
also keeps track of an index of the current strategic implementation, which again requires logk bits (as
we need at most one strategic implementation per piece). Finally, we use m bits for the memory content
M.

Proof of Theorem 5. We combine Lemmas 9.1 and 12 to obtain a finite memory strategy sa for each
player a such that Reg∩ γa(h,sh

a) = Reg∩Γa(h) for all h ∈H . The run ρNE induced by this strategy
profile will be the run induced by the Nash equilibrium. As ρNE is induced by a finite-memory strategy
profile, ρNE ∈ Reg, and in particular, for any decomposition ρNE = ĥρ and any player we find that
ρ ∈ Γa(h). Now we need to ensure that no one has any incentive to deviate.

34 Extending Finite Memory Determinacy

Data: Current local strategy implementation Strat
current local memory content Mem
current piece Piece

1 Function updatePiece is
input : A piece H of history and a vertex v ∈V
output: The piece of history after H and then v

2 end
3 Function updateLocal is

input : a strategy implementation s, a local memory content M, the vertex v the play is
arriving in

output: the updated local memory content M’ and the vertex v’ the strategy s wants to move
to

4 end
5 Function realizesGuarantee is

input : a strategy implementation s, a local memory content M, the current piece H
output: a boolean answer whether (s, M) is realizing the guarantee at H

6 end

7 Function Strategy is
input : vertex v the play is arriving in
output: vertex v’ the strategy wants to move to

8 Piece:= updatePiece (Piece, v);
9 (M’, v’) := updateLocal (Strat, Mem, v);

10 if realizesGuarantee (Strat, M’, Piece) then
11 Mem:= M’;
12 return v’;
13 end if
14 else
15 foreach Strategy implementation s do
16 (M’,v’) := updateLocal (s, 0m, v);
17 if realizesGuarantee (s, M’, Piece) then
18 Strat:= s;
19 Mem:= M’;
20 return v’;
21 end if
22 end foreach
23 end if
24 end

Algorithm 1: Strategy for player a realizing guarantees

S. Le Roux & A. Pauly 35

For all a∈ A and all pieces H ∈H of histories ending in Va let sH
−a be the strategy from Lemma 11.2.

For all a ∈ A let a play as follows: Keep playing according to ρNE until one player b deviates from ρNE

at some history hD. If b = a, i.e., the last vertex of hD is in Va, let a do whatever; otherwise let a play
according to shD

−b in ghD , i.e. let a take part in the one-vs-all coalition that ensures that b cannot obtain
anything ≺hD

a -better than ρhD
in ghD , so ¬(ρhD

≺hD
b ρD), where ρD is the new run in ghD after deviation

by b. Let hD ρ̂ = ρNE . By construction of ρNE and Lemma 12, ρ ∈ Γb(hD), so ¬(ρ ≺hD
b ρhD

). So
¬(ρNE ≺b hD ρ̂D) since ≺b is a strict weak order, i.e. b has no incentive to perform a deviation.

Each player a needs to run the intended strategies sb for all other players b, too, in order to be
able to detect deviation. This requires |A|(m+ 2logk) bits by Lemma 12. If a deviation is detected,
the punishment strategy for that history is executed instead. (Note that the history where the deviation
happened includes the information on who deviated; and that the players already keep track of the history
in the strategy of Lemma 12.) The punishment phase requires logk memory to record which strategy to
follow, and m bits to follow it. However, the original memory can be repurposed, by using just one
extra bit to determine whether deviation ever occurred. This yields the overall memory bound |A|(m+
2logk)+1.

4 Discussion
Comparison to previous work

As mentioned above, a similar but weaker result (compared to our Theorem 5) has previously been ob-
tained by BRIHAYE, DE PRIL and SCHEWE [4],[20, Theorem 4.4.14]. They use cost functions rather
than preference relations. Our setting of strict weak orders is strictly more general 2. However, even if
both frameworks are available, it is more convenient for us to have results formulated via preference rela-
tions rather than cost functions: Cost functions can be translated immediately into preferences, whereas
translating preferences to cost functions is more cumbersome. In particular, it can be unclear to what
extend nice preferences translate into nice cost functions. Note also that prefix-linearity for strict weak
orders is more general than prefix-linearity for cost functions.

As a second substantial difference, [20, Theorem 4.4.14] requires either prefix-independent cost
functions and finite memory determinacy of the induced games, or prefix-linear cost functions and po-
sitional subgame-perfect strategies. Their subgame-perfection assumption essentially means that they
assume the result of Lemma 12. In particular,[20, Theorem 4.4.14] cannot be applied to energy parity
games, where finite prefixes of the run do impact the overall value for the players, and where at least the
protagonist requires memory to execute a winning strategy.

The Mont condition is absent in [4], but it can be shown that their other requirements imply a slight
weakening of the Mont condition (which still suffices for our proof).

Before [20, 4], it had already been stated by PAUL and SIMON [19] that multi-player multi-outcome
Muller games have Nash equilibria consisting of finite memory strategies. As (two-player win/lose)
Muller games are finite memory determined [11], and the corresponding preferences are obviously prefix
independent, this result is also a consequence of [20, Theorem 4.4.14]. Another result subsumed by [20,
Theorem 4.4.14] (and subsequently our main theorem) is found in [3] by BRIHAYE, BRUYÈRE and DE

PRIL.

2For example, the lexicographic combination of two payoff functions can typically not be modeled as a payoff function, as
R×{0,1} (with lexicographic order) does not embed into R as a linear order.

36 Extending Finite Memory Determinacy

Algorithmic considerations

Let us briefly consider the algorithmic price to pay for the extension for the two-player win/lose case
to the multi-player multi-outcome situation. Let us assume that for some class of games satisfying the
criteria of Theorem 5, computing a winning strategy of a two-player win/lose game of size n has winning
strategies takes f (n) time. Let us further assume that, given finite memory strategies of size up to m
bits for each player, we can decide in time g(n,m) who is winning. Additionally, let us assume that a
multi-player multi-outcome game of size n induces up to t(n) one-vs-all threshold games of size n.

We can find for each h ∈H some strategy sa with memory size m such that γa(h,sa) = Γa(h) by
brute force: We are investigating up to t(n) induced one-vs-all threshold games, and are asking for a
winning strategy in each of them, which could take up to t(n)(f (n)+ g(n,m)) time. In any concrete
example, though, a much more efficient construction is to be expected.

In Lemma 12, we need use the result above for each combination of memory content (2m different
values) and piece of the partition (k). Thus, we are spending up to 2mkt(n)(f (n)+g(n,m)) time to obtain
sufficiently many strategies to realize the guarantee everywhere, which we can combine in linear time to
yield the single strategy output strategy.

In the proof of Theorem 5, we invoke Lemma 12 once per player, which costs O(|A|2mkt(n)(f (n)+
g(n,m)) time. In addition, we need k many winning strategies in an induced one-vs-all threshold game,
for additional cost of O(k f (n)) time – in total, we are still at O(|A|2mkt(n)(f (n)+g(n,m)).

Let us introduce some realistic but simplifying additional assumptions. We would expect t to be of
the form 2O(n). The parameter k will be dominated by 2O(n) in most situations. Typical finite-memory
determined win/lose games might required exponential memory (if measured by number of states), but
as we measure m in bits, also 2m would be absorbed into 2O(n). By dropping the distinctions between
finding the winning strategy and determining who is winning, and noting that |A| ≤ n, we arrive at an
overall complexity of 2O(n) f (n). The additional factor of 2n will in some cases worsen the asymptotic
runtime significantly (e.g. for parity games, subexponential algorithms are known [12]), but in others,
pales against the complexity for solving the two-player win/lose case.

On uniform finite memory determinacy

The requirement in Theorem 5 that there is a uniform memory bound sufficient for all threshold games is
not dispensible. Mean-payoff parity games, for example, satisfy all other criteria, yet lack finite memory
Nash equilibria, as the following example shows.

Let g be the one-player game in Figure 1b. The payoff of a run that visits the vertex g infinitely often
is the limit (inferior or superior) of the average payoff. It is zero if g is visited finitely many times only.
For any threshold t ∈ R, if t < 1, the player has a winning finite-memory strategy: cycle p times in b,
where p > 1

1−t , visit g once, cycle p times in b, and so on. If t ≥ 1, the player has no winning strategy at
all. So the thresholds games of g, and likewise for the future game of g, are finite-memory determined.
The game has no finite memory Nash equilibrium nonetheless, since the player can get a payoff as closed
to 1 as she wants, but not 1.

Note that the preceding example could also be used for discounted-payoff parity games. However,
these also fail the automatic-piece prefix-linearity condition.

Uniform finite memory determinacy can sometimes be recovered by considering ε-versions instead:
We partition the payoffs in blocks of size ε , and let the player be indifferent within the same block.
Clearly any Nash equilibrium from the ε-discretized version yields an ε-Nash equilibrium of the original
game. If the original preferences were prefix-independent, the modified preferences still are. Moreover,
as there are now only finitely many relevant threshold games per graph, their uniform finite memory

S. Le Roux & A. Pauly 37

c1start b1 c2 b2

Figure 2: The graph for the game in Example 13

determinacy follows from mere finite memory determinacy. In such a situation, our result allows us to
conclude that multi-player multi-outcome games have finite memory ε-Nash equilibria.

On the Mont condition

We can exhibit a prototypic example for how failure of the regular-Mont condition translates into the
absence of Nash equilibria:

Example 13 (3). The game g in Figure 2 involves Player 1 (2) who owns the circle (box) vertices. Who
owns the diamond is irrelevant. The payoff for Player 1 (2) is the number of visits to a box (circle) vertex,
if this number is finite, and is −1 otherwise. Let s1 be the positional strategy where Player 1 chooses
b1 when in c1 and the diamond when in c2, and let t2 be the positional strategy where Player 2 always
chooses the diamond. With s1 Player 1 secures payoff 1, and with t2 Player 2 makes sure that Player 1
is not getting more than that. Let s2 be any positional strategy for Player 2, and let t1 be the positional
strategy where Player 1 always choses the diamond. With s2 Player 1 secures payoff 1, and with t1
Player 1 makes sure that Player 2 is not getting more than that. Therefore the threshold games of g are
positionally determined, and likewise for the future games of g. The game g has no Nash equilibrium
nonetheless: in the run induced by a putative NE, one of the players has to choose the diamond at some
point (to avoid payoff −1), but by postponing this choice to next time, the player can increase her payoff
by 1. This shows the relevance of the Mont condition.

On automatic-piecewise prefix-linearity

While the definition of automatic-piecewise prefix-linearity may seem a bit complicated at first glance,
the notion seems to fit in well with finite memory strategies: Intuitively, the requirement is merely that
however we split a run into a finite prefix and an infinite tail, the contribution of the prefix to the value
for the player factors via something expressible by a fixed (i.e. independent of the length of the prefix)
number of bits, and does so via a finite automaton. Whenever this is not satisfied, one would expect that
in principle a finite memory strategy may fail (compared to an unrestricted strategy), simply because it
cannot properly account for the contribution of the finite prefix it has seen so far.

Of the popular winning conditions, many are actually prefix-independent, such as parity, Muller,
mean-payoff, cost-Parity, cost-Streett [10], etc. Clearly, any combination of prefix-independent con-
ditions itself will be prefix-independent. Typical examples of non-prefix independent conditions are
reachability, energy, and discounted payoff. We can easily verify that combining a reachability or en-
ergy condition with any prefix-linear condition yields an automatic-piecewise prefix-linear condition
(provided that energy is bounded).

3This example is based on an example communicated to the authors by Axel Haddad and Thomas Brihaye, which in turn is
based on a construction in [5].

38 Extending Finite Memory Determinacy

Discounted payoff can be problematic, though. Here each vertex is assigned a payoff av, a discount
factor δ ∈ (0,1) is chosen, and the value of a run ρ = v0v1 . . . is ∑

∞
i=0 viδ

i. While discounted payoff on its
own is of course prefix-linear, it does not combine well with other criteria: For example, in a generalized
discounted payoff parity game the question whether we prefer a tail with a better discounted payoff but
worse least priority to a tail with worse discounted payoff but better least priority may depend on the
precise value of the payoff obtained in the history so far, as well as the length of the history (as later con-
tributions to payoff count less). This is too much information for a finite automaton to remember, thus,
generalized discounted payoff parity games do not satisfy the criterion for being automatic-piecewise
prefix-linear.

Applications

We shall briefly mention two classes of games covered by our main theorem, but not by the results from
[20, 4], (bounded) energy parity games and a variant of reachability + mean-payoff games. For more
details, we refer to [17].

Energy games were first introduced in [7]: Two players take turns moving a token through a graph,
while keeping track of the current energy level, which will be some integer. Each move either adds
or subtracts to the energy level, and if the energy level ever reaches 0, the protagonist loses. These
conditions were later combined with parity winning conditions in [8] to yield energy parity games as
a model for a system specification that keeps track of gaining and spending of some resource, while
simultaneously conforming to a parity specification.

In both [7] and [8] the energy levels are a priori not bounded from above. This is a problem for the
applicability of Theorem 5, as unbounded energy parity preferences are not automatic-piecewise prefix-
linear in the general case. In [2], two versions of bounded energy conditions were investigated: Either
any energy gained in excess of the upper bound is just lost (as in e.g. recharging a battery), or gaining
energy in excess of the bound leads to a loss of the protagonist (as in e.g. refilling a fuel tank without
automatic spill-over prevention). We are only concerned with the former. As a finite automaton can
easily keep track of the energy level between 0 and the upper bound, bounded energy parity preferences
are automatic-piecewise prefix linear. We can also show that these games are uniformly finite-memory
determined, and with some extra work obtain (see [17]):

Corollary 14. All multiplayer multioutcome energy parity games have Nash equilibria in finite memory
strategies. Let A be the set of players, n the size of the graph and W the largest energy delta. Further let
E be the maximum difference between the energy maximum and the energy minimum for some player.
Then 1+ |A|nE |A| log(2nW)+(|A|2 + |A|) lognE bits of memory suffice.

In our second example, each player has both a mean-payoff goal and a reachability objective. Max-
imizing the mean-payoff, however, takes precedence, and the reachability objective only becomes rele-
vant as a tie-breaker. These conditions are not expressible via some payoff or cost function4, but are still
automatic-piecewise prefix-independent strict weak orders. As the two-player win/lose games can easily
be reduced to mean-payoff games, we obtain uniform finite-memory determinacy, and thus the existence
of finite-memory Nash equilibria by Theorem 5.

We leave the investigation whether winning conditions defined via LTL[F] or LTL[D] formulae [1]
match the criteria of Theorem 5 to future work. Another area of prospective examples to explore are
multi-dimensional objectives as studied e.g. in [21, 9].

4Compare the footnote on Page 4.

S. Le Roux & A. Pauly 39

References

[1] S. Almagor, U. Boker & O Kupferman (2016): Formalizing and reasoning about quality. Journal of the
ACM, doi:10.1145/2875421.

[2] Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, Nicolas Markey & Jiřı́ Srba (2008): Infinite Runs in
Weighted Timed Automata with Energy Constraints. In Franck Cassez & Claude Jard, editors: Formal Mod-
eling and Analysis of Timed Systems, Lecture Notes in Computer Science 5215, Springer Berlin Heidelberg,
pp. 33–47, doi:10.1007/978-3-540-85778-5 4.

[3] Thomas Brihaye, Veroniqué Bruyère & Julie De Pril (2010): Equilibria in quantitative reachability games.
In: Proc. of CSR, LNCS 6072, Springer.

[4] Thomas Brihaye, Julie De Pril & Sven Schewe (2013): Multiplayer Cost Games with Simple Nash Equilibria.
In: Logical Foundations of Computer Science, LNCS, pp. 59–73, doi:10.1007/978-3-642-35722-0 5.

[5] Thomas Brihaye, Gilles Geeraerts, Axel Haddad & Benjamin Monmege (2014): To Reach or not to Reach?
Efficient Algorithms for Total-Payoff Games. arXiv 1407.5030.

[6] Nils Bulling & Valentin Goranko (2013): How to be both rich and happy: Combining quantitative and qual-
itative strategic reasoning about multi-player games (Extended Abstract). In: Proc. of Strategic Reasoning,
doi:10.4204/EPTCS.112.8. Available at http://www.arxiv.org/abs/1303.0789.

[7] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger & Mariëlle Stoelinga (2003): Resource Inter-
faces. In Rajeev Alur & Insup Lee, editors: Embedded Software, Lecture Notes in Computer Science 2855,
Springer Berlin Heidelberg, pp. 117–133, doi:10.1007/978-3-540-45212-6 9.

[8] Krishnendu Chatterjee & Laurent Doyen (2012): Energy parity games. Theor. Comput. Sci. 458, pp. 49–60,
doi:10.1016/j.tcs.2012.07.038.

[9] Lorenzo Clemente & Jean-François Raskin (2015): Multidimensional beyond Worst-Case and Almost-Sure
Problems for Mean-Payoff Objectives. In: 30th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pp. 257–268, doi:10.1109/LICS.2015.33.

[10] Nathanaël Fijalkow & Martin Zimmermann (2014): Parity and Streett Games with Costs. Logical Methods
in Computer Science 10(2), doi:10.2168/LMCS-10(2:14)2014.

[11] Yuri Gurevich & L. Harrington (1982): Trees, automata and games. In: Proc. STOC,
doi:10.1145/800070.802177.

[12] Marcin Jurdzinski, Mike Paterson & Uri Zwick (2008): A Deterministic Subexponential Algorithm for Solv-
ing Parity Games. SIAM J. Comput. 38(4), pp. 1519–1532, doi:10.1137/070686652.

[13] Orna Kupferman (2016): On High-Quality Synthesis. In S. Alexander Kulikov & J. Gerhard Woeginger,
editors: 11th International Computer Science Symposium in Russia, CSR 2016, Springer International Pub-
lishing, pp. 1–15, doi:10.1007/978-3-319-34171-2 1.

[14] Stéphane Le Roux (2013): Infinite Sequential Nash Equilibria. Logical Methods in Computer Science 9(2),
doi:10.2168/LMCS-9(2:3)2013.

[15] Stéphane Le Roux & Arno Pauly (2014): Infinite Sequential Games with Real-valued Payoffs. In: CSL-LICS
’14, ACM, pp. 62:1–62:10, doi:10.1145/2603088.2603120.

[16] Stéphane Le Roux & Arno Pauly (2015): Weihrauch Degrees of Finding Equilibria in Sequential Games.
In Arnold Beckmann, Victor Mitrana & Mariya Soskova, editors: Evolving Computability, Lecture Notes in
Computer Science 9136, Springer, pp. 246–257, doi:10.1007/978-3-319-20028-6 25.

[17] Stéphane Le Roux & Arno Pauly (2016): Extending finite memory determinacy: General techniques and an
application to energy parity games. arXiv:1602.08912.

[18] Jean François Mertens (1987): Repeated Games. In: Proc. Internat. Congress Mathematicians, American
Mathematical Society, pp. 1528–1577.

http://dx.doi.org/10.1145/2875421
http://dx.doi.org/10.1007/978-3-540-85778-5_4
http://dx.doi.org/10.1007/978-3-642-35722-0_5
http://dx.doi.org/10.4204/EPTCS.112.8
http://www.arxiv.org/abs/1303.0789
http://dx.doi.org/10.1007/978-3-540-45212-6_9
http://dx.doi.org/10.1016/j.tcs.2012.07.038
http://dx.doi.org/10.1109/LICS.2015.33
http://dx.doi.org/10.2168/LMCS-10(2:14)2014
http://dx.doi.org/10.1145/800070.802177
http://dx.doi.org/10.1137/070686652
http://dx.doi.org/10.1007/978-3-319-34171-2_1
http://dx.doi.org/10.2168/LMCS-9(2:3)2013
http://dx.doi.org/10.1145/2603088.2603120
http://dx.doi.org/10.1007/978-3-319-20028-6_25

40 Extending Finite Memory Determinacy

[19] Soumya Paul & Sunil Simon (2009): Nash Equilibrium in Generalised Muller Games. In
Ravi Kannan & K. Narayan Kumar, editors: IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, Leibniz International Proceedings in Informat-
ics (LIPIcs) 4, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 335–346,
doi:10.4230/LIPIcs.FSTTCS.2009.2330. Available at http://drops.dagstuhl.de/opus/volltexte/
2009/2330.

[20] Julie De Pril (2013): Equilibria in Multiplayer Cost Games. Ph.D. thesis, Université de Mons.
[21] Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, Alexander Rabinovich & Jean-

François Raskin (2015): The complexity of multi-mean-payoff and multi-energy games. Information and
Computation 241, pp. 177 – 196, doi:10.1016/j.ic.2015.03.001. Available at http://www.sciencedirect.
com/science/article/pii/S0890540115000164.

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2009.2330
http://drops.dagstuhl.de/opus/volltexte/2009/2330
http://drops.dagstuhl.de/opus/volltexte/2009/2330
http://dx.doi.org/10.1016/j.ic.2015.03.001
http://www.sciencedirect.com/science/article/pii/S0890540115000164
http://www.sciencedirect.com/science/article/pii/S0890540115000164

	1 Introduction
	2 Background
	3 The transfer theorem
	4 Discussion

