
F. Mogavero, A. Murano, and M.Y. Vardi (Eds.):
1st Workshop on Strategic Reasoning 2013 (SR’13)
EPTCS 112, 2013, pp. 107–113, doi:10.4204/EPTCS.112.16

c© Benedikt Brütsch
This work is licensed under the
Creative Commons Attribution License.

Synthesizing Structured Reactive Programs
via Deterministic Tree Automata

Benedikt Brütsch
RWTH Aachen University, Lehrstuhl für Informatik 7, Germany

bruetsch@automata.rwth-aachen.de

Existing approaches to the synthesis of reactive systems typically involve the construction of transi-
tion systems such as Mealy automata. However, in order to obtain a succinct representation of the
desired system, structured programs can be a more suitable model. In 2011, Madhusudan proposed
an algorithm to construct a structured reactive program for a given ω-regular specification without
synthesizing a transition system first. His procedure is based on two-way alternating ω-automata on
finite trees that recognize the set of ”correct” programs.

We present a more elementary and direct approach using only deterministic bottom-up tree au-
tomata that compute so-called signatures for a given program. In doing so, we extend Madhusudan’s
results to the wider class of programs with bounded delay, which may read several input symbols
before producing an output symbol (or vice versa). As a formal foundation, we inductively define a
semantics for such programs.

1 Introduction

Algorithmic synthesis is a rapidly developing field with many application areas such as reactive sytems,
planning and economics. Most approaches to the synthesis of reactive systems, for instance [2, 12, 11, 8],
revolve around synthesizing transition systems such as Mealy or Moore automata. Unfortunately, the
resulting transition systems can be very large. This has motivated the development of techniques for the
reduction of their state space (for example, [6]). Furthermore, the method of bounded synthesis [14, 4]
can be used to synthesize minimal transition systems by iteratively increasing the bound on the size of
the resulting system until a solution is found. However, it is not always possible to obtain small transition
systems. For example, for certain specifications in linear temporal logic (LTL), the size of the smallest
transition systems satisfying these specifications is doubly exponential in the length of the formula [13].

Aminof, Mogavero and Murano [1] provide a round-based algorithm to synthesize hierarchical tran-
sition systems, which can be exponentially more succinct than corresponding ”flat” transition systems.
The desired system is constructed in a bottom-up manner: In each round, a specification is provided and
the algorithm constructs a corresponding hierarchical transition system from a given library of available
components and the hierarchical transition systems created in previous rounds. Thus, in order to ob-
tain a small system in the last round, the specifications in the previous rounds have to be chosen in an
appropriate way.

Current techniques for the synthesis of (potentially) succinct implementations in the form of circuits
or programs typically proceed in an indirect way, by converting a transition system into such an imple-
mentation. For example, Bloem et al. [3] first construct a symbolic representation (a binary decision
diagram) of an appropriate transition system and then extract a corresponding circuit. However, this
indirect approach does not necessarily yield a succinct result.

http://dx.doi.org/10.4204/EPTCS.112.16
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

108 Synthesizing Structured Reactive Programs via Deterministic Tree Automata

Madhusudan addresses this issue in [10], where he proposes a procedure to synthesize programs
without computing a transition system first. He considers structured reactive programs over a given
set of Boolean variables, which can be significantly smaller (regarding the length of the program code)
than equivalent transition systems. To some degree, these programs separate control flow from memory.
Such a separation can also be found in a related approach that has recently been introduced by Gelderie
[5], where strategies for infinite games are represented by strategy machines, which are equipped with
control states and a memory tape.

Given a finite set of Boolean variables and a nondeterministic Büchi automaton recognizing the
complement of the specification, Madhusudan constructs a two-way alternating ω-automaton on finite
trees that recognizes the set of all programs over these variables that satisfy the specification. This
automaton can be transformed into a nondeterministic tree automaton (NTA) to check for emptiness and
extract a minimal program (regarding the height of the corresponding tree) from that set. In contrast to
the transition systems constructed by classical synthesis algorithms, the synthesized program does not
depend on the specific syntactic formulation of the specification, but only on its meaning.

In this paper, we present a direct construction of a deterministic bottom-up tree automaton (DTA)
recognizing the set of correct programs, without a detour via more intricate types of automata. The
DTA inductively computes a representation of the behavior of a given program in the form of so-called
signatures. A similar representation is used by Lustig and Vardi in their work on the synthesis of reactive
systems from component libraries [9] to characterize the behavior of the components.

Our approach is not limited to programs that read input and write output in strict alternation, but
extends Madhusudan’s results to the more general class of programs with bounded delay: In general, a
program may read multiple input symbols before writing the next output symbol, or vice versa, causing a
delay between the input sequence and the output sequence. In a game-theoretic context, such a program
corresponds to a strategy for a controller in a game against the environment where in each move the
controller is allowed to either choose at least one output symbol or skip and wait for the next input (see
[7]). We consider programs that never cause a delay greater than a given bound k ∈ N.

For a fixed k, the complexity of our construction matches that of Madhusudan’s algorithm. In particu-
lar, the size of the resulting DTA is exponential in the size of the given nondeterministic Büchi automaton
recognizing the complement of the specification, and doubly exponential in the number of program vari-
ables. In fact, we establish a lower bound, showing that the set of all programs over n Boolean variables
that satisfy a given specification cannot even be recognized by an NTA with less than 22n−1

states, if any
such programs exist. However, note that a DTA (or NTA) accepting precisely these programs enables us
to extract a minimal program for the given specification and the given set of program variables. Hence,
the synthesized program itself might be rather small.

To lay a foundation for our study of the synthesis of structured reactive programs, we define a formal
semantics for such programs, which is only informally indicated by Madhusudan. To that end, we
introduce the concept of Input/Output/Internal machines (IOI machines), which are composable in the
same way as structured programs. This allows for an inductive definition of the semantics.

2 Syntax and Semantics of Structured Programs

We consider a slight modification of the structured programming language defined in [10], using only
single Boolean values as input and output symbols to simplify notation. Expressions and programs over
a finite set B of Boolean variables are defined by the following grammar, where b ∈ B:

Benedikt Brütsch 109

〈expr〉 ::= true | false | b | 〈expr〉∧ 〈expr〉 | 〈expr〉∨ 〈expr〉 | ¬〈expr〉

〈prog〉 ::= b := 〈expr〉 | input b | output b | 〈prog〉;〈prog〉
if 〈expr〉 then 〈prog〉 else 〈prog〉 | while 〈expr〉 do 〈prog〉

Intuitively, “input b” reads a Boolean value and stores it in the variable b. Conversely, “output b”
writes the current value of b. To define a formal semantics we associate with each program a so-called
IOI machine. An IOI machine is a transition system with designated entry and exit states. It can have
input, output and internal transitions, with labels of the form (ain,ε), (ε,aout) or (ε,ε), respectively,
where ain,aout ∈ B= {0,1}. An IOI machine is equipped with a finite set B of Boolean variables, whose
valuation is uniquely determined at each state. A valuation is a function σ : B→B that assigns a Boolean
value to each variable.

The associated IOI machine of an atomic program (i.e., an input statement, output statement or
assignment) has one entry state and exit state for each possible variable valuation, and its transitions lead
from entry states to exit states. For example, at each entry state of the associated IOI machine of an
atomic program of the form “input b”, there are two outgoing input transitions – one for each possible
input symbol. The target of such an input transition is the exit state whose variable valuation is obtained
by replacing the value of b with the respective input symbol. The IOI machine of a composite program
can be constructed inductively from the IOI machines of its subprograms, leveraging their entry and exit
states and the variable valuations of these states.

A computation % of a program is a finite or infinite sequence of subsequent transitions of the corre-
sponding IOI machine:

%= q1
(a1,b1)−−−−→ q2

(a2,b2)−−−−→ q3
(a3,b3)−−−−→ ·· ·

The label of % is the pair of finite or infinite words (a1a2a3 . . . , b1b2b3 . . .) ∈ (B∗ ∪Bω)× (B∗ ∪Bω).
An initial computation starts at the unique entry state where all variables have the value 0. The infinite
behavior 〈〈p〉〉 of a program p is the set of infinite input/output sequences (α,β) ∈ Bω ×Bω that can
be produced by an initial computation of p. Furthermore, we call a program reactive if all its initial
computations can be extended to infinite computations that yield an infinite input and output sequence.

At any given time during a computation % as above, the length of the input sequence a1a2 . . .ai and the
output sequence b1b2 . . .bi might differ. The supremum of these length differences along a computation
is called the delay of the computation. If the delay of a computation does not exceed a given bound k ∈N
then we call this computation k-bounded. A program is said to be k-bounded if all its computations are k-
bounded. By restricting the infinite behavior of a program p to labels of k-bounded initial computations,
we obtain the k-bounded infinite behavior 〈〈p〉〉k of p.

3 Solving the Synthesis Problem Using Deterministic Tree Automata

The synthesis problem for structured reactive programs with bounded delay can be formulated as follows:
Given an ω-regular specification R ⊆ (B×B)ω representing the permissible input/output sequences, a
finite set of Boolean variables B and a delay bound k ∈ N, the task is to construct a structured reactive
program p over B with k-bounded delay such that 〈〈p〉〉 ⊆ R – or detect that no such program exists.
(However, our results can easily be generalized to finite input and output alphabets other than B by
allowing input and output statements that process multiple Boolean values as in [10].) In the following we
assume that the specification R is provided in the form of a nondeterministic Büchi automaton (NBA) AR
over the alphabet B×B that recognizes the complement of the specification, i.e., L (AR) = (B×B)ω \R,
which is always possible for ω-regular specifications.

110 Synthesizing Structured Reactive Programs via Deterministic Tree Automata

Our synthesis procedure is based on the fact that programs can be viewed as trees. Figure 1 shows
an example for a tree representation of a program. We use deterministic bottom-up tree automata (DTAs,
see, for example, [15]) to recognize sets of programs. More specifically, we show the following theorem:
Theorem 1. Let B be a finite set of Boolean variables, let k ∈ N and let AR be a nondeterministic Büchi
automaton recognizing the complement of a specification R ⊆ (B×B)ω . We can construct a DTA that
accepts a tree p iff p is a reactive program over B with k-bounded delay and 〈〈p〉〉 ⊆ R, such that the size
of this DTA is doubly exponential in |B| and k and exponential in the size of AR.

while true do {

input b1;

b2 := b2∨b1;

output b2
}

while

true ;

input b1 ;

assign-b2

∨
b1 b2

output b2

Figure 1: Example: A program and its tree representation.

An emptiness test on this DTA yields a solution to the synthesis problem. We obtain the desired tree
automaton by intersecting three DTAs: The first DTA Bsat(B,k,AR) recognizes the set of programs over
B whose k-bounded computations satisfy the specification R. That means, a program p is accepted iff
〈〈p〉〉k ⊆ R. The second DTA Breactive(B) recognizes the reactive programs over B. Finally, we use a
third DTA Bdelay(B,k) to recognize the programs over B with k-bounded delay. We only consider the
construction of Bsat(B,k,AR) here, as the other two DTAs can be constructed in a very similar way.

The DTA Bsat(B,k,AR) evaluates a given program p in a bottom-up manner, thereby assigning one
of its states to each node of the program tree. The state reached at the root node must provide enough
information to decide whether 〈〈p〉〉k ⊆ R, or equivalently, whether 〈〈p〉〉k∩L (AR) = /0. To that end, we
are interested in the possible runs of AR on the input/output sequences generated by the program. Thus,
we consider pairs of program computations and corresponding runs of AR, which we call co-executions.
Intuitively, Bsat(B,k,AR) inductively computes a representation of the possible co-executions of a given
program and AR. We define these representations, called co-execution signatures, in the following.

The beginning and end of a co-execution can be indicated by a valuation of the program variables and
a state of AR. However, we have to consider the following: The input sequence of a computation might
be longer or shorter than its output sequence, but a run of AR only consumes input and output sequences
of the same length. The suffix of the input/output sequence after the end of the shorter sequence, called
the overhanging suffix, is hence still waiting to be consumed by AR. Thus, we indicate the start and end
of a co-execution by tuples of the form γ = (σ ,s,u,v), called co-configurations, where σ is a variable
valuation, s is a state of AR and (u,v) ∈ (B∗×{ε})∪ ({ε}×B∗) is an overhanging suffix. Since we are
only interested in k-bounded computations, we only consider co-configurations with |u| ≤ k and |v| ≤ k.
The set of these co-configurations for a given set of variables B and a given NBA AR is denoted by
CoCfgk(B,AR).

A finite co-execution is called complete if the program terminates at the end of the computation. The
finite co-execution signature cosigfin(p,AR,k) of a program p (with respect to AR) is a relation consisting
of tuples of the form (γ, f ,γ ′) with f ∈ B, which indicate that there exists a complete k-bounded co-
execution that starts with the co-configuration γ and ends with γ ′ such that the corresponding run of

Benedikt Brütsch 111

AR visits a final state iff f = 1. The infinite co-execution signature cosig∞(p,AR,k) of p is a set of co-
configurations with γ ∈ cosig∞(p,AR,k) iff there exists an infinite k-bounded co-execution starting with
γ such that the run of AR visits a final state infinitely often. We use pairs consisting of a finite and infinite
co-execution signature as states of the DTA Bsat(B,k,AR). The size of the DTA is hence determined by
the number of possible co-execution signatures, which is doubly exponential in the number of variables
and k and exponential in the size of AR. For a fixed k, this matches the complexity of Madhusudan’s
construction [10].

If σ0 is the initial variable valuation (where all variables have the value 0) and s0 is the initial state
of AR, then (σ0,s0,ε,ε) ∈ cosig∞(p,AR,k) iff there is an initial k-bounded computation of p such that
some corresponding run of AR visits a final state infinitely often, so cosig∞(p,AR,k) is indeed sufficient
to decide whether 〈〈p〉〉k ⊆ R. It remains to be shown that the co-execution signatures can be computed
inductively. Exemplarily, we consider the case of programs of the form p = “while e do p1”. First,
we construct a representation cosig∗e(p1,AR,k) of all finite sequences of consecutive co-executions of p1
that are compatible with the loop condition e. To that end, we consider only those tuples (γ, f ,γ ′) in
cosigfin(p1,AR,k) where the variable valuation in γ satisfies the loop condition e, and compute the re-
flexive transitive closure of the resulting relation. Formally, we have cosig∗e(p1,AR,k) = closure(C) with
C =

{
((σ ,s,u,v), f ,γ ′) ∈ cosigfin(p1,AR,k) | σ ∈ JeK

}
. Here, JeK denotes the set of variable valuations

that satisfy e, and closure(C) is the smallest relation D⊆ CoCfgk(B,AR)×B×CoCfgk(B,AR) such that

• (γ,0,γ) ∈ D for all γ ∈ CoCfgk(B,AR), and

• (γ, f1,γ
′) ∈ D, (γ ′, f2,γ

′′) ∈C implies (γ,max{ f1, f2} ,γ ′′) ∈ D.

Using cosig∗e(p1,AR,k), the co-execution signatures for p can be computed by the following reason-
ing: A finite co-execution of p = “while e do p1” (and AR) can be decomposed into a finite sequence
of co-executions of p1. An infinite co-execution of p can either eventually stay inside a loop iteration for-
ever or traverse infinitely many iterations. It can therefore be decomposed either into a finite sequence of
co-executions of p1 followed by an infinite co-execution of p1, or into a finite sequence of co-executions
of p1 followed by a cycle of co-executions of p1, leading back to a previous co-configuration. Thus, we
obtain the following formal representation of the co-execution signatures for p:

• (γ, f ,(σ ′,s′,u′,v′)) ∈ cosigfin(p,AR,k) iff (γ, f ,(σ ′,s′,u′,v′)) ∈ cosig∗e(p1,AR,k) and σ ′ /∈ JeK.

• γ ∈ cosig∞(p,AR,k) iff at least one of the following holds:

– There exist γ ′ = (σ ′,s′,u′,v′) ∈ CoCfgk(B,AR) and f ∈ B
such that (γ, f ,γ ′) ∈ cosig∗e(p1,AR,k), σ ′ ∈ JeK and γ ′ ∈ cosig∞(p1,AR,k).

– There exist γ ′ = (σ ′,s′,u′,v′) ∈ CoCfgk(B,AR) and f ∈ B
such that (γ, f ,γ ′) ∈ cosig∗e(p1,AR,k), σ ′ ∈ JeK and (γ ′,1,γ ′) ∈ cosig∗e(p1,AR,k).

4 Lower Bound for the Size of the Tree Automata

We show the following lower bound for the size of any nondeterministic tree automaton (NTA) recog-
nizing the desired set of programs:

Theorem 2. Let B be a set of n Boolean variables, let k ∈N and let R⊆ (B×B)ω be a specification that
is realizable by some program over B with k-bounded delay. Let C be an NTA that accepts a tree p iff p
is a reactive program over B with k-bounded delay and 〈〈p〉〉 ⊆ R. Then C has at least 22n−1

states.

112 Synthesizing Structured Reactive Programs via Deterministic Tree Automata

For a sketch of the proof, consider a set of Boolean variables B = {b1, . . . ,bn}. There are 22n−1

functions of the type Bn−1→ B. Each of these functions can be implemented by a program that checks
the values of b1, . . . ,bn−1 and sets bn to the corresponding function value. An NTA as in Theorem 2 must
be able to distinguish all of these programs. Otherwise, let pi and p j be two such programs that cannot be
distinguished by the NTA. We could then construct a program that satisfies the specification and contains
pi as a subprogram, but runs into a non-reactive infinite loop if this subprogram is replaced by p j. The
NTA would accept both variants, including the non-reactive program, which contradicts the premise.

5 Conclusion

The contributions of this paper are threefold, advancing the study of structured reactive programs: We
introduced a formal semantics for structured reactive programs in the sense of [10]. Furthermore, we
presented a new synthesis algorithm for structured reactive programs with bounded delay, using the
elementary concept of deterministic bottom-up tree automata. Finally, we showed a lower bound for the
size of any nondeterministic tree automaton that recognizes the set of specification-compliant programs,
emphasizing the importance of choosing a small yet still sufficient set of program variables. Estimating
the number of Boolean variables that are needed to realize a given specification is a major open problem.
While [13] implies an exponential upper bound for the required number of variables in the case of LTL
specifications, a corresponding lower bound is still to be determined.

Acknowledgments. The author would like to thank Wolfgang Thomas for his helpful advice and Mar-
cus Gelderie for fruitful discussions.

References
[1] Benjamin Aminof, Fabio Mogavero & Aniello Murano (2012): Synthesis of Hierarchical Systems. In Farhad

Arbab & Peter Csaba Ölveczky, editors: Formal Aspects of Component Software, Lecture Notes in Computer
Science 7253, Springer Berlin Heidelberg, pp. 42–60, doi:10.1007/978-3-642-35743-5 4.

[2] J. Richard Büchi & Lawrence H. Landweber (1969): Solving Sequential Conditions by Finite-State Strategies.
Transactions of the American Mathematical Society 138, pp. 295–311, doi:10.2307/1994916.

[3] Roderick Bloem, Stefan Galler, Barbara Jobstmann, Nir Piterman, Amir Pnueli & Martin Weiglhofer (2007):
Specify, Compile, Run: Hardware from PSL. Electronic Notes in Theoretical Computer Science 190(4), pp.
3 – 16, doi:10.1016/j.entcs.2007.09.004.

[4] Rüdiger Ehlers (2010): Symbolic Bounded Synthesis. In Tayssir Touili, Byron Cook & Paul Jackson, editors:
Computer Aided Verification, Lecture Notes in Computer Science 6174, Springer Berlin Heidelberg, pp.
365–379, doi:10.1007/978-3-642-14295-6 33.

[5] Marcus Gelderie (2012): Strategy Machines and Their Complexity. In Branislav Rovan, Vladimiro Sassone &
Peter Widmayer, editors: Mathematical Foundations of Computer Science 2012, Lecture Notes in Computer
Science 7464, Springer Berlin Heidelberg, pp. 431–442, doi:10.1007/978-3-642-32589-2 39.

[6] Marcus Gelderie & Michael Holtmann (2011): Memory Reduction via Delayed Simulation. In Johannes
Reich & Bernd Finkbeiner, editors: iWIGP, EPTCS 50, pp. 46–60, doi:10.4204/EPTCS.50.4.

[7] Michael Holtmann, Lukasz Kaiser & Wolfgang Thomas (2010): Degrees of Lookahead in Regular Infinite
Games. In Luke Ong, editor: Foundations of Software Science and Computational Structures, Lecture Notes
in Computer Science 6014, Springer Berlin Heidelberg, pp. 252–266, doi:10.1007/978-3-642-12032-9 18.

[8] Orna Kupferman & Moshe Y. Vardi (1999): Church’s Problem Revisited. The Bulletin of Symbolic Logic
5(2), pp. 245–263, doi:10.2307/421091.

http://dx.doi.org/10.1007/978-3-642-35743-5_4
http://dx.doi.org/10.2307/1994916
http://dx.doi.org/10.1016/j.entcs.2007.09.004
http://dx.doi.org/10.1007/978-3-642-14295-6_33
http://dx.doi.org/10.1007/978-3-642-32589-2_39
http://dx.doi.org/10.4204/EPTCS.50.4
http://dx.doi.org/10.1007/978-3-642-12032-9_18
http://dx.doi.org/10.2307/421091

Benedikt Brütsch 113

[9] Yoad Lustig & Moshe Y. Vardi (2009): Synthesis from Component Libraries. In Luca Alfaro, editor: Founda-
tions of Software Science and Computational Structures, Lecture Notes in Computer Science 5504, Springer
Berlin Heidelberg, pp. 395–409, doi:10.1007/978-3-642-00596-1 28.

[10] Parthasarathy Madhusudan (2011): Synthesizing Reactive Programs. In Marc Bezem, editor: Computer
Science Logic (CSL’11) - 25th International Workshop/20th Annual Conference of the EACSL, Leibniz
International Proceedings in Informatics (LIPIcs) 12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, pp. 428–442, doi:10.4230/LIPIcs.CSL.2011.428.

[11] Amir Pnueli & Roni Rosner (1989): On the Synthesis of a Reactive Module. In: POPL, pp. 179–190.
Available at http://doi.acm.org/10.1145/75277.75293.

[12] Michael Oser Rabin (1972): Automata on Infinite Objects and Church’s Problem. American Mathematical
Society, Boston, MA, USA.

[13] Roni Rosner (1992): Modular Synthesis of Reactive Systems. Ph.D. thesis, Weizmann Institute of Science.
[14] Sven Schewe & Bernd Finkbeiner (2007): Bounded Synthesis. In Kedar S. Namjoshi, Tomohiro Yoneda,

Teruo Higashino & Yoshio Okamura, editors: Automated Technology for Verification and Analysis, Lecture
Notes in Computer Science 4762, Springer Berlin Heidelberg, pp. 474–488, doi:10.1007/978-3-540-75596-
8 33.

[15] Wolfgang Thomas (1997): Languages, Automata, and Logic. In Grzegorz Rozenberg & Arto Salomaa,
editors: Handbook of Formal Languages, Springer Berlin Heidelberg, pp. 389–455, doi:10.1007/978-3-642-
59126-6 7.

http://dx.doi.org/10.1007/978-3-642-00596-1_28
http://dx.doi.org/10.4230/LIPIcs.CSL.2011.428
http://doi.acm.org/10.1145/75277.75293
http://dx.doi.org/10.1007/978-3-540-75596-8_33
http://dx.doi.org/10.1007/978-3-540-75596-8_33
http://dx.doi.org/10.1007/978-3-642-59126-6_7
http://dx.doi.org/10.1007/978-3-642-59126-6_7

	1 Introduction
	2 Syntax and Semantics of Structured Programs
	3 Solving the Synthesis Problem Using Deterministic Tree Automata
	4 Lower Bound for the Size of the Tree Automata
	5 Conclusion

