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We continue with the task of obtaining a unifying view of process semantics by considering in this
case the logical characterization of the semantics. We start by considering the classic linear time-
branching time spectrum developed by R.J. van Glabbeek. He provided a logical characterization
of most of the semantics in his spectrum but, without following a unique pattern. In this paper, we
present a uniform logical characterization of all the semantics in the enlarged spectrum. The common
structure of the formulas that constitute all the corresponding logics gives us a much clearer picture
of the spectrum, clarifying the relations between the different semantics, and allows us to develop
generic proofs of some general properties of the semantics.

1 Introduction

The definition of the semantics for concurrent / non-deterministic processes is a delicate question. As
soon as the effect of non-determinism is taken into account we have to decide to which extent we will
do so. Trace semantics, which were adequate for deterministic systems, obviously do not consider non-
determinism at all. Instead, bisimulation semantics captures all the information induced by the choices
at the observed process. There are different semantics for processes in the literature. The most popular of
them were collected in van Glabbeek’s linear time-branching time spectrum [6], after being introduced
along the years by different authors. At the abstract level a semantics is just an equivalence relation (or
a preorder) between processes. These can be defined by choosing between different frameworks for the
different semantics, so we have operational, observational, testing, logical and equational semantics.

In [6] we find the famous picture of the ltbt-spectrum (Figure 1) and descriptions of all the semantics
in it including observational / testing, logical and equational (when possible) characterizations. Certainly,
the basic elements used in the characterizations for a given framework are somewhat related, but a more
systematic approach is desirable. In [2, 3], a unified presentation of both the observational and the
equational semantics has been developed, and it has been shown how the generic definitions allow to
relate both without repeating similar arguments.

In this paper we present a unified view of the logical semantics by showing how different subsets of
the Hennessy-Milner logic HML [8] characterize each of the semantics in the spectrum. Certainly, the
logical characterizations presented in [6] were also subsets of HML; however in that paper the author
looked for sets of formulas as simple (and hence as small) as possible, probably driven by the idea
that a smaller set of formulas would make any study based on it simpler. Instead, we will follow the
opposite approach. Formally speaking, for each semantics defined by a preorder ≺ we have a (larger)
language L ⊆ HML characterizing it, that is defined by ϕ ∈ L ⇔ ((p ≺ q∧ p |= ϕ)⇒ q |= ϕ). However,
it is not easy (nor specially illustrative) to look for the whole set of formulas characterizing each of the
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Figure 1: The ltbt-spectrum

semantics: we will consider sufficiently large families defined in a simple way, that provide more natural
characterizations which immediately show the relations between the different semantics. For instance,
whenever a semantics is finer than other, the logic characterizing the first will contain that for the latter.

As already happened in [2, 3], our unified logical semantics will provide an enlarged spectrum (Fig-
ure 2) with a clearer structure and additional nodes which correspond to new semantics that in some cases
have been also defined using different frameworks by several authors. In particular, we will show the log-
ical characterization of revivals semantics introduced by B. Roscoe in [11], that was already axiomatized
in [2].
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Figure 2: (A part of) the enlarged spectrum

Moreover, we “discover” in this paper the semantics of minimal readies: it was not included in the
previous version of the enlarged spectrum because the development of the observational and equational
frameworks did not detect its existence, while now in the logical framework its definition arises quite
naturally. Finally, we have also been able to discover a (minor) mistake in the classic logical characteri-
zation of one of the semantics in the original spectrum, Possible Worlds, that has been easily corrected
when applying our uniform characterization.

Due to lack of space we had to remove most of the proofs and also a part of the results. An extended
version can be found at: http://maude.sip.ucm.es/˜miguelpt/papers/logsem.pdf.

We strongly appreciate the comments and suggestions of the referees and those from Miguel Palomino,
that have contributed to improve the presentation of the paper.

http://maude.sip.ucm.es/~miguelpt/papers/logsem.pdf
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2 Preliminaries

We will not repeat here the long list of original definitions of all the semantics in van Glabbeek’s spec-
trum; please, take a look at [6]. The systematic classification of all these semantics using both observa-
tional and equational characterizations can be found at [2, 3]. All the semantics that we consider can be
defined over arbitrary (possibly infinite) processes whose operational semantics is defined by means of a
labelled transition system (lts) P = (Proc,Act,→). We will use the classical notation p

a
→ p′ to represent

the transitions of processes. Moreover, it is also useful to have a syntactic notation for representing finite
processes. We will use BCCSP [6, 2]:

Definition 1 Given a set of actions Act, the set BCCSP(Act) of processes is defined by the BNF-grammar:
p ::= 0 | ap | p + q. We omit the known operational semantics of BCCSP, which can be found at [6, 2].

The main ingredient in the classification of semantics, that of course was already present in the
original spectrum, is the distinction between branching and linear time semantics. The most important
branching semantics are the N-constrained simulations that form the leftmost vertical line of the enlarged
spectrum. We like to call it the spine of the spectrum, because the rest of the semantics hang on (following
the left to right lines) it. N-constrained simulation were studied in a general and systematic way in [4].

Definition 2 Given a relation N over BCCSP processes, an N-constrained simulation is a relation S N

such that S N ⊆ N and whenever pS N q if p
a
→ p′ then there exists q′ with q

a
→ q′ and p′S N q′. We say

that p is N-simulated by q, or that q N-simulates p, written pvNS q, when there exists an N-constrained
simulation S N such that pS N q.

Although in order to obtain N-constrained similarities with good properties is not necessary for N
to be an equivalence relation, that happens in most of the interesting cases (including the most popular
ones). For instance, Plain Simulations are just U-constrained simulations, where U is the universal
relation pUq ∀p,q ∈ Proc. Similarly, Ready Simulations can be defined by means of I-simulations, with
pIq⇔ I(p) = I(q)⇔ (p

a
→⇔ q

a
→∀ a ∈ Act); while Complete Simulations correspond to C-simulations,

taking pCq⇔ (∃ a ∈ Act p
a
→⇔∃ a ∈ Act q

a
→). Note that the Ready Simulation order is usually denoted

by vRS , but when using our general notation vNS we shall write instead vIS .

2.1 Van Glabbeek’s logical characterizations for process semantics

Van Glabbeek also presented in [6] a logical characterization of the semantics in the (classical) linear
time-branching time spectrum. These logics are sublanguages of the Hennessy-Milner logic [8], LHM,
characterizing the bisimulation semantics in the general (possibly infinitary) case.
Definition 3 (Hennessy-Milner logic, HML) The set LHM of Hennessy-Milner logical formulas is de-
fined by: if ϕ, ϕi ∈ LHM ∀i ∈ I and a ∈ Act then we have

∧
i∈I ϕi, aϕ, ¬ϕ ∈ LHM.

For each labelled transition system P, the satisfaction relation |=⊆ P×LHM is defined by:
• p |= aϕ if there exists q ∈ P : p

a
→ q and q |= ϕ;

• p |=
∧

i∈I ϕi if for all i ∈ I : p |= ϕi.

• p |= ¬ϕ if p 2 ϕ.
Note that

∧
i∈∅ϕi ∈ LHM, and we have p |=

∧
i∈∅ϕi for all p. Therefore, in the following we will

consider that > ∈LHM, where > is syntactic sugar for
∧

i∈∅ϕi. The finite version of this logic (L f
HM) uses

binary conjunction ∧ instead of the general conjunction
∧

i∈I . It is well known thatL f
HM characterizes the

bisimulation semantics between finite image processes, that are those that do not allow infinite branching
for any action a ∈ Act at any state. Van Glabbeek uses LB to refer to LHM in [6].
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hhhhhhhhhhhhhhFormulas
Semantics (Z)

T S CT CS F FT R RT PW RS PF 2S B

> ∈ LZ • ν • ν • • • • ν ν ν ν ν

0 ∈ LZ • • ν ν ν ν ν ν ν ν ν

ϕ ∈ LZ, a ∈ Act⇒
• • • • • • • • ν • • • •

aϕ ∈ LZ
X ⊆ Act⇒

• ν ν ν ν ν ν ν ν
X̃ ∈ LZ

X ⊆ Act⇒
• ν • • ν ν ν

X ∈ LZ
ϕ ∈ LZ, X ⊆ Act⇒

• ν ν ν ν ν
X̃ϕ ∈ LZ

ϕ ∈ LZ, X ⊆ Act⇒
• ν ν ν ν

Xϕ ∈ LZ
ϕi ∈ LZ ∀i ∈ I⇒

• • • • •∧
i∈I ϕi ∈ LZ

X ⊆ Act, ϕa ∈ LPW ∀a ∈ X⇒
• ν ν ν∧

a∈X aϕa ∈ LZ
ϕi,ϕ j ∈ LT ∀i ∈ I ∀ j ∈ J⇒

• ν ν∧
i∈I ϕi∧

∧
j∈J ¬ϕ j ∈ LZ

ϕ ∈ LS ⇒
• ν

¬ϕ ∈ LZ
ϕ ∈ LZ⇒ •
¬ϕ ∈ LZ

Table 1: Van Glabbeek’s logical characterizations for the semantics in the ltbt-spectrum

Definition 4 Any subset L of LHM induces a logical semantics for processes, given by the preorder vL:
We have p vL q if, and only if, for all ϕ ∈ L (p |= ϕ⇒ q |= ϕ). We say that L and L′ are equivalent, and
we write L ∼ L′, if they induce the same semantics, that is vL=vL′ .

Table 1 contains the logical characterization of each of the semantics in van Glabbeek’s spectrum:
LZ with Z ∈ {T,CT,F,FT,R,RT,PF,S ,CS , RS ,2S ,PW,B}, denotes each of the logics; the dots indicate
the clauses that we need to introduce to obtain the corresponding languages; and the boxes marked with
ν correspond to rules that could be added to LZ , but they would only introduce redundant formulas. The
following connectives, which appear in the table, are not in LHM but can be obtained as syntactic sugar:

X̃ :=
∧
a∈X

¬a> X̃ϕ′ := X̃∧ϕ′ 0 := Ãct

ϕ1∧ϕ2 :=
∧

i∈{1,2}

ϕi X :=
∧
a∈X

a>∧
∧
a<X

¬a> Xϕ′ := X∧ϕ′ ã := ¬a>

Disjunction does not appear in LHM, and therefore neither in any of the logics LZ characterizing the
semantics in the linear time-branching time spectrum. It is probably folklore that it can be added in all
cases without changing the expressive power of each of these logics, but since we have not found a clear
statement in this direction in any of our references, next we establish the result and comment on its proof.

Proposition 1 If we define L∨Z with Z ∈ {T,CT,F,FT,R,RT,PF,S ,CS , RS ,2S ,PW,B}, by adding the
clause σi ∈ L

∨
Z ∀i ∈ I ⇒

∨
i∈Iσi ∈ L

∨
Z to the clauses which define each semantics LZ , replacing LZ by

L∨Z in each of the other clauses, and making p |=
∨
σi iff ∃i ∈ I: p |= σi, then we have L∨Z ∼ LZ .

Proof. It is interesting to observe that even if the result is valid for all the semantics, the reason behind
is not the same as in the case of bisimulation. In that case, we only need to apply the De Morgan laws to
get the “definition” of ∨ as a combination of ¬ and ∧. However, for the rest of the semantics, we do not
have negation as “constructor”, but ∨ distributes over ∧ and the prefix operator (because

∨
aϕi = a

∨
ϕi),
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while negation is never applied to a formula ϕ′ ∈ L∨Z . Therefore, by floating away any ∨ in a formula in
L∨Z , it becomes equivalent to a disjunction of formulas within the corresponding language LZ , and then
the equivalence of both logics follows.

Remark 1 Since we have ⊥= ¬> = ¬
∧

i∈∅ =
∨

i∈∅ , we conclude that ⊥∈ L∨Z , and therefore all the
logical semantics defined by these logics remain the same if we add⊥ and disjunction to their definitions.
Moreover, ∧ cannot be filtered by the prefix operator. By the way, this makes the difference between linear
semantics (whose logics do not allow an arbitrary use of conjunction) and branching semantics (where
we can arbitrarily use conjunction). It is important to note that a⊥∼⊥ and therefore a⊥/ ¬a>.

2.2 Observational characterizations for process semantics

There is a clear connection between the observational and the logical semantics. In fact, we expected that
once we had a unified presentation of the observational semantics it would be easy to transmute it into a
unified presentation of the logical semantics. This was not that easy at the end, but certainly our unified
logics were inspired by the previously obtained unified observational semantics. Moreover, we need these
definitions if we want to check that our new logical semantics are indeed equivalent characterizations of
the same semantics. Obviously, for the cases of the semantics in the classic spectrum we could instead
compare (one by one) our new logics and those provided by van Glabbeek in [6], but this cannot be done
for any of the new semantics. Therefore, we briefly present next the definitions (from [3]) needed to get
these observational characterizations.

One important fact about these characterizations is its finite character. All the considered observa-
tions are (structurally) finite, and this means that the characterizations work as long as we keep ourselves
to the continuous side of the range of possible semantic domains. Therefore, we have to restrict ourselves
to finite processes, or at least to image-finite processes. It is for this class of processes that Th. 1 works.

Definition 5 The sets LN of local observations corresponding to each of the N-constrained simulations
in the spectrum, and LN(p) of observations associated to a process p, are defined as follows:
• S: LU = {·}, LU(p) = ·.

• CS: LC = Bool, LC(p) is true if p |= 0 and false otherwise.

• RS: LI = P(Act), LI(p) = I(p) = {a| a ∈ Act and p
a
→}.

• TS: LT = P(Act∗), LT (p) is T(p), the set of traces of p.

• 2S: LS = {‖p‖S }, LS (p) = ‖p‖S where ‖p‖S denotes the simulation equivalence class of p.

• kS: LS = {‖p‖(k−1)S }, LS (p) = ‖p‖(k−1)S , where ‖p‖kS denotes the k-nested simulation equivalence
class of p.

Each N ∈ {U,C, I,T,S } induces uniformily an equivalence relation, that by abuse of notation we will
also denote by N: pNq ::= LN(p) = LN(q).

Remark 2 In the definition above we have considered both the trace semantics and the simulation se-
mantics when defining LT and LS . Certainly, we expect that the reader will be familiarized with these
two classic semantics, and this is why we avoid a reminder of their definitions here. Also, there is an-
other (more formal) reason for which we do this: the trace and the simulation semantics are two of the
semantics to be classified by our systematic approaches, and it would not be nice to have their definitions
in advance. Instead, we can apply (when needed) our definitions in a sliced way: based on U we define
plain simulations, and then the trace semantics, and once this is done, we have T and S to define TS and
2S. The same is valid, step by step, for all the nested simulation semantics.
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Definition 6 1. A branching general observation (bgo for short) of a process is a finite, non-empty
tree whose arcs are labeled with actions in Act and whose nodes are labeled with local ob-
servations from LN , for N a constraint; the corresponding set BGON is recursively defined as:
〈l,∅〉 ∈ BGON for l ∈ LN; 〈l, {(ai,bgoi) | i ∈ 1..n}〉 ∈ BGON for every n ∈N,ai ∈ Act and bgoi ∈ BGON .

2. The set BGON(p) of bgo’s of a process p corresponding to the constraint N is BGON(p) = {〈LN(p),S 〉
| S ⊆ {(a,bgo)|bgo ∈ BGON(p′), p

a
→ p′}}. We write p ≤b

N q if BGON(p) ⊆ BGON(q).

Theorem 1 ([3]) For all N ∈ {U,C, I,T,S } and any two processes p and q, p vNS q iff p ≤b
N q.

Definition 7 1. The set LGON of linear general observations (lgo for short) for the set of local obser-
vations LN is the subset of BGON defined as: 〈l,∅〉 ∈ LGON for each l ∈ LN; 〈l, {(a, lgo)}〉 whenever
a ∈ Act and lgo ∈ LGON .

2. The set LGON(p) of lgo’s of a process p with respect to the set of local observations LN is
LGON(p) = BGON(p)∩LGON .

Definition 8 For ζ,ζ′ ⊆ LGON , we define the orders ≤l
N , ≤l⊇

N , ≤l f
N , and ≤l f⊇

N by:

• ζ ≤l
N ζ
′

de f
⇔ ζ ⊆ ζ′.

• ζ ≤l⊇
N ζ′

de f
⇔ ∀ X0a1X1 . . .Xn ∈ ζ ∃ Y0a1Y1 . . .Yn ∈ ζ

′ ∀i ∈ 0..n Xi ⊇ Yi.

• ζ ≤
l f
N ζ′

de f
⇔ ∀ X0a1X1 . . .Xn ∈ ζ ∃ Y0a1Y1 . . .Yn ∈ ζ

′ Xn = Yn.

• ζ ≤
l f⊇
N ζ′

de f
⇔ ∀ X0a1X1 . . .Xn ∈ ζ ∃ Y0a1Y1 . . .Yn ∈ ζ

′ Xn ⊇ Yn.

Definition 9 Given two processes p and q and Z ∈ {l, l ⊇, l f , l f ⊇}, we write p ≤Z
N q iff LGON(p) ≤Z

N
LGON(q). We will denote the corresponding equivalence by =Z

N .

In the cases in which there is no previously known (equivalent) definition for our new semantics, the
definition above will give us “the” definition of each one of these new semantics; instead, each of the
linear semantics in the old spectrum has a companion in our enlarged spectrum. For instance, the linear
semantics in the diamond to the right of RS (see Figure 2) satisfy the following theorem.

Theorem 2 (1) p vRT q iff p ≤l
I q; (2) p vFT q iff p ≤l⊇

I q; (3) p vR q iff p ≤l f
I q; (4) p vF q iff p ≤l f⊇

I q.

3 A new logical characterization of the most popular semantics

Next we will present in a uniform way the new logics that characterize the different semantics. Each of
them is defined by a set of rules, and as usual we assume that only the formulas that can be obtained by
finite application of these rules are in the defined logics. We begin by studying the particular cases of the
best known classical semantics, that is, those at the layer of Ready Simulation in the enlarged spectrum.
All of them use in some way the set of formulas LI = {a> | a ∈ Act} that characterizes the initial offers of
a process. In Section 4, we will present the logics for the rest of the semantics in a unified way.

Definition 10 Ready Simulation semantics (RS): we define the set of formulasL′RS for ready simulation
semantics by σ ∈ LI ⇒ σ ∈ L′RS ; σ ∈ LI ⇒¬σ ∈ L

′
RS ; ϕi ∈ L

′
RS∀i ∈ I⇒

∧
i∈I ϕi ∈ L

′
RS ; ϕ ∈ L′RS , a ∈

Act⇒ aϕ ∈ L′RS ;.
Ready traces semantics (RT): we define the set of formulas L′RT for ready trace semantics by > ∈ L′RT ;
ϕ ∈ L′RT ,X1,X2 ⊆ LI ⇒ (

∧
a>∈X1 a>∧

∧
b>∈X2 ¬b>)∧ϕ ∈ L′RT ; ϕ ∈ L′RT , a ∈ Act⇒ aϕ ∈ L′RT .
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Failure traces semantics (FT): we define the set of formulas L′FT for failure traces semantics by > ∈
L′FT ; ϕ ∈ L′FT ,X1 ⊆ LI ⇒ (

∧
a>∈X1 ¬a>)∧ϕ ∈ L′FT ; ϕ ∈ L′FT , a ∈ Act⇒ aϕ ∈ L′FT .

Readiness semantics (R): we define the set of formulas L′R for readiness semantics by > ∈ L′R; X1,X2 ⊆

LI ⇒ (
∧

a>∈X1 a>∧
∧

b>∈X2 ¬b>) ∈ L′R; ϕ ∈ L′R, a ∈ Act⇒ aϕ ∈ L′R .
Failures semantics (F): we define the set of formulas L′F for failures semantics by > ∈ L′F; X1 ⊆ LI ⇒

(
∧

a>∈X1 ¬a>) ∈ L′F; ϕ ∈ L′F , a ∈ Act⇒ aϕ ∈ L′F .

One can immediately check in the definition above that L′RS ⊆ LB, thus obtaining that Ready Simu-
lation semantics is coarser than Bisimulation equivalence. We also haveL′F ⊆L

′
R, L′F ⊆L

′
FT , L′R ⊆L

′
RT ,

L′FT ⊆L
′
RT and L′RT ⊆L

′
RS , which can be interpreted in the same way. Let us now focus our attention on

the third rule of the definition of L′RS : the unrestricted use of conjunction corresponds to the branched
character of the semantics. Moreover, the two first rules allow us to fix the set of offers at the states of the
process as I-simulations impose. Instead, the linear semantics only allow the use of conjunction to join
the simple formulas that permit us to fix the set of offers along a computation in the case of the readies-
based semantics, or their over-approximations (obtained by means of the negated formulas ¬a>), in the
case of the failures-based semantics. Finally, notice how these simple formulas can only be checked at
the end, for the simpler coarser semantics.

Now, for X ∈ {RS ,RT,FT,R,F} we can prove that each of the logics, L′X , is a superset of the corre-
sponding logic, LX , defined by van Glabbeek in [6]. To be precise, for the cases of FT and F semantics
we need to remove the syntactic sugar used by van Glabbeek.

Proposition 2 1. L′RS ⊇ LRS . We also have LRS  L
′
RS .

2. L′RT ⊇ LRT . We also have LRT (L
′
RT .

3. L′FT ⊇ desugared(LFT ), where the desugaring function removes the syntactic sugar used in LFT .

4. L′R ⊇ LR. We also have LR  L
′
R .

5. L′F ⊇ desugared(LF), where the desugared function removes the syntactic sugar used in LF .

Proof. All of them are simple and similar, so we will only present the proof of 2.

• 2| To prove that L′RT ⊇ LRT it is sufficient to show that for every X ⊆ Act and any ϕ ∈ LRT , the
formula (

∧
a f∈X a>∧

∧
b<X¬b>)∧ϕ belongs to L′RT . Note that b < X is equivalent to b ∈ X, so

taking X1 = X and X2 = X we have that the considered formula belongs to L′RT . To prove that
LRT ⊂ L

′
RT , it is sufficient to note that (¬b>)∧ϕ belongs to L′RT , by simply taking X1 = ∅ and

X2 = {b}, but it does not belong to LRS .

We have said in our Introduction that our logics are chosen as large as necessary, to obtain more
natural characterizations. This is why, in most of the cases, we have obtained a logic larger than that
proposed by van Glabbeek. In order to prove the equivalences between ours and van Glabbeek’s logics,
we have to show that the new formulas that we included in our logics are in fact redundant.

Proposition 3 We have (1) LRS ∼ L
′
RS ; (2) LRT ∼ L

′
RT ; (3) LFT ∼ L

′
FT ; (4) LR ∼ L

′
R and (5) LF ∼ L

′
F .

Proof. As above we will only present one of the proofs.

• 2| We have seen that the formulas in LRT are particular cases of the formulas in L′RT , those that
totally define the offers at the states along a computation (when we apply the second clause in the
definition ofL′RT taking X2 = X1). Instead, our more general formulas (

∧
a>∈X1 a>∧

∧
b>∈X2 ¬b>)∧
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ϕ, where ϕ ∈ L′RT , could give us some partial information, combining both positive information
a> ∈ X1 and negative information b> ∈ X2, which tells us that we are in an arbitrary state X,
satisfying X1 ⊆ X ⊆ X2. But we can replace these formulas by the disjunction of all the formulas
describing any of these possible offers X. By repeating this procedure at each level of the formula,
we finally obtain a disjunction of formulas in LRT . To conclude, it is enough to apply Prop. 1.

In the following, when we consider a logic LZ and the index Z refers to some concrete semantics, as
is the case with RS , RT , FT , R, F above, by abuse of notation we will simply write v′Z instead of vL′Z
when referring to the preorder induced by the logic L′Z .

Theorem 3 1. The logical semantics v′RS induced by the logicL′RS is equivalent to the observational
branching semantics defined by ≤b

I , generated by the set of branching general observations BGOI .

2. The logical semantics v′RT (resp. v′FT , v′R, v′F) induced by the logic L′RT (resp. L′FT , L′R, L′F) is
equivalent to the observational linear semantics defined by the domain of linear general observa-
tions LGOI , ordered by ≤l

I (resp. ≤l⊇
I , ≤l f

I , ≤l f⊇
I ,) defined at Def. 8.

Proof. It is a consequence of Prop. 3, the results by van Glabbeek collected in Table 1, Th. 1 and Th. 2.
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Figure 3: Example to show the strength of the different logics

Example 1 Figure 3 shows a collection of examples to illustrate the differences between the semantics
in the layer of RS at the spectrum. All the stated equivalences can be checked by taking any arbitrary for-
mula from the logic defining each of the semantics. For readability, we omit the last > in all subformulas.
Besides, ∼X , (resp. /X) , where X is a set of indexes, represents any ∼Z ( resp. /Z), with Z ∈ X.
• P1 @

′
F P2, and then P1 @

′
{R, FT, RT, RS }P2; this is because P1 |= a(¬b∧¬c), but P2 does not.

• P2 ∼F P3, but P2 @
′
{R, FT } P3 and then P2 @

′
{RT, RS } P3, using that P2 |= a(¬e∧ c), but P3 does not.

• P3∼{F, R}P4, but P3@
′
FT P4 and then P3@

′
{RT, RS }P4, because P3|=a(¬c∧b(¬e∧d)), but P4 does not.

• P5 ∼{F, FT } P6, but P5 @
′
R P6 and then P5 @

′
{RT, RS } P6, using that P5 |= ab(c∧d), but P6 does not.

• P6 ∼{F, R, RT, FT } P7, but P7 @
′
RS P6, using that P7 |= a(bc∧bd), but P6 does not.

• P7 ∼{F, R, RT, FT, RS } P8.
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4 Our new unified logical characterizations of the semantics

Inspired by the semantics studied in Section 3, next we define the general format for the logics charac-
terizing each of the semantics in the enlarged spectrum. We start by enlarging the spectrum a bit more,
to include all the elements needed to characterize the rest of the semantics in a systematic way.

Definition 11 1. Universal semantics (U): We define the set of Universal formulas, L′U , that char-
acterizes the trivial semantics that identifies all the processes, by L′U = {>}.

2. Complete semantics (C): It is defined by vC , taking p vC q ::= (p
a
→⇒ ∃ b ∈ Act q

b
→). That is, it

only distinguishes terminated processes (equivalent to 0) from non-terminated ones. We define the
set of Complete formulas L′C characterizing it, by L′C = {>,¬0}.

3. Initial offer semantics (I): It is defined by vI , taking pvI q ::= I(p)⊆ I(q). That is, it only observes
the set of initial actions of a process, I(p) = {a | a ∈ Act∧ p

a
→}. We define the set of Initial offer

formulas L′I characterizing it, by L′I = {>,¬0} ∪ {a> | a ∈ Act}.

In the definition above the sub-formula ¬0 is just syntactic sugar for the formula ¬(
∧

a∈Act¬a>).
Therefore, all these new logics are indeed sublogics ofLHM, and we do not need to define their semantics.

Note that L′I is a bit larger than the logic LI used in Section 3. Once again, this is so in order to get
a more uniform presentation of our logics: ¬0 is indeed redundant. As a consequence, we immediately
obtain that the Complete semantics is coarser than the Initial offer semantics, becauseL′C ⊆ L

′
I . Based on

this result we will also easily obtain that the Complete Simulation is coarser than the Ready Simulation.

4.1 The simulation semantics

As discussed in [3], the simulation semantics constitute the spine of the new spectrum. Moreover, all of
them are defined in a homogeneous way using the notion of constrained simulation from [4].

Definition 12 Given a set of formulas L′N defining a semantics N, we define the set of formulas L′NS
that defines the N-constrained simulation semantics by σ ∈ L′N ⇒ σ ∈ L′NS ; σ ∈ L′N ⇒ ¬σ ∈ L

′
NS ;

ϕi ∈ L
′
NS∀i ∈ I⇒

∧
i∈I ϕi ∈ L

′
NS ; ϕ ∈ L′NS , a ∈ Act⇒ aϕ ∈ L′NS .

Taking N ∈ {U,C, I} we obtainL′US ,L′CS andL′IS , that in the first and last cases we rewrite asL′S and
L′RS , respectively, in order to emphasize the classic notation for simulation semantics. Once that we have
L′S we can also obtain L′S S , that we will also denote as L′2S . To complete the collection of simulation
semantics we will only need L′TS , that will be based on L′T , to be defined in the next section.

If we compare the definition above with the particular case of Ready Simulation in Def. 10, the
differences concern the two first rules, by means of which we impose that the process will traverse states
which are in the corresponding N-equivalence class all along the tree of computations checked by a
formula in L′NS . Next we state the equivalence between our logics and those by van Glabbeek in [6].

Proposition 4 We have (1) L′S ∼ LS , (2) L′CS ∼ LCS and (3) L′2S ∼ L2S .

4.2 Logical characterization of the linear semantics

We start by defining the closure operators, by means of which we are able to express to which extent
conjunction and negation can be used at the logical characterizations of each of the linear semantics.

Definition 13 Given a logical set L′N with N ∈ {U,C, I,T,S }, we define:
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1. Its symmetric closure L≡N by: σ ∈ L′N ⇒ σ ∈ L≡N and ¬σ ∈ L≡N; σi ∈ L
≡
N ∀i ∈ I⇒

∧
i∈Iσi ∈ L

≡
N .

2. Its negative closure L¬N by: σ ∈ L′N ⇒¬σ ∈ L
¬
N; σi ∈ L

¬
N ∀i ∈ I⇒

∧
i∈Iσi ∈ L

¬
N .

3. Its positive closure L
√

N by: σ ∈ L′N ⇒ σ ∈ L
√

N; σi ∈ L
√

N ∀i ∈ I⇒
∧

i∈Iσi ∈ L
√

N .

Whenever we have a bag of “good” properties (such asL′N above), if we want to assert by means of a
single formula which is the subset of properties that a certain element satisfies, it is not sufficient to assert
that it satisfies each one of them: we also need to assert that it does not satisfy all the rest. This is why
we need formulas in the symmetric closure. Instead, if we can only manage formulas from the negative
(resp. positive) closure, we can only assert that the element has at most (resp. at least) the enumerated
properties. Next we present the unified logics for all the linear semantics in the enlarged spectrum.

Definition 14 Inspired by the orders ≤l
N , ≤l⊇

N , ≤l f
N and ≤l f⊇

N , we define the set of formulasL′
≤l

N
,L′
≤l⊇

N
,L′
≤

l f
N

and L′
≤

l f⊇
N

, respectively, by means of the rules:

1. > ∈ L′
≤l

N
; ϕ ∈ L′

≤l
N
, σ ∈ L≡N ⇒ σ∧ϕ ∈ L′

≤l
N
; ϕ ∈ L′

≤l
N
, a ∈ Act⇒ aϕ ∈ L′

≤l
N

.

2. > ∈ L′
≤l⊇

N
; ϕ ∈ L′

≤l⊇
N
, σ ∈ L¬N ⇒ σ∧ϕ ∈ L′

≤l⊇
N

; ϕ ∈ L′
≤l⊇

N
, a ∈ Act⇒ aϕ ∈ L′

≤l⊇
N

.

3. > ∈ L′
≤

l f
N

; σ ∈ L≡N ⇒ σ ∈ L′
≤

l f
N

; ϕ ∈ L′
≤

l f
N

, a ∈ Act⇒ aϕ ∈ L′
≤

l f
N

.

4. > ∈ L′
≤

l f⊇
N

; σ ∈ L¬N ⇒ σ ∈ L′
≤

l f⊇
N

; ϕ ∈ L′
≤

l f⊇
N

, a ∈ Act⇒ aϕ ∈ L′
≤

l f⊇
N

.

Note that for the coarsest semantics (e.g. those corresponding to plain refusals and plain readiness
when N = I) we only observe N at the end of the formula. Instead, the other two logics introduce
additional conjunctions that allow to observe N along the computations. Moreover, we have used the
negative (resp. symmetric) closure in the “failures based” (resp. “readies based”) semantics.

We can use the positive closure to define two new semantics that were not studied in [2, 3] nor
elsewhere, as far as we know. They are defined by observing partial offers along a computation, or just at
its end. We say that X is a partial offer of p if X ⊆ I(p). It is clear the duality w.r.t. the failures semantics,
where F is a failure of p if I(p) ⊆ F. We can introduce these two new semantics at each layer of the
spectrum, by defining the corresponding partial offers for each N ∈ {U,C, I,T,S }.

Definition 15 1. The semantics of partial offer traces for the constraint N is that defined by the logic
L′
≤l⊆

N
with > ∈ L′

≤l⊆
N

; ϕ ∈ L′
≤l⊆

N
, σ ∈ L

√

N ⇒ σ∧ϕ ∈ L′
≤l⊆

N
; ϕ ∈ L′

≤l⊆
N
, a ∈ Act⇒ aϕ ∈ L′

≤l⊆
N

.

2. The semantics of partial offers for the constraint N is that defined by the logicL′
≤

l f⊆
N

with>∈L′
≤

l f⊆
N

;

σ ∈ L
√

N ⇒ σ ∈ L′
≤

l f⊆
N

; ϕ ∈ L′
≤

l f⊆
N

, a ∈ Act⇒ aϕ ∈ L′
≤

l f⊆
N

.

Duality between failures and partial offers causes the picture of the complete layer of linear semantics
for each N to become two diamonds that share the side corresponding to the readies-based semantics.

Proposition 5 1. L′F and L′
≤

l f⊆
I

are not comparable: p ≤l f⊇
I q ; p ≤l f⊆

I q and p ≤l f⊆
I q ; p ≤l f⊇

I q.

2. L′FT and L′
≤l⊆

I
are incomparable: p ≤l⊇

I q ; p ≤l⊆
I q and p ≤l⊆

I q ; p ≤l⊇
I q.

Proof. In fact we have a stronger result combining the two statements: if we consider p = ab + ac,
q = a(b + c) and r = p + q, we have that p ∼l⊇ r but r �l f⊆

I p and q ∼l⊆ r but r �l f⊇
I q.

We could obtain similar counterexamples for N ∈ {T,S }. Instead, for N ∈ {U,C}, which produce the
trace semantics and the complete traces semantics, respectively, it is easy to prove that the six logics of
the layer are indeed equivalent.
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Proposition 6 We have (1) L′
≤

l f
U

= L′
≤l

U
= L′

≤l⊇
U

= L′
≤l⊆

U
= L′

≤
l f⊇
U

= L′
≤

l f⊆
U

= LT and (2) L′
≤

l f⊇
C

= L′
≤

l f⊆
C

=

L′
≤l⊇

C
= L′

≤l⊆
C

= L′
≤

l f
C

= L′
≤l

C
= LCT .

An interesting result illustrating the genericity of our characterizations concerns one of the finest
semantics in the classic spectrum: Possible Future (PF). We find PF in Figure 1 below 2S, probably
because the more accurate simulation semantics TS was not (yet) included in the spectrum. This is
corrected in the enlarged spectrum in Figure 2. Considering N = T , we have indeed the following result.

Proposition 7 We have L′
≤

l f
T

= LPF .

4.3 Logical characterization of the deterministic branching semantics

Next we consider the deterministic branching semantics. In the classic spectrum the only such semantics
is Possible Worlds (PW), but there is one such semantics for each level of the enlarged spectrum.

Definition 16 For each N ∈ {U,C, I,T,S }, we define the formulas of L′DN
by: > ∈ L′DN

; ϕ ∈ L′DN
, σ ∈

L≡N ⇒ σ∧ϕ ∈ L′DN
; X ⊆ Act,ϕa ∈ L

′
DN
∀a ∈ X⇒

∧
a∈X aϕa ∈ L

′
DN

.

For N = I we obtain the unified logical characterization of the PW semantics.

Proposition 8 We have L′DI
⊇ LPW .

By the way, L′DI
and LPW are not equivalent, but this is caused by the fact that the original logical

characterization LPW was wrong. It can be checked, for instance, that taking p = abc+a(bc+d)+ab and
q = a(bc + d) + ab we have p /PW q, but p ∼LPW q, since LPW cannot “observe” the intermediate offer
that makes the possible world abc different from those of q. Instead, the formula ϕ ≡ a(¬d∧bc) ∈ LDI is
enough to distinguish p and q, since we have p |= ϕ and q 2 ϕ.

hhhhhhhhhhhhhhFormulas
Constraints (N)

U C I T S B

> ∈ L′
N

• • • • ν ν

¬> = ⊥ ∈ L′
N

ν ν ν ν ν ν

¬0 ∈ L′
N

• • ν ν ν

a ∈ Act⇒ a> ∈ L′
N

• ν ν ν

ϕ ∈ L′
N
, a ∈ Act⇒

• • •
aϕ ∈ L′

N

ϕi ∈ L
′
N
∀i ∈ I⇒

• •∧
i∈I ϕi ∈ L

′
N

ϕ ∈ L′
N
⇒

•
¬ϕ ∈ L′

N

Table 2: Logical characterizations of the semantics used as constraints in the N-constrained semantics

In Tables 2 and 3, we present all our results in a three-dimensional way: Table 3 shows the rules
defining the logics characterizing each of the semantics at each layer of the enlarged spectrum (we
provide an additional column with the particularization for N = I), while Table 2 contains the logics
that characterize the constraint governing each of these “layers”. As commented above, there are two
semantics that appear in both tables, although disguised with different names: T = ≤l

U (in fact, it is also
equal to the other three linear U-semantics) and S = US .
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hhhhhhhhhhhhhhFormulas
Semantics (YN )

≤lf⊇
N ≤lf

N ≤l⊇
N ≤l

N DN NS N ∈ {U,C, I,T,S }

F R FT RT PW RS when N = I

> ∈ L′
YN

• • • • • ν

ϕ ∈ L′
YN

, a ∈ Act⇒
• • • • ν •

aϕ ∈ L′
YN

ϕ ∈ L¬N ⇒ • ν ν ν ν ν
ϕ ∈ L′

YN

ϕ ∈ L≡N ⇒ • ν ν ν
ϕ ∈ L′

YN

ϕ ∈ L′
YN

, σ ∈ L¬N ⇒ • ν ν ν
σ∧ϕ ∈ L′

YN

ϕ ∈ L′
YN

, σ ∈ L≡N ⇒ • • ν
σ∧ϕ ∈ L′

YN

X ⊆ Act, ϕa ∈ L
′
YN
∀a ∈ X⇒

• ν∧
a∈X aϕa ∈ L

′
YN

ϕi ∈ L
′
YN
∀i ∈ I⇒

•∧
i∈I ϕi ∈ L

′
YN

ϕ ∈ LN ⇒
•

ϕ ∈ L′
YN

ϕ ∈ LN ⇒
•

¬ϕ ∈ L′
YN

Table 3: Our new logical characterizations for the semantics at each level of the ltbt-spectrum

5 Relating the unified logics and the unified observational model

In this Section we will relate the unified logical characterizations and the unified observational semantics
developed in [3]. As we indicated in Section 2, we have to restrict ourselves to finite image processes
to obtain the result. As a byproduct, we get for this kind of processes that the finite parts of each of
the corresponding languages, that are obtained by intersection with L f

HM, give us a pure finite logical
characterization of the semantics. We start by considering the following concept of normal formula.

Definition 17 (Normal formula N(L)) 1. Given a set of formulas L, whose outermost operator is
not the conjunction, we define the set of induced normal formulas, N(L), starting with > and
adding those formulas that can be generated by applying the clause: If Γ1,Γ2 ⊆L, {ai | i ∈ I} ⊆ Act
and ϕi ∈ N(L), then (

∧
σ∈Γ1 σ∧

∧
σ∈Γ2 ¬σ)∧

∧
i∈I aiϕi ∈ N(L).

2. Now, for each N ∈ {U,C, I,T,S } and each YN ∈ {NS ,≤l
N ,≤

l⊇
N ,≤

l f
N ,≤

l f⊇
N ,≤l⊆

N ,≤
l f⊆
N ,DN} in the spec-

trum, we define the set of normal formulas,NYN (L′′
N

)⊆L′
YN

simply as: NYN (L′′
N

) =N(LN )
⋂
L′
YN

where L′′N is the set of formulas in L′N whose outermost operator is not the conjunction.

Remark 3 First note that the clause in Def. 17.1 is a bit complicated: initially, we can apply it starting
with I = ∅, and in this way we can obtain the first (non-trivial) normal formulas; then we can apply it
recursively to obtain new, more complex, normal formulas; instead, the formulas in the two first subfor-
mulas come always from the original set L. Also note that we admit the use of infinite conjunction in
those two first subformulas. As a consequence, these formulas could also have infinite depth (as infinite
formulas in (the infinite generalizations of )LHM). However, if we define the normal depth of formulas in
N(LN ) as that obtained by counting the recursive nesting in the application of Def. 17, then any normal
formula has finite normal depth, and the set they form can be explored by structural induction.

Theorem 4 Each set of normal formulas NYN (L′′
N

) associated to each of the semantics in the spectrum
is equivalent to the full set of formulas L′

YN
.
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Definition 18 We define the set of complete normal formulas CN(L) (resp. the set of complete normal
formulas associated to each semantics in the spectrum, CNYN (L′′

N
)) as the set of normal formulas (resp.

the set of normal formulas associated to each semantics in the spectrum) that satisfy the condition Γ2 =

Γ1, whenever the rule in Def. 17 is applied in the generation of each formula.

Next we state that infinite conjunction in Def. 17 can be approximated by finite conjunction.

Theorem 5 If we restrict ourselves to finite image processes, any complete normal formula ϕ ∈ CN(L)
can be approximated by a set of finite normal formulas {ϕk | k ∈ N} that only use finite conjunction, that
is, we have p |= ϕ⇔ p |= ϕk ∀k ∈ N.

Theorem 6 We can define a natural correspondence between the set of complete normal formulas asso-
ciated to a semantics CNYN (L′′

N
) and the corresponding domain of observations BGON or LGON . That

correspondence↔ satisfies that ϕ↔ θ⇒ (p |= ϕ⇔ θ ∈ XGON(p)) with X = B or X = L. Moreover, this
correspondence produces the following results for each of the semantics in the spectrum:

1. The set of complete normal formulas CNNS(L′′
N

) (resp. CNDN (L′′
N

)) and the domain of branching
general observations GBON (resp. dBGON) are isomorphic, that is,↔ is one to one.

2. The set of complete normal formulas CN≤l
N
(L′′
N

), CN
≤l⊇

N
(L′′
N

) and the domain of linear general
observations LGON are isomorphic, that is,↔ is one to one.

3. The set of complete normal formulas CN
≤

l f
N

(L′′
N

) (resp. CN
≤

l f⊇
N

(L′′
N

)) and the quotient domain

LGON/'l f
N

(resp. LGON/'l f⊇
N

) are isomorphic, that is,↔−1 is injective and ϕ↔ θ iff θ 'l f⊇
N θϕ, for

some adequate θϕ.

Theorem 7 The logical semantics v′
YN

induced by the logic L′
YN

, where YN ∈ {NS ,≤l
N ,≤

l⊇
N ,≤

l f
N ,≤

l f⊇
N ,

DN}, is equivalent to the corresponding observational semantics, defined at Def. 6 and Def. 7.

6 The real diamond structure

Now we will explore in more detail the real structure of the extended spectrum, as it was already done at
[2]. One could think that each diamond in that spectrum corresponds to a lattice structure. However, this
is not the case: there is another semantics coarser than both N-readiness and N-failure traces and finer
than N-failures, and another finer than those two semantics and coarser than N-ready traces.

RS PW RT

R

FT

R∧FT R∨FT F- - ��
��*

H
HHHj

- -

HHHHj

��
��*

���

@@R ���

@@R

Figure 4: The diamond below ready simulation

Focusing on the case N = I the obtained complete structure is that shown in Figure 4, in which we
include the new join semantics R∧FT and the meet one R∨FT . As proved in [3], the meet semantics
R∨FT was already studied by Roscoe under the name of revivals semantics in [11].

Since Readiness semantics observes the ready set at the end of the trace, while Failure Traces ob-
serves failures during the computation, it is natural to expect that the join semantics R∧FT will observe
both failures during the computation and ready sets at the end. This is indeed the case. The corresponding
observational characterization in the general case is obtained by means of a new order ≤l⊇∧ f

N on LGON .
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Definition 19 Let ζ,ζ′ ⊆ LGON , we define

ζ ≤
l⊇∧ f
N ζ′ ⇔ ∀ X0a1X1 . . .Xn ∈ ζ ∃ Y0a1Y1 . . .Yn ∈ ζ

′ (∀i ∈ 0..n−1 Xi ⊇ Yi) ∧ Xn = Yn .

It is easy to see that ≤l⊇∧ f
N is indeed the conjunction of ≤l⊇

N and ≤l f
N , that is, ζ ≤l⊇∧ f

N ζ′ ⇔ ζ ≤l⊇
N ζ′∧

ζ ≤
l f
N ζ′. The observational characterization of the meet semantics R∨FT is a bit more complicated.

Definition 20 Let ζ,ζ′ ⊆ LGON , we define

ζ ≤
l⊇∨ f
N ζ′ ⇔ ∀ X0a1X1 . . .Xn ∈ ζ ∃ {Y0a1Y1 . . .Y

j
n | j ∈ J} ⊆ ζ′ such that Xn =

⋃
j∈J Y j

n .

By means of some simple algebraic manipulations we can get the following equivalent expression:

ζ ≤
l⊇∨ f
N ζ′ ⇔ ∀ X0a1X1 . . .Xn ∈ ζ ∀a ∈ Xn ∃ Y0a1Y1 . . .Yn ∈ ζ

′ such that (a ∈ Yn∧Yn ⊆ Xn) .

Next we present the logical characterizations of these new semantics. Obviously, they are in the
linear side of the spectrum and therefore they will have a similar structure to those for the linear semantics
studied before. Once again, we start with the particular case N = I. R∧FT is finer than both R and FT,
and the logic characterizing it will be just the union of those characterizing R and FT . In the case of
R∨FT we need to connect the clauses that define those two logics in an adequate way.

Definition 21 1. We define the set of formulas L′
≤

l⊇∧ f
I

, as that generated by the clauses: > ∈ L′
≤

l⊇∧ f
I

;

ϕ ∈ L′
≤

l⊇∧ f
I

, σ ∈ L¬I ⇒ σ∧ϕ ∈ L′
≤

l⊇∧ f
I

; σ ∈ L≡I ⇒ σ ∈ L′
≤

l⊇∧ f
I

; ϕ ∈ L′
≤

l⊇∧ f
I

, a ∈ Act⇒ aϕ ∈ L′
≤

l⊇∧ f
I

.

2. We define the set of formulas L′
≤

l⊇∨ f
I

as that generated by the clauses: > ∈ L′
≤

l⊇∨ f
I

; σ,σ j ∈ L
′
I∀ j ∈

J⇒ (σ∧
∧

j∈J¬σ j>) ∈ L
≤

l⊇∨ f
I

; ϕ ∈ L′
≤

l⊇∨ f
I

, a ∈ Act⇒ aϕ ∈ L′
≤

l⊇∨ f
I

.

Example 2 P2 and P3 in Figure 3 satisfy P2 ∼F P3, but P2 �R∨F P3 . Taking p= abc+a(bd+c) and q=

p+ a(bc+c) we have p ∼R∧FT q but p /RT q .

Theorem 8 The logical semantics v′
≤

l⊇∧ f
I

(resp. v′
≤

l⊇∨ f
I

) induced by the logic L′
≤

l⊇∧ f
I

(resp. L′
≤

l⊇∨ f
I

) is

equivalent to the observational semantics defined by LGOI , with the order ≤l⊇∧ f
I (resp. ≤l⊇∨ f

I .)

Proof. In the case of R∧FT we just need to check that L′
≤

l⊇∧ f
I

= L′
≤l⊇

I
∪L′

≤
l f
I

. The meet of two semantics

is not always defined by the intersection of the corresponding logics. However, in this case we have that
L′
≤

l⊇∨ f
I

= L′
≤l⊇

I
∩L′

≤
l f
I

, and then to check that it defines R∨FT it is enough to see that p @l⊇∨ f
I q ⇒ (∃ϕ ∈

L′
≤

l⊇∨ f
I

p |= ϕ∧q 2 ϕ), which is nearly immediate.

By replacing I above by the generic N we get the definitions and results for the general case.

7 Conclusions and future work

We have concluded in this paper the work on unification of all the strong process semantics by consider-
ing here the logic approach, while [2, 3] considered the observational and the equational approaches. As
in the previous cases, our main goal was to clarify the relationships between all the process semantics,
that were classified in a slightly messy way in [6]. Our starting point has been the Hennessy-Milner
Logic [8]: we have looked for sublogics with a simple structure, that characterize each of the semantics
in the enlarged spectrum. The difference between branching-time semantics and linear-time semantics is
the key point to isolate the ingredients that, combined in different ways, produce the different semantics.
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It is interesting to comment on the difference between the observational and the logical characteri-
zations. Note that in the observational framework the observations had a complex structure, where local
observations informed us about the (static) properties of the states of a process, while the arcs gave us the
dynamic information. Instead, the formulas of the logic HML do not possess of such structure, having
only a low level structure induced by the combination of prefix and conjunction. This is why we needed
to introduce normal forms in order to build the high level structure of observations at the formulas.

Came as a surprise to us the discovery of two more linear semantics at each layer of the spectrum.
Moreover, we found out that the classic logical characterization of Possible Worlds (PW) was wrong. A
too ad-hoc selection of the rules defining each logic was probably the cause, that we discovered when
trying to unfold the original characterization to look for the equivalent presentation inside our model.

Now that we have available all the unified characterizations of the semantics we have a much clearer
picture of the spectrum, and we can use the parameterized definitions to prove generic properties of all
or a part of the semantics in a generic way, without having to repeat similar proofs for each of them.

There are several directions in which we plan to extend our work. Weak semantics are an obvious
target: if there are indeed many strong process semantics, once we introduce internal actions a terrible
explosion occurs [5], and the unification work is even more necessary in order to clarify which are the
most interesting semantics and what the differences between them are. Another interesting direction
comes from the combinations of logic and algebra, as done by Luttgen and Vogler [10, 9]. Again, we are
interested in studying whether their proposal is canonical or can be parameterized in some way in order
to obtain other interesting combinations. Finally, a couple of papers [1, 7] have appeared recently, where
the logical characterizations of the non-interleaving semantics are developed.
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