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A swarm robotic system consists of a team of robots performing cooperative tasks without any
centralized coordination. In principle, swarms enable flexible and scalable solutions; however,
designing individual control algorithms that can guarantee a required global behavior is difficult.
Formal methods have been suggested by several researchers as a mean to increase confidence in
the behavior of the swarm. In this work, we propose to model swarms as hybrid systems and use
reachability analysis to verify their properties. We discuss challenges and report on the experience
gained from applying hybrid formalisms to the verification of a swarm robotic system.

1 Introduction

Swarm robotic systems are distributed systems wherein a set of robots cooperatively perform a task,
without any centralized coordination [29]. Although individual robots are governed by relatively simple
reactive controllers, interactions within the swarm may give rise to complex behaviors that were not
explicitly programmed. Ultimately, these behaviors enable the swarm to achieve goals that would defy
each single robot in isolation, or would require more expensive robots to achieve the same goals as
effectively as the swarm does – see, e.g, [4, 33] for some examples.

While understanding individual robot behavior is easy, predicting the overall swarm behavior is
difficult, and thus engineering controllers for individual robots that will guarantee a desired swarm
behavior is not a straightforward task. Traditionally, the analysis of swarms is carried out either by testing
real robot implementations, or by computational simulations [20, 22]; however, these approaches provide
little guarantees as they suffer from intrinsically incomplete coverage. As suggested by many authors,
higher levels of assurance in swarm behavior can be obtained via formal methods [32, 30, 16, 5, 18, 23].
However most approaches abstract away details about the continuous dynamics of the robots, which may
indeed be crucial for the emergence of desired behaviors.

In this paper, we fill this gap by investigating the problem of providing assurance guarantees for swarm
robotic systems through mixed discrete-continuous formalisms. In particular, we propose to use hybrid
automata [14] to define richer models of swarms and employ tools for reachability analysis to overcome
the incomplete coverage of testing and simulation. Here we report on the application of reachability
analysis of hybrid automata to verify a controller developed for swarm applications. Modeling challenges
are discussed, together with features and limitations of tools for reachability analysis. Our contributions
can be summarized as follows:
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• Applying hybrid automata modeling and reachability analysis as a method to formally engineer
robot swarms; to the extent of our knowledge, this is the first contribution in this direction.

• Modeling and analyzing a simple but realistic swarm robotic system entailing synchronization
without central coordination.

• Discussing challenges together with new solutions proposed to overcome modeling and scalability
issues.

The remainder of this paper is organized as follows. Section 2 introduces background notions on
swarm systems and their verification. Section 3 contextualizes the analysis of robot swarms as hybrid
systems and Section 4 presents our case study, together with experimental results. Finally, Section 5
provides concluding remarks and future directions of research.

2 Background

2.1 Swarm Robotic Systems

A robot swarm can be defined as a specific kind of distributed autonomous mobile robotic system
wherein a set of robots is meant to perform some kind of collective task [29]. This is achieved following
decentralized, behavior-based control rules relying on “social” interactions among the robots.

A swarm can be characterized as in [4]: robots are autonomous; they are situated in an environment
and act to modify it; robot’s sensing and communication capabilities are local; robots do not have access to
centralized control and/or global knowledge and cooperate to accomplish a task. The cooperation among
robots happens in different ways, including explicit communication through, e.g., a wireless network, or
implicitly through stigmergy [2], i.e., robots sense changes made by other robots, and then adjust their
behavior accordingly. In any case, the collective behavior is not predefined to any extent at the global level,
but it is most likely to be emergent, i.e., the result of several local robot-to-robot and robot-to-environment
interactions. While the definition of “emergence” has been the subject of different contributions, here we
take as working definition the one given in [25] asserting that emergent behaviors are characterized by
two properties: (i) they are manifested by global states or time-extended patterns which are not explicitly
programmed in, but result from local interactions among a system’s components; (ii) they are considered
interesting based on some observer-established metric.

In this work we study emergent behaviors within swarms of MarXbots [3], mobile robots that have
been conceived and built through several European projects focusing on swarm – see, e.g, [27]; successful
applications of such robots can be found, e.g., in [10] and [9]. To support our experimentation, we use
ARGOS [31], a simulator designed to efficiently simulate complex experiments involving large swarms
of robots, developed within the same European projects mentioned above.

2.2 Formal Verification of Swarms

To the best of our knowledge, the first contribution along this line of investigation is [32], wherein the
authors investigated the applicability of formal methods to the verification and validation of spacecraft
using swarm technology. More specifically, they considered a number of approaches including Commu-
nicating Sequential Processes (CSP), process algebras, X-machines and Unity Logic. However, their
conclusion at the time of the contribution (2004) was that none of the approaches had all the properties
required to assure correct behavior and interactions of swarms in the context of the ANTS (Autonomous
Nano Technology Swarm) concept mission. In [30], agent-oriented software engineering is investigated to



S. Schupp, F. Leofante, L. Behr, E. Ábrahám, A. Taccella 63

provide support for the development of swarm robotics systems, still in the context of the ANTS mission.
However, no mention related to assuring behaviors is to be found in the contribution which is largely
confined to model-based design and implementation techniques. A series of papers by Dixon et al. – see,
e.g., [16] for the most recent contribution in the series – explores the potential of modeling robot swarms
using a composition of (probabilistic) finite state machines and of proving swarm-level requirements
using model checking of (probabilistic) temporal logic. Noticeably, in the case of probabilistic models
and logic, the model of each single robot controller is very close to the actual implementation, and model
checking of relevant properties is reported to be feasible for swarms of relatively small size – less than 4
robots according to the experiments in [16].

The problem of verifying swarm systems and their emergent properties was also considered more
recently in [18, 17, 23, 24], where a number of techniques have been proposed to improve the scalability
of existing verification algorithms. However, these approaches abstract away the physical dynamics of
the robots of the environment, which may be determinant for the emergence of unforeseen behaviors.
In robotics, this is more than just an abstract principle, because the implements are physical agents that
can damage the environment, and thus should be subject to stringent requirements – see, e.g., ISO/TC
299 published standards about safety requirements for various kinds of robots. Collective behaviors may
sometimes emerge not only from the current state of the single robots, but also from the continuous
dynamics in time and space. In order to model such complex properties, discrete transitions as well as
continuous dynamics must be included in the formal model. For this reason, in this work we elaborate on
the choice of hybrid automata as a modeling formalism.

3 Hybrid Systems Reachability Analysis

The approaches discussed in the previous section abstract the physical components of robots and simplify
their interaction with the environment. Indeed, all robotic systems are a combination of programmed
digital controllers and implements – sensors and actuators – interfacing with the physical world. Therefore,
an accurate model of robot operation should include both the (discrete) control states and the (continuously)
varying physical quantities. In the case of robot swarms, we believe that failing to take into account the
physical components, may hamper our ability to determine whether the swarm will behave correctly at all
times. Hybrid automata are a well-established formalism to model systems combining discrete states and
continuously varying quantities, and methods for their verification have been successfully developed.

3.1 Hybrid Automata

Definition 1 (Hybrid automaton: Syntax [14]) A hybrid automaton H =(Loc,Var,Flow,Inv,Edge,Init)
is a tuple consisting of:

• A finite set Loc of locations or control modes.

• A finite ordered set Var = {x1, . . . ,xn} of real-valued variables; we also use the vector notation
~x = (x1, . . . ,xn). The number n is called the dimension of H . By ˙Var we denote the set {ẋ1, . . . , ẋn}
of dotted variables (which represent first derivatives during continuous change), and by Var′

the set {x′1, . . . ,x′n} of primed variables (which represent values directly after a discrete change).
Furthermore, PredX is the set of all predicates with free variables from X.

• Flow : Loc→ PredVar∪ ˙Var specifies for each location its flow or dynamics.

• Inv : Loc→ PredVar assigns to each location an invariant.
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driving

ẋ = vcos(θ)
ẏ = vsin(θ)

θ̇ = w
ẇ = 0
˙clock = 1

clock ≤ 0.1

x = 0∧ y = 0∧
θ = 0∧w = 1
clock = 0

clock ≥ 0.1
w′ :=−w
clock′ := 0

Figure 1: Hybrid automaton for a differential drive robot with constant speed v = 1.

• Edge ⊆ Loc×PredVar×PredVar∪Var′ ×Loc is a finite set of discrete transitions or jumps. For a
jump (l1,g,r, l2) ∈ Edge, l1 is its source location, l2 is its target location, g specifies the jump’s
guard, and r its reset function, where primed variables represent the state after the step.

• Init : Loc→ PredVar assigns to each location an initial predicate.

An example hybrid automaton that models a differential drive robot driving a chicane is depicted in
Figure 1. The system has 5 variables used for describing the relevant physical quantities of the robot
(position, steering and angular velocity). An initial variable assignment (initial set) specifies the initial
conditions of the system. The automaton has one control mode (driving) modeling the continuous
behavior of the robot which is specified by ordinary differential equations (ODEs). The continuous
behavior inside the location is limited by the invariant on the variable clock. This variable models a timer,
which guards the only transition in the model. As soon as the guard condition clock ≥ 0.1 is satisfied, the
transition is enabled and can be taken.

The state of a hybrid automaton is specified by a pair (l,~v) ∈ Loc×Rn of a location and a variable
valuation. The evolution of a hybrid system over time can be described by a run in the respective hybrid
automaton, which includes both continuous evolution (flow) and discrete state changes (jump). The formal
semantics of a hybrid automaton is defined as follows.

Definition 2 (Hybrid automaton: Semantics) The operational semantics of a hybrid automaton H =
(Loc,Var,Flow, Inv,Edge, Init) of dimension n is defined by the following rules:

l ∈ Loc ~v,~v′ ∈ Rn

f : [0,δ ]→ Rn df/dt = ḟ : (0,δ )→ Rn f (0) =~v f (δ ) =~v′

∀ε ∈ (0,δ ). f (ε), ḟ (ε) |= Flow(l) ∀ε ∈ [0,δ ]. f (ε) |= Inv(l)

(l,~v) δ→ (l,~v′)
Rule flow

e = (l,g,r, l′) ∈ Edge ~v,~v′ ∈ Rn ~v |= g ~v,~v′ |= r ~v′ |= Inv(l′)
(l,~v) e→ (l′,~v′)

Rule jump

A path of H is a (finite or infinite) sequence (l0,~v0)
δ0→ (l1,~v1)

e1→ (l2,~v2)
δ2→ (l3,~v3)

e3→ (l4,~v4)
δ4→ . . . with

(li,~vi) states of H, δi ∈ R≥0, ei ∈ Edge, and ~v0 |= Init(l0)∧ Inv(l0). A state (l,~v) is reachable in H if

there is a path (l0,~v0)
δ0→ (l1,~v1)

e1→ (l2,~v2)
δ2→ . . . of H with (l,~v) = (li,~vi) for some i≥ 0.

Paths defined over states naturally generalize to paths over state sets (l,V ) = {(l,~v) |~v ∈ V} for

V ⊆Rn: a symbolic path (l0,V0)
δ0→ (l1,V1)

e1→ (l2,V2) . . . represents the set of all paths (l0,~v0)
δ0→ (l1,~v1)

e1→
(l2,~v2) . . . with~vi ∈Vi for all i.
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The above formalism can be extended with urgent jumps, which force the control to take a jump as
soon as an urgent jump is enabled. In graphical illustrations, we mark urgent jumps with a star. In our
models, in the source locations of urgent jumps no time can pass, thus urgency could be modeled by
introducing a fresh clock with derivative 1, resetting it to 0 when entering the location, and adding an
invariant stating that the variable value is 0. However, some approaches can analyse reachability more
efficiently when using urgent jumps.

To model compositional hybrid systems involving communication between the components, we use
the parallel composition of hybrid automata. Besides shared variables, we can model communication by
annotating jumps with synchronization labels. Semantically, time evolves in all components in parallel;
a jump of a component can be taken only if all components that have the given label take a jump with
that label simultaneously. Thus when building the parallel composition syntactically as a single hybrid
automaton, a composed jump needs to be added for each possible combination of synchronizing jumps.
Therefore, in general, the size of the composition increases exponentially not only in the number of
locations, but also in the number of jumps.

3.2 Reachability Analysis

Once a hybrid automaton model of a given hybrid system has been formalized, we are interested in
analyzing its behavior. Given that the hybrid systems we are considering are physical agents that can act
and modify the environment, we want to enforce stringent safety requirements upon their behavior. Such
requirements can be formalized as sets of states to be avoided in the state space of a hybrid automaton.

The reachability problem for hybrid automata is the problem to decide whether a given state (or any
state from a given set) is reachable in a hybrid automaton. As the reachability problem for hybrid automata
is in general undecidable, some approaches aim at computing an over-approximation of the set of reachable
states of a given hybrid automaton. We focus on approaches based on flowpipe-construction, which
iteratively over-approximate the set of reachable states by the union of a set of state sets – see e.g. [11] for
further details. To represent a state set, typically either a geometric or a symbolic representation is used.
Geometric representations specify state sets by geometric objects like boxes [28], (convex) polytopes [40],
template polyhedra [34], zonotopes [13], or ellipsoids [19], whereas symbolic representations use, e.g.,
support functions [21] or Taylor models [7]. These representations might have major differences in
the precision of the representation (the size of over-approximation), the memory requirements and the
computational effort needed to apply operations like intersection, union, linear transformation, Minkowski
sum or test for emptiness.

For a given initial state set p, flowpipe-construction-based approaches first over-approximate the
set of states reachable from p via time evolution. Time evolution is usually restricted to a time horizon
(either per location or for the whole execution), which is divided into smaller time segments. The time
successors (called the flowpipe) from p are over-approximated by a sequence of state sets p1, . . . , pk
(flowpipe segments), one for each time segment. For each of these, all possible jump successors are
computed and for each jump successor set the whole procedure is repeated iteratively. The algorithm
terminates if either a fixed point is detected, or the time horizon is reached, or a maximal number of jumps
(jump depth) have been considered, or if all successor sets are empty (i.e. there are no jump successors
from the flowpipes). The union of all computed state sets over-approximates reachability within the given
time and jump bounds. A non-exhaustive list of software implementations of flowpipe-construction-based
methods includes CORA [1], FLOW* [8], HYCREATE [15], HYPRO [36] and SPACEEX [12].

The resulting over-approximations for time- and jump-successor states for all reachable paths (over
state sets) can be collected in the reachability tree in which nodes represent time-evolution and the
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(a) (b)

(c) (d)

Figure 2: Synchronization in the simulator.

parent-child relation between nodes represents a discrete jump. Note that since the method computes
over-approximations of sets of reachable states, consequently only over-approximations of paths over
state sets are computed and stored in the reachability tree. Thus it may happen, that the reachability tree
contains sub-trees which are not reachable in the hybrid system model, but are only included due to the
over-approximation. For further details on the reachability tree we refer to [35].

4 Case Study

This section presents our analysis pertaining the application of hybrid systems verification techniques to
a case study in swarm robotics. In the following we introduce the problem considered, together with a
discussion on modeling and verification in the hybrid setting.

4.1 Synchronization without Central Coordination

Problem description. Mutual synchronization is a natural phenomenon whereby a population of indi-
viduals synchronize over a common behavior and act in perfect unison among themselves – see, [6, 38, 39]
for some examples. Interestingly, achieving such mutual synchronization requires a cooperative effort,
which is undertaken without any central coordination between individuals. In this experiment we re-
produce the behavior of pulse-coupled oscillators as described in [26] and implemented in the ARGOS
simulation environment (see Figure 2). The model involves a population of n MarXbots [3], each of
which is equipped with an LED. For i ∈ {1, . . . ,n}, the ith robot is characterized by a clock xi subject to
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xi =
i−1

n

waiti

ẋi = 1
xi ≤ f

adapti

ẋi = 0

flash j 6=i

x′j := α · x j

xi ≥ f
x′i := 0?

xi < f

?flashi
xi ≥ f
x′i := 0

(a) First instance of model using label synchro-
nization (lsync I).

xi =
i−1

n

waiti

ẋi = 1
xi ≤ f

adapti

ẋi = 0

flash j 6=i

x′i := α · xi

flashi

xi ≥ f

return
xi ≥ f
x′i := 0?

return
xi < f

?

(b) Refined instance using label synchro-
nization with synchronized return to wait
(lsync II).

Figure 3: Models of one robot in the synchronization benchmark using label synchronization; jumps
marked with a star are urgent, double arrows represent a set of synchronizing jumps, one for each j 6= i.

the continuous dynamics ẋi = 1, which applies as long as 0≤ xi ≤ f for some firing threshold f ∈ R>0.
When xi = f , robot i flashes its central LED and xi is reset to zero by a discrete event. Robots interact by
a simple form of pulse coupling: when robot i flashes, all other robots are pulled towards firing according
to the following relation for some α ∈ R>1:

xi = f =⇒ x j :=
{

α · x j if α · x j < f
0 otherwise

for all j ∈ {1, . . . ,n}\{i} (1)

Note that Eq. 1 only describes the update of the clocks – neither the flashing nor implicit flashing of
a robots’ LED whenever the clock is reset to 0 is described. These properties have to be added to the
model to make them observable. Despite the simple model, the problem of pulse coupling represents a
good example of how global swarm behaviors can emerge in distributed systems without being explicitly
specified by individual control algorithms. Indeed, a global synchronization of flashing behaviors is
achieved – i.e., all clocks are synchronized – even though this is not explicitly imposed by individual
controllers.

Modeling. We propose several approaches on how to model the synchronization problem composition-
ally. Each robot is modeled by a hybrid automaton Hi such that the swarm behavior for a swarm of size n
is modeled by a hybrid automaton H obtained by parallel composition H = H1|| . . . ||Hn of the single
components. In the following we will discuss the different approaches in detail. All approaches model the
case distinction of Eq. 1 via separate jumps to reflect the respective clock updates.
Label synchronization. The first hybrid automaton model for a single robot ri is shown in Figure 3a. It
has two control modi waiti and adapti. To model the system using label synchronization, we introduce
synchonization labels flashi, i = 1, . . . ,n. Initially, the clocks xi of the robots ri start with different values
in the location waiti. When the clock valuation of robot ri reaches f , in the respective automaton a
transition with label flashi gets enabled; the invariant assures that time cannot further evolve. If the
jump with label flashi is taken, ri resets xi to 0 and returns to its waiti mode, all other robots r j, j 6= i
synchronize and take their jump with the label flashi simultaneously to their adapt j mode. Note that
for each robot r j, there is a jump from wait j to adapt j with label flashi for each i 6= j, we denote this
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xi =
i−1

n
z = 0

waiti

ẋi = 1
ż = 0
x ≤ f

adapti

ẋi = 0
ż = 0

flashi

ẋi = 0
ż = 0

sync1
xi < f
z = 1

x′i := α · xi

sync2
xi ≥ f
x′i := 0
?

sync2

xi < f

?

xi ≥ f
x′i := 0,z′ := 1

sync1
z = 1

z′ := 0?

sync2
z = 0

?

(a) First model using shared variables (shd I).

xi =
i−1

n
z = 0

waiti

ẋi = 1
ż = 0
x ≤ f

adapti

ẋi = 0
ż = 0

sync1
z = 1∧ xi < f

x′i := α ·xi,z′ := 0

x = f
x′i := 0,z′ := 1

sync2
xi ≥ f ∧ z = 0

x′i := 0
?

sync2

xi < f ∧ z = 0

? sync1
z = 1

z′ := 0

?

(b) Reduced instance using shared variables
(shd II).

Figure 4: Hybrid automata modelling a single robot in the synchronization benchmark using a shared
variable z for synchronization. Urgent transitions are marked with a star.

in Figure 3a by a double-lined arrow. Due to enabled urgent jumps back to wait j, time cannot pass in
adapt j, but all robots r j, j 6= i will return using one of their two jumps, modeling the two cases in Eq. 1.

While this model for a single component is relatively simple, using a large number of synchronizing
transitions has a strong impact on the size of the parallel composition, as the number of transitions
drastically increases with the number of robots (see Table 1). Especially, after synchronizing on flashi,
all robots r j, j 6= i will return from adapt j to wait j before time can further pass. However, since this
returning is not synchronized, it can happen in all possible interleaving order, which adds unnecessary
complexity. As an improvement, we could apply partial order reduction by introducing a fixed order of
execution for returning. However, in this special case we can even synchronize all returning transitions,
which results in the improved model lsync II shown in Figure 3b. In this model, we implement
the desired behavior by making the returning jumps synchronized on the label return. Note that such
simplifications need to be carefully designed to assure semantical equivalence, and are hard to automate.
In our example, since robot ri will also have the label return, it also needs to move to adapti in order not
to block the others, and will return using the jump with guard xi ≥ f .
Shared variables. Our previous models have two main drawbacks: Firstly, they have a large number of
jumps. Secondly, modeling a robot requires full information about the total number of components (and
their respective synchronization labels), which does not allow for a generic approach. To achieve a model
with less jumps and where single components do not require any prior knowledge about the full system,
we make use of shared variables. The idea is not to distinguish on which of the robots flashes, but use a
shared flag z to model the fact that at least one of the robots flashes. Our first model using shared variables
is shown in Figure 4a. Starting with z = 0 initially, once the clock xi of robot ri reaches the threshold f
it flashes, which is modeled by a jump from waiti to a new location flashi, which sets z to 1 to model
that a flashing took place. This location has an enabled urgent jump, thus time cannot proceed further.
All other robots that flash at the same time need to move to their flash mode first, in order to be able to
synchronize among all the robots on the label sync1; the execution of these synchronized steps adapt the
clocks of the non-flashing robots (that move to their adapt mode) and set z back to 0 (on the self-loop of
the flashi mode). A second step synchronizes again all robots, this time on the label sync2, to get back
to their wait mode.
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Table 1: Number of locations (#locs.) and transitions (#trans.) in the resulting automata for different
numbers of robots (#robots).

#robots
version 1 2 3 4 5 6 7 8

#locs.
lsync I 2 3 7 15 31 63 127 255
lsync II 2 3 4 5 6 7 8 9
shd I 3 7 15 31 63 127 255 511
shd II 2 4 8 16 32 64 128 256

#trans.
lsync I 3 6 33 164 755 3310 14077 58728
lsync II 3 6 15 36 85 198 455 1032
shd I 6 18 54 162 486 1458 4374 13122
shd II 5 13 35 97 275 793 2315 6817

Note how the use of a shared variable allowed us to abstract away from the identity of the flashing
robot(s): instead of introducing an individual synchronization for the flashing of each of the robots, any
flashing robot can set the flag z and trigger the same synchronization process. Note furthermore that this
flag is indeed needed to correctly implement this abstraction: when we would remove it, all robots could
adapt (move from waiting to adapting) without any flash happening. Finally, observe that this shared
flag allowed to strongly reduce the number of jumps locally in the components as well as globally in the
composition, as we do not need to distinguish on the flashing robot’s identity any more.

A reduced version shd II, shown in Figure 4b, uses a similar mechanism but unifies the locations
adapti for adaption and flashi for setting the synchronization flag into one location to reduce the parallel
composition’s size.

To compare our approaches we have created models for the synchronization benchmark for up to 8
robots using all presented approaches. Statistics about the resulting hybrid automata are listed in Table 1.
From our results we can observe, that the natural approach via label synchronization (lsync I) creates a
high number of transitions in the resulting composed automaton while keeping the number of locations
low. Applying the optimization (lsync II) which effectively collects sequences of urgent transitions
into a single urgent transition, reduces the number of transitions drastically. The versions using shared
variables (shd I + II) produce results with less transitions, e.g., edges for the return to wait are collected
by a synchronization label (sync2) and thus create one jump in the parallel composition.

Reachability analysis results. Figure 5 shows the flowpipes for a system with three robots and parame-
ters chosen to illustrate how the synchronization occurs and that the analysis is working with sets of states
rather than single trajectories. The right image emphasizes a phenomenon that arises from the latter fact.

In Table 2 the running times for our experiments with different numbers of robots using the different
modeling approaches can be found. The initial clock valuations for robots ri were chosen as i−1

n as
indicated in the models.

4.2 Scalability Improvements

Our results so far are unsatisfactory in two ways: first, the number of robots is limited to at most seven and
second, the jump depth limit of 20 does not allow to verify that synchronization across all robots occurs.
In Sections 4.2.1 and 4.2.2 we apply two optimizations to increase the number of robots the analysis can
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Table 2: Running times for different numbers of robots using f = 1,α = 1.1 (time step size: δ = 0.01,
jump depth: 20, state set representation: boxes). Timeout (TO) is 2 minutes.

# robots
version 1 2 3 4 5 6 7 8

lsync I 0.12 0.11 0.13 0.21 1.02 64.6 TO TO
lsync II 0.12 0.11 0.12 0.14 0.25 2.96 146 TO
shd I 0.11 0.11 0.12 0.16 0.48 9.88 TO TO
shd II 0.11 0.11 0.13 0.19 0.75 16.85 TO TO
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Figure 5: Overlayed flowpipes for a system of 3 robots for f = 100,α = 1.1 (local time horizon 110 sec.).
Right: excerpt showing clock adaption after flashing.

handle and then in Section 4.2.3 we optimize precision to allow us to increase jump depth and verify
synchronization for a limited number of robots.

We focus on the lsync II model because with the label synchronization approach, synchronization
is limited to discrete jumps via labels which we believe increases our chances of success. Focusing on this
model allows for several improvements as we show in the next sections. We briefly describe the techniques
we use and show intermediate results to illustrate the resulting effect. Each technique is independent from
the others and is generalizable for the analysis of any linear hybrid automaton, although the effectiveness
depends on the structure of the input. In the following experiments, first we have used unique initial
states to examine scalability and to analyze the source of imprecision; in Section 4.2.3 we will extend our
experiments to sets of initial states.

4.2.1 Compositional Analysis

Instead of computing the parallel composition of the input automata for each robot eagerly, our aim is to
perform an on-the-fly, decomposed analysis. We start with only the initial states and then lazily compute
the reachable parts of the automaton as we discover them. This helps to cope with the size of the resulting
automaton, as we do not construct locations that are not reached within the bounded analysis and only
construct transitions from reachable locations.

We also compute the continuous successors of each automaton individually, i.e., a flowpipe for
each automaton where each flowpipe consists of state sets over only the variables of the corresponding
automaton, similar to our previous approach in [37]. In the specific case of the synchronization problem,
we obtain n flowpipes as intervals, since each automaton has only one variable. This reduces the dimension
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Table 3: Running time in seconds and number of nodes in reachability tree for n robots with f = 1,
α = 1.3, time step size δ = 10−5 and max jump depth of 20. Transition enumeration is not optimized.
Deduplication (see Section 4.2.3) is used. Timeout (TO) is 2 minutes.

n = 1 3 5 7 9 11 13 15 17 19 21 23 25

time 5.21 3.56 4.08 6.69 7.13 6.43 15.5 13.0 9.54 8.51 27.3 36.7 TO
nodes 21 21 21 21 21 21 40 30 21 21 28 21 NA

of the state sets, but also reduces precision as we will see next.

Precision. Since we separate the variables of the component automata and operate in separate sub-
spaces, we lose information on the relation between the variables. This can be illustrated by the following
example.

Assume we are using a representation that can exactly describe the trajectories of linear functions,
such as oriented boxes or polytopes. Given two robots from our synchronization problem modeled as
in lsync II, using a single composed state space built from variables x1,x2 and starting with initial
valuation (0, 1

2)⊆ R2. After taking a time step of δ = 1
2 all reachable valuations are contained in the set

{(x,x+ 1
2) | 0≤ x≤ 1

2}. Intersecting this set with x2 ≥ 1 results in the singleton set {(1
2 ,1)}. In contrast

to this, when working with separate state spaces, we obtain [0, 1
2 ]× [1

2 ,1] as the set of reachable valuations.
Due to the missing relation between the separate state spaces (in this case the relation x2 = x1 +

1
2 ), the

intersection with x2 ≥ 1 gives [0, 1
2 ]× [1,1].

Note that here the resulting state sets are the same as when using a box representation in the original,
composed state space, but the approach does not allow for the sensible use of more precise representations
in our case since the problem is one-dimensional in each sub-space. In higher-dimensional sub-spaces,
more precise state set representations may improve precision within each subspace but do not affect the
loss of information when synchronizing sub-spaces via Cartesian product.

Results. In Table 3 the running times and number of nodes in the generated reachability tree for different
swarm sizes are shown. The loss of precision that we previously discussed can contribute to branching in
the reachability tree as this potentially allows for discrete non-determinism when several transitions are
enabled. More concretely, if there are reachable state sets with a clock value below and above f in the
location adapt, then successors of both return transitions must be considered, which causes exponential
branching behavior. To circumvent this, we use a very small time step of δ = 10−5—nonetheless some
branching still occurs, which is indicated by node numbers larger than 21.

The compositional approach has already improved the scalability of the analysis, but an exponential
number of transitions is still enumerated, causing running times to increase beyond feasibility for larger
time horizons or more robots, even when using small initial state sets or even point-sets. Next we look at
a way to avoid this exponential explosion.

4.2.2 Optimized Transition Enumeration

Until now, scalability has been impeded by the exponential number of transitions leading from the
composed adapt location to the wait location. Each of the n automata may take either of its two return
transitions, which leads to 2n transitions in the composed system. However, when considering the actual
reachable states of the automata, we observe that in almost all cases only one of the transitions is enabled
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Table 4: Running time in seconds and number of nodes in reachability tree for n robots with f = 1,
α = 1.3, δ = 10−5 and max jump depth of 20. Transition enumeration is optimized. Deduplication (see
Section 4.2.3) is used.

n = 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400

time 13.6 3.67 4.18 3.97 4.04 6.34 7.13 13.6 4.44 5.16 9.54 19.0 19.5 23.3 12.5 33.1
nodes 21 22 22 22 22 27 30 22 22 22 41 40 40 46 30 26

for each automaton. As we are constructing the jump successors lazily, i.e., we construct them after
computing the continuous successors in form of a flowpipe, the information needed to check which
transitions are enabled is available to us.

To use this information we chose an arbitrary, but fixed order for the automata. Based on this order,
we iteratively determine for each of the transitions (in our example the two return transitions) which
flowpipe segments enable the jump in the current automaton. For each transition with one or more
enabling segments, we then check for the next automaton which transitions the corresponding segments
(synchronized by time) of its flowpipe enable to iteratively restrict the number of segments enabling the
considered jump. We enumerate all combinations of transitions with enabling segments in all automata,
but do not consider combinations for which there is not a segment enabling the respective jump in each
automaton.

In our case this means that we construct exactly one transition from the composed adapt location to
the composed wait location, unless there is branching due to loss of precision, as mentioned above.

Results. In Table 4 we see the results of the same experiment as before, but with the transition enumera-
tion optimization applied. Clearly, the scalability has greatly improved. Notably, the branching behavior
has not fundamentally changed and the maximal jump depth is still set to 20, meaning we can not verify
synchronization. Increasing the jump depth leads to more branching because more jumps are made and
also because precision keeps decreasing with every jump as over-approximation errors accumulate.

4.2.3 Explicit Time Dimension and Successor Deduplication

To recover the information on the correlation of variable valuations in the different automata, we introduce
a variable in each automaton that tracks the time, i.e., its initial value is zero and its derivative is one.
When determining the sets of states that enable a transition on which multiple automata synchronize,
which is true for all transitions in our example, we know that the time at which the transition is taken must
be the same in all automata. We use this by projecting the enabling sets of all synchronizing automata on
their time dimension to obtain a time interval during which the transition is enabled. We then intersect
these intervals, since all automata must be allowed to jump at the same time, and intersect the enabling
sets of the automata with the resulting time interval. For this to be effective, we use a representation that
can precisely describe the relation between time and each automaton’s own variable—here we choose
template polyhedra with an octagonal template (i.e., polyhedra in half-space representation where the
normal vectors are fixed).

For our example from Section 4.2.1 this means that for the automaton starting at x1 =
1
2 , we obtain

the point interval [1
2 ,

1
2 ] for the time during which the transition with guard x≥ 1 is enabled. Intersecting

the other automaton’s enabling segment with this gives us the point interval [1
2 ,

1
2 ] for its value of x2, i.e.,

we are able to fully recover the lost information on the relation of the variables.
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Table 5: Running time in seconds and number of nodes in reachability tree for n robots with f = 1,
α = 1.3, δ = 0.01 and termination once synchronization was detected. We used transition enumeration
optimization, transition deduplication and an explicit time dimension.

n = 40 80 120 160 200 240 280

time 24.08 47.79 81.56 80.45 104.1 112.4 232.1
nodes 52 54 58 48 56 52 58

Successor deduplication. We can now increase the jump depth to verify the synchronization of the
robots’ clocks. But the non-determinism that occurs when the clocks do actually synchronize still limits
scalability: Since multiple robots may flash at the exact same time and the transition synchronizes on
the flash-event of a specific robot i, each of the automata can take the transition with label flashi, i.e.,
represents the robot that triggers the flash, or “follows” another robot via the transition labeled flash j 6=i.

However, it effectively does not matter which automaton takes which transition, since they all end
up in adapt and their valuations are all modified in the same way. Cases like this can be identified by
identical resets on (synchronized) transitions, i.e., several transitions with the same reset function. Note
that while this is generalizable, it makes sense to combine transitions in which the enabling segments
overlap—otherwise the approach will introduce additional over-approximation.

In our example, since all those transitions are taken during the same time interval and all of those
transitions apply the same reset function, applying the reset function on the union of segments enabling
the transitions has the same effect as applying it individually on each enabling segment. As a result,
we can resolve the ambiguity between robots which flash simultaneously and produce only one discrete
successor which significantly reduces the branching in the resulting reachability tree.

Results. In Table 5 we have changed the time step, as it does not need to be as small as before to
counteract imprecision. We also removed the cap on jumps and instead terminate when we detect that all
automata are synchronized. Thus the number of nodes corresponds to twice the number of flashes needed
to establish synchronization, as each flash requires taking two jumps (from wait to adapt and back).

It is clear that the more sophisticated representation of template polyhedra and overhead of projections
increase running times by a noticeable factor, but the desired property of clock synchronization can still
be shown for large swarms in reasonable time.

Note that until now we have used point-sets for each clock of each automaton as our first goal was
to increase scalability of the general reachability analysis for composed systems and to understand the
reasons for the loss of precision and exponential blow-up caused by compositional analysis. As we could
show synchronization for these cases after adding several features based on our observations, we next ran
our experiments with a setup where the clock valuations of the automata are taken from intervals. The
results for different widths of initial sets and different values for α are shown in Table 6 using breadth-first
search and in Table 7 using depth-first search.

We can see that while our previous improvements seemed promising in the sense that they re-
duced the exponential blow-up in discrete jumps caused by the compositional analysis, the introduced
non-determinism from reasonably-sized initial sets still poses a large problem when trying to prove
synchronization via flowpipe-construction-based reachability analysis. From the tables we can see, that
the non-determinism results in large search trees, which render the analysis infeasible—the running time
for single nodes seems negligible, since runs where the search tree has a reasonable size still terminate in
less than a second.
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Table 6: Running time in seconds and number of nodes in reachability tree for 1−3 robots with f = 1,
time step size δ = 10−5 and max jump depth of 10000 using breadth-first search. Transition enumeration
is optimized. Deduplication (see Section 4.2.3) is used.

robots 1 2 3
width ver. dpth. nodes time ver. dpth. nodes time ver. dpth. nodes time

α = 1.3
1/100 1 1 2 0 1 17 18 0 0 40 12721 60
1/50 1 1 2 0 1 17 26 0 0 38 12899 60
3/100 1 1 2 0 1 21 54 0 0 32 14179 60

α = 1.2
1/100 1 1 2 0 1 29 30 0 0 70 11095 60
1/50 1 1 2 0 1 33 66 0 0 46 12050 60
3/100 1 1 2 0 1 37 230 0 0 34 13468 60

α = 1.1
1/100 1 1 2 0 1 77 192 0 0 68 10625 60
1/50 1 1 2 0 1 101 1055 0 0 55 11022 60
3/100 1 1 2 0 1 120 13918 0 0 49 12046 60

Table 7: Running time in seconds and number of nodes in reachability tree for 1−3 robots with f = 1,
time step size δ = 10−5 and max jump depth of 10000 using breadth-first search. Transition enumeration
is optimized. Deduplication (see Section 4.2.3) is used.

robots 1 2 3
width ver. dpth. nodes time ver. dpth. nodes time ver. dpth. nodes time

α = 1.3
1/100 1 1 2 0 1 17 18 0 0 161 9144 60
1/50 1 1 2 0 1 17 26 0 0 137 9252 60
3/100 1 1 2 0 1 21 54 0 0 221 9357 60

α = 1.2
1/100 1 1 2 0 1 29 30 0 0 289 8803 60
1/50 1 1 2 0 1 33 66 0 0 231 9155 60
3/100 1 1 2 0 1 37 230 0 0 211 8883 60

α = 1.1
1/100 1 1 2 0 1 77 192 0 0 113 7853 60
1/50 1 1 2 0 1 101 1055 0 0 133 7562 60
3/100 1 1 2 0 1 341 11436 0 0 111 7258 60

5 Conclusion

In this paper we have shown how algorithms and tools for the verification of hybrid systems could be
employed to analyze controllers for swarm robotics. Reachability analysis via flowpipe-construction was
used as the basis for the verification of global swarm behavior. Experimental results show the potential of
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our approach, nevertheless, several challenges are yet to be addressed in order to increase the applicability
of such technique to robotics. Modelling proved to be a challenging task: as observed in our case study,
even for a simple system there are manifold ways to create a model which reflects its behavior. While
theoretically equivalent, our results show a strong impact of the modeling on the scalability of the analysis
of the resulting model. In this context, we have shown several improvements which can be generalized
to other problems which allow to partially overcome the scalability issues related to compositional
models. Our experimental evaluation indicates the strong effect of those optimizations in a well-controlled
environment and even allow to prove properties in some cases. However, our results also indicate, that
there is room for improvement, especially when we want to go beyond computing reachability in an
over-approximative way but instead want to use results to prove properties for setups which are less
controlled (i.e., exhibit more non-determinism, here reflected by larger initial configurations). We hope
this work will stimulate further investigations in this exciting and uncharted direction.

Future work. Based on our case study we have shown approaches to improve scalability for composi-
tional models. Several ways of further improving our method can be foreseen.

One direction for future work aims at implementing the lazy construction of locations and transitions
while still using a single unified state space or potentially even clustering automata into several state
spaces. This would allow us to effectively use precise representations while still dealing well with a
large number of locations and transitions. We see that the optimizations as shown in Section 4.2.2 can
be generalized also for non-decomposed state spaces in compositional models which may represent a
middle-ground between running time and precision for composed models using label synchronization.
Furthermore, in this case study we solely focused on label synchronization while shared variables were
neglected. Investigating dedicated techniques in this area may be another interesting thread of research,
for instance, handling shared discrete variables separately may already prove useful.
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[3] Michael Bonani, Valentin Longchamp, Stéphane Magnenat, Philippe Rétornaz, Daniel Burnier, Gilles Roulet,
Florian Vaussard, Hannes Bleuler & Francesco Mondada (2010): The MarXbot, a Miniature Mobile Robot
Opening New Perspectives for the Collective-robotic Research. In: Proc. of IROS’10, IEEE, pp. 4187–4193,
doi:10.1109/iros.2010.5649153.

[4] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari & Marco Dorigo (2013): Swarm Robotics: a Review from
the Swarm Engineering Perspective. Swarm Intelligence 7(1), pp. 1–41, doi:10.1007/s11721-012-0075-2.

[5] Manuele Brambilla, Carlo Pinciroli, Mauro Birattari & Marco Dorigo (2012): Property-driven Design for
Swarm Robotics. In: Proc. of AAMAS’12, IFAAMAS, pp. 139–146.

[6] John Buck (1988): Synchronous Rhythmic Flashing of Fireflies. The Quarterly Review of Biology 63(3), pp.
265–289, doi:10.1086/394562.

[7] Xin Chen, Erika Abraham & Sriram Sankaranarayanan (2012): Taylor Model Flowpipe Construction for
Non-linear Hybrid Systems. In: Proc. of RTSS’12, IEEE, pp. 183–192, doi:10.1109/rtss.2012.70.

[8] Xin Chen, Erika Abraham & Sriram Sankaranarayanan (2013): Flow*: An Analyzer for Non-linear Hybrid
Systems. In: Proc. of CAV’13, LNCS 8044, Springer, pp. 258–263, doi:10.1007/978-3-642-39799-8 18.

https://doi.org/10.1109/tro.2014.2312453
https://doi.org/10.1007/978-94-010-0870-9_63
https://doi.org/10.1109/iros.2010.5649153
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1086/394562
https://doi.org/10.1109/rtss.2012.70
https://doi.org/10.1007/978-3-642-39799-8_18


76 Robot Swarms as Hybrid Systems: Modelling and Verification

[9] Frederick Ducatelle, Gianni A. Di Caro, Carlo Pinciroli & Luca Maria Gambardella (2011): Self-organized
Cooperation between Robotic Swarms. Swarm Intelligence 5(2), pp. 73–96, doi:10.1007/s11721-011-0053-0.

[10] Eliseo Ferrante, Manuele Brambilla, Mauro Birattari & Marco Dorigo (2010): Socially-Mediated Negotiation
for Obstacle Avoidance in Collective Transport. In: Proc. of DARS’10, Springer Tracts in Advanced
Robotics 83, Springer, pp. 571–583, doi:10.1007/978-3-642-32723-0 41.

[11] Goran Frehse (2015): An Introduction to Hybrid Automata, Numerical Simulation and Reachability Analysis.
In: Formal Modeling and Verification of Cyber-Physical Systems, Springer, pp. 50–81, doi:10.1007/978-3-
658-09994-7 3.
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