
E. Ábrahám and S. Bogomolov (Eds.): 3rd International
Workshop on Symbolic and Numerical Methods for Reachability
Analysis (SNR 2017)
EPTCS 247, 2017, pp. 52–70, doi:10.4204/EPTCS.247.5

c© Yingfu Zeng, Ferenc Bartha & Walid Taha
This work is licensed under the
Creative Commons Attribution License.

Compile-Time Extensions to Hybrid ODEs

Yingfu Zeng
Rice University, Texas, USA

yz39@rice.edu

Ferenc Bartha
Rice University, Texas, USA

Ferenc.A.Bartha@rice.edu

Walid Taha
Halmstad University, Sweden

Walid.taha@hh.se

Reachability analysis for hybrid systems is an active area of development and has resulted in many
promising prototype tools. Most of these tools allow users to express hybrid system as automata
with a set of ordinary differential equations (ODEs) associated with each state, as well as rules for
transitions between states. Significant effort goes into developing and verifying and correctly imple-
menting those tools. As such, it is desirable to expand the scope of applicability tools of such as far
as possible. With this goal, we show how compile-time transformations can be used to extend the
basic hybrid ODE formalism traditionally supported in hybrid reachability tools such as SpaceEx or
Flow*. The extension supports certain types of partial derivatives and equational constraints. These
extensions allow users to express, among other things, the Euler-Lagrangian equation, and to cap-
ture practically relevant constraints that arise naturally in mechanical systems. Achieving this level
of expressiveness requires using a binding time-analysis (BTA), program differentiation, symbolic
Gaussian elimination, and abstract interpretation using interval analysis. Except for BTA, the other
components are either readily available or can be easily added to most reachability tools. The pa-
per therefore focuses on presenting both the declarative and algorithmic specifications for the BTA
phase, and establishes the soundness of the algorithmic specifications with respect to the declarative
one.

1 Introduction

Reachability analysis for hybrid systems [2] is an active area of development and has resulted in many
promising prototype tools. Prominent examples of such tools include CHARON [3], HyTech [18],
PHAVer [13], dReach [22], dReal [15], SpaceEx [14], and Flow*[7]. Most of these tools allow users
to express hybrid systems as automata with a set of ordinary differential equations (ODEs) associated
with each state, as well as rules for transitions between states. In particular, ODEs must be in the explicit
form where the left hand side of an equality has to be the derivative of a state variable. Significant effort
goes into verifying and correctly implementing those tools. As such, it is desirable to expand the scope
of applicability tools of such as far as possible.

1.1 Contributions

With this goal, we present a systematic method to translate an expressive language with partial deriva-
tives and equations to a standard language supporting ODEs, guards, and reset maps. The method can
be used to extend reachability analysis tool such as SpaceEx or Flow*. An experimental implemen-
tation of the proposed technique is available in the freely available, open source Acumen language
implementation [1]. Examples illustrating the use of these extension can be found in the directory
examples/04_Experimental/04_BTA. Since both partial derivatives and equations are elimi-
nated completely after the compile-time transformation, the user benefits from the added expressivity
but the underlying tools do not need to change. The two extensions allow the user to express, among
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other things, the Euler-Lagrangian equation, and to capture practically relevant constraints that arise nat-
urally in mechanical systems. Achieving this level of expressivity requires using a binding time-analysis
(BTA) [20, 17, 8, 24], program differentiation, symbolic Gaussian elimination, and abstract interpreta-
tion using interval analysis. Except for BTA, the other components are either readily available or can
be easily added. The technical part of the paper therefore focuses on presenting both the declarative
and algorithmic specifications for the BTA phase, and establishes the soundness of the algorithmic with
respect to the declarative.

After reviewing related work on compile-time extensions (Section 2), we introduce the syntax and
type system for a core differential equation language (Section 3). Then, we present a declarative specifi-
cation of binding-time analysis (BTA) and a big step semantics for specialization (Section 4), along with
a formal proof of type safety (Theorem 1). We then present an algorithmic specification of the BTA that
works by first generating a set of constraints and then attempting to solve them (Section 5), and we show
that this algorithmic specification is faithful to the declarative BTA (Lemma 12) and always produces
a unique minimum solution that maps as much of the code as possible to static if an assignment exists
(Theorem 2). To illustrate the practical value of the formalism, we present two case studies that have
been carried out using the implementation (Appendix A).

2 Related Work

Binding-time Analysis (BTA) is a static analysis traditionally supported in the offline partial evaluation of
general purposes languages. It works by identifying a two-level structure in the program being analyzed,
where the first level is a computation that can be done at “partial evaluation time” (“compile time” in our
case), and the second level must be left as a “residual” that is executed at runtime. BTA has generally
been studied for general purpose languages. In our setting, we study it in the context of Domain Specific
Languages (DSLs) [19, 23, 30] intended for modeling hybrid systems. It should also be noted that our
primary purpose is to use it for extending expressivity. Partial evaluation, in contrast, is only concerned
with improving the runtime performance of programs. In what follows, we elaborate on these key points.

A key idea in the work we present in this paper is that there are powerful techniques from the pro-
gramming languages community that can help make reachability tools more broadly applicable. To do
this, this work uses two-level languages in a novel way. To put the existing related work in context,
it is useful to consider several characteristics relating to the language considered and the transforma-
tion used, namely, whether the language is domain-specific (or general purpose), whether it supports
equations, whether the transformation is done at compile-time (or runtime), whether the tool performs
let-insertion (to avoid code duplication), whether the language is statically typed, and whether the tool
provide accurate source level error reporting. The systems that we will consider are partial evaluation
systems for C, namely, C-mix [16] and Tempo [10]; template instantiation mechanisms, namely, C++
Templates [11] and Template Haskell [27]; multi-stage programming languages, namely, MetaOCaml
[11] and LMS [25]; the Verilog Preprocessor [26]; and the hybridization technique [4].

Table 1 provides an overview of how these different systems related to these key properties. The
main observations from the table are as follows. Almost all tools are compile-time (except MetaOCaml),
and almost all are statically checked (except C++ Templates). A key feature of static checking is that
it facilitates accurate source-level reporting. That is primary reason for choosing an approach based on
BTA or some type of static analysis. Compile-time program specializers, such as C-Mix and Tempo fo-
cus on automatically specializing a program through a well understood set of transformations to produce
a program that is faster than the original one. There are no fundamental reasons why specialization (and
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Table 1: Comparison of Compile-time Transformation

Static
checking

Source level
reporting

Compile-
time

Domain-
specific

Let
insertion

Equations

C-Mix Yes - Yes No Yes No
Tempo Yes Yes Yes No Yes No
C++ Tem-
plate

No No Yes No - No

Template
Haskell

Yes Yes Yes No - No

MetaOcaml Yes Yes No No No No
LMS Yes - No No Yes No
Verilog
preprocessor

Yes Yes Yes Yes - No

Hybridization Yes - Yes Yes - No
This paper Yes Yes Yes Yes Yes Yes

two-level languages) need to be limited to general purpose languages. In fact, as this paper shows, they
can be quite useful as they can be used to increase expressivity. Let-insertion was invented in the partial
evaluation community, and is adopted by automated tools by LMS (but not be explicit tools like MetaO-
Caml). It is quite critical when there are significant compile-time computations, as is the case when we
are trying to eliminate non-trivial constructs like partial derivatives or performing substantial manipula-
tions to turn equations into formulae. However, none of these works address the question of supporting
equations, that is, allowing the user to write constraints in equational form, and then translating them
directly into “formula” form for directed evaluation. Our work is comparable to that of HyST [5], which
is a tool that aims to facilitate interchange of models between different tools. This way, HyST facilitates
sharing of models and comparing solvers. In contrast, our work explores another dimension for reuse,
namely, how these tools can be extended to support a more flexible and expressive modeling formalism.

3 A Differential Equation Language (Acumen-17)

Fig. 1 introduces the syntax and type system for a core differential equation language called Acumen-17.
We use the following notational conventions:

- Writing 〈e j〉 j∈1...m denotes a vector 〈e1,e2, ...,em〉. We will occasionally omit the superscript j ∈
{1...m} and write 〈e j〉 when the range of j is clear from context.

- Writing {e j} j∈1...m denotes a set {e1,e2, ...,em}, and we write A]B for A∪B when we require that
A∩B = /0.

The set Names is a finite countable set of names, and we use n to denote elements of this set. We use
i to range over natural numbers, q to range over rationals, and t to range over booleans.

Similarly, we introduce the natural number i drawn from the set of natural numbers N, rational q from
rational number set Q and lastly boolean values t from {true, false}, denoted by B. Variables are either
a name n or a name followed by a number of primes (′). Type terms represent naturals, reals, Booleans,
and products, respectively. A type environment is a partial function from variables to type terms. We
treat environments as graphs of functions or as functions.
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Syntax
n ∈ Names, i ∈ N, q ∈Q and t ∈ B

Constant k ::= i | q | t
Variable x ::= n | x′
Type τ ::= nat | bool | real | ∏

j∈1..m
τ j

Type Environment Γ = {x j : τ j} j∈1...m such that whenever xi = x j then i = j
Function f ::= + | - | × | / | ˆ | && | || | > | >= | == | != | sin | cos
Expression e ::= k | x | 〈e j〉 j∈1...m | e1(e2) | f (e) | d

dt e | ∂

∂e2
e1

Equation s ::= x = e | e1 = e2, e1 6≡ x | x+ = e | if e then s1 else s2 | ∀n ∈ e. s | {s j} j∈1...m

Γ ` e : τ

Γ ` i : nat Γ ` q : real Γ ` t : bool
n : τ ∈ Γ

Γ ` n : τ

x′ : real ∈ Γ x : real ∈ Γ

Γ ` x′ : real

Γ ` e j : τ j

Γ ` 〈e j〉 j∈1...m : ∏
j∈1..m

τ j

Γ ` e1 : ∏
j∈1..m

τ j

Γ ` i : nat i < m
Γ ` e1(i) : τi

Γ ` e1 : ∏
j∈1..m

τ

Γ ` e2 : nat

Γ ` e1(e2) : τ

Γ ` e : ∏
j∈1..m f

τ f , j

f : ∏
j∈1..m f

τ f , j→ τ

Γ ` f (e) : τ

Γ ` e : real
Γ ` d

dt e : real

Γ ` e1 : real Γ ` e2 : real

Γ ` ∂

∂e2
e1 : real

Γ ` s

Γ ` e1 : τ Γ ` e2 : τ

Γ ` e1 = e2

Γ ` x : τ Γ ` e : τ

Γ ` x+ = e
Γ ` e : bool Γ ` s1 Γ ` s2

Γ ` if e then s1 else s2

Γ ` e : ∏
j∈1..m

τ Γ,n : τ ` s

Γ ` ∀n ∈ e . s

Γ ` s j

Γ ` {s j} j∈1...m

Figure 1: Syntax and Type system for Acumen-17

Function names f are drawn from a fixed set containing basic operators. Expressions include con-
stants, variables, vector expressions, vector indexing, function application, time derivatives, and partial
derivatives. Derivatives can be applied to both expressions and variables. The time derivative on a vari-
able, for example x′′, has special status, in that it can both be used in expressions to mean the value of
the derivative at a given time and can also be equated to a value. When there is a constraint that equates
a time derivative of a variable to a value, the effect is that integration is used to compute the value of
the variable itself. In principle, in an equational language, if a symbolic expression for the variable is
known, the derivative variable can be determined from that expression. In practice, it is generally rare
that a closed form expression for the result of a simulation is known. Instead, it is more common to
have the value of the derivative known, and then numerical integration is used to compute the value of
the variable itself. The partial derivative ( ∂

∂e2
e1) is an operator that takes two expressions and returns

the result of the first expression differentiated with respect to the second expression. The ASCII-based
syntax is expr’[expr]. For two scalars, the result is simply the first expression partially differenti-
ated with the second one. If one expression is a scalar, and the other a vector, the operator is applied
component-wise. Allowing arbitrary expressions e2 instead of just variables in partial derivatives, allows
us to express things like the Euler-Lagrange equation directly.

The first type of equations is a continuous equation. In processing such equations, we distinguish
between two cases, one where the left hand side is a variable, and the other when the left hand side is
not a variable. This will be used to illustrate that the formalism is able to accommodate languages where
equations need not be directed. The second type of equation is the discrete assignment. “x is reset to e”.
Discrete assignments are essential for modeling hybrid systems, where instantaneous changes of a value
(resets) can occur in juxtaposition to continuous dynamics. The third type of equations is a conditional
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equation, which allows us to express the choice between which of two equations holds depending on the
boolean condition given as an expression. The fourth kind of equations is a universal quantification, and
it provides a concise way of describing the dynamics of a system that has a family of state variables.
The variable introduced by this construct may only be an unprimed name. The last construct is a set of
equations {s j} j∈1...m.

3.1 Type System

A Acumen-17expression e has type τ under environment Γ when the judgement Γ ` e : τ is derivable
according to the rules presented in Fig. 1. The rules for natural, real, and boolean constants are straight-
forward. The rule for unprimed names is simple environment lookup. The rule for primed variables,
however, requires that both primed and unprimed variables have type real. The rule for vector construc-
tion is also straightforward. Vector indexing is a bit more interesting, as it treats the case when the index
is a literal as a special case, allowing elements to have different types. This makes it possible to use
vectors both for tuples and for (homogeneous) vectors. Function applications assume that we have a
function n f that determines the arity of the function f , and a function τ f , j that determines the type of the
jth argument to the function. Partial derivatives have straightforward rules. The rules for equations are
straightforward. Finally, environment extension of environment Γ1 with the binding x : τ , written Γ1,x : τ

is an environment Γ2 defined as follows:

Γ2(y) =

{
τ if y = x,
Γ1(y) otherwise.

3.2 Example: A Lagrangian Model

For a variety of technical reasons, researchers working on novel robotic systems tend to make extensive
use of the Lagrangian method. It is especially useful in the case when the system being described has
more than one state variable. Then modeling using Lagrange employs families of equations, which are
written as one equation but really represent a collection of different equations derived by instantiating
certain indices. Figure 2(a) provides the Acumen-17 model of a second order nonlinear system shown in
Figure 3. It consists of a pendulum hanging from a mass, which is attached through a spring to a wall.

Figure 3: A Pendulum Spring-
Mass system.

As the system has two degrees of freedom, x and θ , the example
introduces a vector of state variables q. The Euler-Lagrange equation
that appears at the end of the example is expressed by the family of
equations. In Figure 2(a), the ∀ quantifier is used to introduce the in-
dex variable for a family of equations. In the ASCII-based syntax, the
keyword foreach represent this quantifier. The intent is to express as
concisely and as close to what would typically appear in a mechanics
textbook:

d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= 0 where

q = (x,θ),

i ∈ {1,2}.

This notation generally has a syntactic interpretation, that is, the
name contained in the ith element of the vector is looked up. In other
words, this family of equations literally represents the following two
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Figure 2: Compiling Pendulum/Mass Example

(a) Latex-style Acumen-17 Source for Pendulum/Mass
Example

q = (x,θ),a = 1,m = 2,M = 5,g = 9.8,

k = 2, I = 4
3 ma2,L = T −V,

T = 1
2(M+m)ẋ2 +maẋθ̇ cos(θ)+ 2

3 ma2θ̇ 2

V = 1
2 kx2 +mga(1− cos(θ)),

∀i ∈ {1...|q|)}, d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= 0

(b) After Binding-Time Analysis (BTA)

q = (x,θ),a = 1 , ...I = 4
3 ma2

∀i ∈ {1...|q|)} , d
dt

(
∂L

∂ q̇i

)
− ∂L

∂qi
= 0

(c) After Specialization (Implicit ODEs)

q = (x,θ),a = 1, ...I = 8
3

2cos(θ)θ̈ −2sin(θ)θ̇ 2 +7ẍ+2x = 0

98
5 sin(θ)+2cos(θ)ẍ+ 8

3 θ̈ = 0

(d) After Symbolic Gaussian
Elimination (Explicit ODEs)

A = sin(θ),B = cos(θ),

ẍ = 2(Aθ̇ 2−x)−Bθ̈

7

θ̈ =
−686

5 A−4B(Aθ̇ 2−x)
56
3 −4B2

equations:
d
dt

(
∂L
∂ ẋ

)
− ∂L

∂x
= 0 and

d
dt

(
∂L
∂ θ̇

)
− ∂L

∂θ
= 0

The offline partial evaluation strategy enables us to support family of equations and partial differ-
entiation by utilizing the two most important components, namely the binding-time analysis (BTA) and
specialization. A successful BTA annotates the model with instructions for performing certain part of
the computation early and other part for later processing. The annotated model for the pendulum/spring
example is illustrated in Fig. 2(b). In this illustration, computations that remain for further processing
are shaded grey, whereas computations can be performed immediately in the next specialization phase
appear in a white background. The value of a is marked known or static as it is a value, and the BTA
also annotates variable I known for that both m and a are known variables. A more interesting case is
the indexing operator q(i) . Although the state variable vector q being marked unknown, in fact we need
to solve for the values of state variables x and θ in the simulation, we can still perform this operation
statically for the reason that the size of q and the index variable i are known.

The step which performs the work that a BTA schedules is called specialization. The result of spe-
cializing our running example is presented in Fig. 2(c). Computing the value of I is simple rational
arithmetic. The instantiation of a family of equations is essentially a type of iteration, which also re-
places qi by x and θ by vector lookup. In the same time, symbolic time and partial differentiation are
performed using the chain rule. Solving multiple implicit ODEs to explicit form equations is achieved
using an analog of symbolic Gaussian elimination. For our running example, the result of this step is
presented in Fig. 2(d). Abstract interpretation with interval analysis is used to ensure the pivot expression
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is non zero. To control the system, for example, stabilizing the position and the angular displacement,
one can add two PD controllers. The modification to the original model in Fig. 2(a) are as follows:

ux = 100∗ (2− x)+30∗ (0− ẋ),ut = 100∗ (π−θ)+40∗ (0− θ̇),

u = (ut,ux), ∀i ∈ {1...|q|)}, d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= u(i)

The Acumen implementation supports an enclosure simulation semantics that produces rigorous
over-approximations (guaranteed upper and lower bounds) for all simulations [12]. Previously, this im-
plementation only supported a formalism that worked with hybrid ODEs. With the work we presented
here, this implementation can now handle models such as the pendulum spring mass model presented
above. The plot of controlled system are as follows:

(a) θ (b) θ̈ (c) x (d) ẍ

3.3 A Cam and Follower Example

We further demonstrate the expressiveness of the proposed language using the following two case studies.
Transforming rotational motion into any other motions is often conveniently accomplished by means of
a cam mechanism. A cam is defined as a machine element having a curved outline, which by its rotation
motion, gives a predetermined motion to another element, which is often called follower. Fig .4(a) shows
such a cam mechanism, the curved outline of cam r is a function of rotational angle θ , defined as below:

r = (1.5− cosθ

2
)∗ (1+ cos(2θ)

5
)

In the study of various aspects of the follower motion, the velocity and acceleration of the follower are
needed. To get the correct form, the modeler usually has to manually derive the partial derivatives. Fig. 8
in the Appendix shows the mathematical model and the corresponding Acumen-17program. Clearly,
supporting partial derivatives in the language greatly simplifies the modeling task, and can save the
modeler much tedious and error-prone work.

3.4 A Compass Gait Biped Example

The Compass gait biped model [9, 29] is a two dimensional unactuated rigid body system placed on a
downward surface inclined at a fixed angle γ from the horizontal plane. A diagram of the model is shown
in Fig .4(c) with its physical parameters. The configuration of this two-link mechanism can be described
by the generalized coordinates q = [θ1,θ2], where θ1 is the angle from the vertical line to the stance leg
and θ2 is the angle between two legs. It is a hybrid model featuring two phases. At the start of each
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Figure 4: Two Case Studies

(a) Cross section of A Cam and Fol-
lower

Cam

Follower

Guide

Rotation

(b) A Compass Gait Biped [6]

Stance Leg Swing Leg

x

y

θ1

m2

2

m1

3

m1
1

θ2

γ

l

step, the system is governed by its continuous dynamics until the swing leg hits the ground. The discrete
event can be modeled as an inelastic collision conserving angular momentum. The stance and swing legs
switch instantaneously during the collision and go into the next step after.

3.4.1 Continuous Dynamics and Discrete Event

The continuous phase of this system can be modeled using the same Lagrange method shown earlier.
Let point (xi,yi) denote the position of centralized masses shown in Fig .4(b), form which its easy to
define the kinetic and potential energy of the system. Applying the same Lagrange equation shown in
Equation 1 with q = (θ1,θ2), we have the dynamic equations of the system during the swing phase. The
perpendicular distance from the walking surface to the tip of the swing leg is given by

guard = lsinγ(sinθ1 + sin(θ2−θ1))

Where γ is the slope of the ground. Impact occurs when the tip of the swing leg hits the walking
surface in a downward direction, which can be describe as follows: guard ≤ 0∧ ˙guard < 0. Using
conservation of angular momentum [6], the explicit solution of post impact velocities can be determined.
Fig. 8 in the Appendix shows the mathematical model and the full Acumen-17model. This example
shows the proposed formalism can support a direct mapping from mathematical model to simulation
code for a hybrid system model with complex dynamics.

4 BTA and Specialization for Acumen-17

This section presents a declarative specification of the binding-time analysis (BTA) and specialization
process for Acumen-17, and proves the correctness (type-safety) of the BTA with respect to the special-
ization process.
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Binding Time b ::= S | D
Expression eb ::= kb | xb | (〈e

b j

j 〉 j∈1...m)b | eb
1(e

b
2)

b | f (eb)b | ( d
dt eb)b | ( ∂

∂eb2
2

eb1
1 )b

Equation sb ::= (xb = eb)b | (x+b
= eb)b | (eb

1 = eb
2)

b, e1 6≡ x
| (if eb then sb

1 else sb
2)

b | (∀nb ∈ eb. sb)b | ({sb j
j }

j∈1...m)b

Binding Time type τb ::= natb | boolb | realb | ( ∏
j∈1..m

τ
b j
j )b

Binding Time Environment Γb = {x j : τ j
b j} j∈1...m and xi = x j =⇒ i = j

Γb ` ib : natb Γb ` qb : realb Γb ` tb : boolb
nb : τb ∈ Γb

Γb ` nb : τb
x′b : realb ∈ Γb xD : realD ∈ Γb

Γb ` x′b : realb

Γb ` eb j
j : τ

b j
j b = tb j

Γb ` (〈eb j
j 〉

j∈1...m)b : ( ∏
j∈1..m

τ
b j
j )b

Γb ` eb
1 : ( ∏

j∈1..m
τ

b j
j )b

Γb ` iS : natS i < m

Γb ` eb
1(i

S)bi : τ
bi
i

Γb ` eb1
1 : ( ∏

j∈1..m
τb1)b1

Γb ` eb2
2 : natb2

b = b1tb2

Γb ` eb1
1 (eb2

2 )b : τb

f : ∏
j∈1..m f

τ f , j → τ

Γb ` eb : ( ∏
j∈1..m f

τ
b j
f , j)

b

Γb ` f (eb)b : τb
Γb ` eb : realb

Γb ` ( d
dt (e

b))b : realb

Γb ` e1 : realb1 Γb ` e2 : realb2

b = b1tb2

Γb ` ( ∂

∂eb2
2

eb1
1 )b : realb

xb : τb ∈ Γb Γb ` eb : τb

Γb ` (xb = eb)b
Γb `: x : τb1 Γb ` e : τb2

Γb ` (xb1+ = eb2)b2

Γb ` eb1
1 : τb1 Γb ` eb2

2 : τb2 b = b1tb2

Γb ` (eb1
1 = eb2

2 )b

Γb ` e : boolb Γb `: sb1
1 Γb ` sb2

2 b3 = btb1tb2

Γb ` (if eb then sb1
1 else sb2

2 )b3

Γb ` e : ( ∏
j∈1..m

τb j )b1

Γb,n : τb1 ` sb2

Γb ` (∀n ∈ eb1 . sb2)b2

Γb ` sb j
j b = tb j

Γb ` ({sb j
j }

j∈1...m)b

Figure 5: Binding Time Analysis for Acumen-17

4.1 BTA

BTA is the analysis performed in an offline partial evaluation system to determine, given some early or
“static” inputs to a program, which of the program’s computation can be done at an early stage [20].
Fig. 5 gives a declarative specification of the BTA. There are two binding times S and D, representing
“static” and “dynamic” computations, respectively. Static is for compile-time computations that are
done before the simulation starts, and dynamic is for computations done during the simulation proper.
Expressions, equations, types, and type environments are all annotated with binding times.

The changes to the derivation rules are largely straightforward. Essentially, binding times are prop-
agated with types. In addition, when multiple subexpressions occur, their binding times are combined
using the least upper bound operator t which returns static only if all arguments are static, otherwise re-
turns dynamic. However, for vector indexing, when the index expression is static and the subexpressions
dynamic, we will still perform the look up operation. Finally, the rule for primed variable requires the
unprimed variable with the same name to be dynamic. And in the rule for vector indexing with a literal,
where the literal is annotated as static, the binding time of the expression is the same as the corresponding
entry.
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4.2 Specialization

Fig. 9 in Appendix presents the big-step semantics for the specialization process. Values include constant
with static annotation, dynamic expression and vector of values. Normal form equations are straight-
forward, with the absence of universal quantification equation. The first auxiliary function is used to
compute static function application. The last two are for eliminating total and partial derivatives using
the chain rule. Function FV returns free variables in an expression and function LV extracts the left hand
side variable of a directed equation.

Relation ↪→e essentially specializes all subexpressions to values then combines them according to
their binding times. Function application with static binding time returns the evaluation result of the
corresponding function. Vector indexing with static index performs look up operation statically, even if
the vector itself has dynamic binding time. Total and partial derivatives get eliminated statically using
different rules depending on the what their subexpressions specialized to. The rules for relation ↪→s are
similar. However, they all require that the equation to be specialized does not contain free variables that
are defined in the equations following it. For directed equations, in addition to specializing the right
hand side expression, the rule also substitutes the result into the rest of the equations. Both relations can
also generate err terms, which will be propagated to top level for error reporting. For example, the static
index may be specialized to a natural number that is bigger than the size of the vector. However, one
type of error we do not catch is the case of partial derivative ∂

∂eb2
2

eb1
1 , when eb2

2 can not be specialized to

a variable xb2 . It is analogous to the traditional division by zero error.

4.3 Type Safety

Definition 1. The erasure relation | · | for eb, sb and Γb is defined as follows:

|eb|= e |sb|= s |Γb|(x) = τ if Γ(x) = τ

Lemma 1 (Erasure preserves typablity). ∀Γb,eb,sb

Γ
b ` eb : τ

b⇒ |Γb| ` |e| : τ

Γ
b ` sb⇒ |Γb| ` |s|

Proof. By induction on the derivation of Γb ` eb : τb and Γb ` sb, respectively.

Lemma 2. Substitution type preservation ∀Γb,
x,e,s,τ .

Γb ` vb1 : τb1 ∧ Γb,x : τb1 ` e : τb2

=⇒ Γb ` e[x := vb1 ]b2 : τb2

Γb ` vb1 : τb1 ∧ Γb,x : τb1 ` sb2

=⇒ Γb ` s[x := vb1 ]b2

Proof. By induction on the derivation of Γb ` eb : τb and Γb ` sb respectively.

Lemma 3 (Type Preservation). ∀Γ,Γb,e,s,τ.

Γ
b ` eb : τ

b∧ eb ↪→e vb =⇒ Γ
b ` vb : τ

Γ
b ` sb∧ sb ↪→s wb =⇒ Γ

b ` wb
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Lemma 4. Static value ∀Γb,e.
Γ

b ` vS : natS =⇒ |vS|= i

Γ
b ` vS : boolS =⇒ |vS|= t

Γ
b ` vS : realS =⇒ |vS|= q

Proof. When the binding time of a value vb is static, by the definition, v can only be a constant or a
vector of constants. And by typing rules in Fig. 5, we can prove the lemma above.

Theorem 1. Type safety of specialization Let ΓD denote {x j : τD} j∈1...m and ∀ΓD,e,s,b,vb,wb

Γ
D ` e : τ

b∧ eb ↪→e r =⇒ r 6= err∧Γ
D ` r : τ

b

Γ
D ` sb∧ sb ↪→s r =⇒ r 6= err∧Γ

D ` r

Due to the page limits, the proof can be found in Section 1 of the supplementary document.

5 Algorithmic Specification

This section presents an algorithmic specification of the BTA. First we introduce the constraint type and
the constraint generation function. We proceed by providing a normalization method that guarantees
to find the unique minimal solution, if one exists. At last, we show that specification is faithful to the
declarative BTA.

5.1 Generating Binding Time Constraints

Fig. 6 defines Label l, which can be root or a label indexed by a natural number. For example, let
the label of equation x = 1 be l, and the label for x and e be l1 and l2 respectively. A Binding Time
Expression B can be static, dynamic or a label. A constraint c is a partial order v between two binding
time expressions. Constraint is satisfied in three cases Sv D,Sv S and Dv D.

5.2 Control Flow and Control Scope

Because of conditional equations, a variable may have a different binding time depending on where it
appears. For example:

x = 1, if t < 5 then y = x else y’ = x

The value of x is statically known for both branches but value of y is only static in the first branch. To
handle the control scope issue, we build an auxiliary global environment while labeling the program.

Definition 2. A total map π : Variable→ Label ∪ D is called local environment.

Definition 3. A map ρ : l→ π is called global environment. To look up the defining label of a variable
x inside scope l0, we first find the corresponding local environment π , then apply variable x in it. That is
to say ρ(l0)(x), we abbreviate it to ρ(l0,x) in the rest of this section.
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Let ∆ : s→ ρ be a construct function that takes a equation s and returns a global environment defined
as follows, assuming the label of each equation is l, the scope is l0 and starting global environment be ρ:

∆(l0,{s j} j∈1...m,ρ) = ∆(l0,{s j} j∈2...m,∆(l0,s1,ρ))

∆(l0,{x = e}l,ρ) = ρ ] (l0→ ρ(l0)] (x→ l1))

∆(l0,{if e then s1 else s2}l,ρ) =
ρ ]∆(l2,s1,ρ)]∆(l3,s2,ρ)

When constructing a global environment, the starting scope label l is root, and changed to the label
of branches when inductively constructing inside a conditional equation. The example above has the
following global environment:

{root→{x→ root11}, root22→{x→ root11,y→ root2211,}
root23→{x→ root11,y′→ root2311}}

Definition 4. C = {c j} j∈1...m is called a constraint set. The labels of C are defined as

Labels(C) = {l | ∃B st l v B ∈C or Bv l ∈C}.

C is in normal form if for all c ∈C, one of the following is true:

c≡ Sv l, c≡ l v D, c≡ l v l̃

and is of error form if D v S ∈ C. The sets of C in normal form and of error are denoted by NF and
Error, respectively.

Fig. 6 defines function [[·]] that takes e in scope l0 and global environment ρ returns a constraint set. It
generates a constraint l v S for constant k. For an unprimed variable n, it generates a constraint between
the occurrent label l and the definition label in the global environment ρ(l0,n). For variable with primes
x′, additional constraints between D and labels of all its lower derivatives in the global environment are
added. For 〈e j〉, e1(e2), f (〈e j〉), d

dt (e) and ∂

∂e2
e1 , we generate constraints between label of e and all its

subexpressions ei, that is
⋃

i{li v l}. Then inductively apply [[·]] to all the subexpressions.
Function [[·]] for equation is defined in a similar way. In the case of directed equation n = e and x′ = e,
the binding time of corresponding definition label depends on right hand side expression e, captured by
l1 v ρ(l0,n) and l1 v ρ(l0,x′) respectively. For x+ = e, e1 = e2 and {s j}, the binding time depends on
subexpressions and sub-constraints. In the case for if e then s1 else s2, it changes the scope label from l0
to l2 and l3 when inductively apply [[·]] to s1 and s2. In the case of ∀n ∈ e, s, it adds a new mapping from
binding variable into the global environment ρ when inductively generate constraint from s.

Definition 5. A map σ : Label→ Binding time is called a substitution, and σ is the identity function
on labels not in domain of σ . As Label is finite, domσ = {l1, ..., ln}. Thus, σ may be described by
[l1 7→ σ(l1), . . . , ln 7→ σ(ln)].
Given two substitutions σ and σ̃ , the extension of σ with σ̃ is defined as σ B σ̃ : domσ ∪ domσ̃ →
Binding time such that

σ B σ̃(l) =

{
σ(l) if l ∈ domσ ,

σ̃(l) otherwise.
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Syntax
Label l := root | li where i ∈ N

Binding Time Expression B := b | l
Constraint c := Bv B

Satisfied Constraint ` c := ` Sv D | ` Sv S | ` Dv D

Constraint Generation Function

Input e Output [[e]]l0,l,ρ

k {l v S}

n {ρ(l0,n)v l, l v ρ(l0,n)}

x′ [[x]]l0,l1,ρ ∪{ρ(l0,x
′)v l,Dv l1}

〈e j〉 j∈1...m ⋃
j∈1...m[[e j]]l0,l j ,ρ

⋃
j∈1...m{l j v l}

e1(e2) [[e1]]l0,l1,ρ ∪ [[e2]]l0,l2,ρ

∪{l1 v l, l2 v l}

f (e) [[e]]l0,l1,ρ ∪{l1 v l}
d
dt e [[e]]l0,l1,ρ ∪{l1 v l}
∂

∂e2
e1 [[e1]]l0,l1,ρ ∪ [[e2]]l0,l2,ρ

∪{l1 v l, l2 v l}

Input s Output [[s]]l0,l,ρ

x = e [[x]]l0,l1,ρ ∪ [[e]]l0,l2,ρ
∪{l1 v l, l2 v l, l2 v l1}

x+ = e [[e]]l0,l2,ρ ∪{l2 v l}

e1 = e2,e1 6= x [[e1]]l0,l1,ρ ∪ [[e2]]l0,l2,ρ

∪{l1 v l, l2 v l}

if e then s1 [[e]]l0,l1,ρ ∪ [[s1]]l2,l2,ρ ∪ [[s2]]l3,l3,ρ

else s2 ∪{l1 v l, l2 v l, l3 v l}

∀n ∈ e . s [[n]]l0,l1,ρ ∪ [[s]]l0,l3,ρ[(l0,n)7→l1]

∪[[e]]l0,l2,ρ ∪{l2 v l1} ∪{l3 v l}

{s j} j∈1...m ⋃
j∈1...m[[s j]]l0,l j ,ρ

⋃
j∈1...m{l j v l}

Figure 6: Constraint Generation

Definition 6. A substitution σ is a solution to C if for all c ∈C it holds:

c≡ B1 v B2 =⇒` σ(B1)v σ(B2)

We denote this by σ `C. The substitution σc is a minimum solution to C, denoted by σc `min C, when

• σc `C,

• domσc = Labels(C),

• σ `C, l ∈ Labels(C) =⇒` σc(l)v σ(l).

Lemma 5 (Uniqueness of minimal solution).

∀C,σ1,σ2. σ1,σ2 `min C =⇒ σ1 = σ2.

Proof. We readily have that domσ1 = Labels(C) = domσ2 . As both ` σ1(l)v σ2(l) and ` σ2(l)v σ1(l)
hold for all l ∈ Labels(C), the equality σ1(l) = σ2(l) follows from definition of Satisfied Constraint.

Lemma 6 (Existence of solutions).

C ∈ NF =⇒ ∃!σc. σc `min C.

Proof. Consider C∈NF . Define a substitution σc as [l1 7→ S, . . . , ln 7→ S], where Labels(C)= {l1, . . . , ln}.
As σc clearly solves all constraints of the form l v l̃,Sv l or Dv l with l, l̃ ∈ NF , it is a solution σc `C.
The minimality follows from domσc = Labels(C) and from the fact that both ` Sv S and ` Sv D.
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5.3 Normal Form and Normalization

Redex Result

C ∈ C σ C̃

a) C0∪{Sv S} → [ ] C0

b) C0∪{SvD} → [ ] C0

c) C0∪{DvD} → [ ] C0

d) C0∪{l v S} → [l 7→ S] [l 7→ S](C0)

e) C0∪{Dv l} → [l 7→D] [l 7→D](C0)

Figure 7: Constraints Normalization (→)

Lemma 6 shows how the minimum solution for a normal
form constraint set can be found. This section presents a set
of rewrite rules that transform any constraint set to the cor-
responding normal form, thus making the solution easy to
find. In Fig. 7, a set of normalizing rewrite rules are shown.

Definition 7. For a C ∈ C the application of a normaliza-
tion rewrite rule from Fig. 7 returns a constraint set C̃ and
a substitution σ . We denote this by C →σ C̃. Exhaustive
application is denoted by C→? σ C̃k.

Lemma 7 (Termination). For all C, C̃, and σ , whenever
C→σ C̃ then |C̃|< |C|.

Proof. By inspecting Fig. 7, it is obvious that every rule re-
duces the number of constraints by one.

Lemma 8 (Solution preservation).

C→σ C̃ ∧ σ̃ ` C̃ =⇒ σ B σ̃ `C.

Proof. By case analysis of the normalization rewrite rules. a), b), c): Since σ is the empty substitution,
it is clear that σ B σ̃ = σ̃ . As Labels(C) = Labels(C̃), it follows that σ B σ̃ `C.
d), e): The constraint removed from C is solved by σ . Thus, σ̃ ` σ(C) follows from σ̃ ` C̃. As
Labels(σ(C)) = Labels(C̃) and domσ ∩Labels(C̃) =∅, we obtain σ B σ̃ `C.

Lemma 9 (NF or Error). For all C and C̃, whenever C→∗ σ C̃ then

C̃ ∈ NF ∨ C̃ ∈ Error.

Proof. By definition of exhaustive application, no rewrite rule can apply to C̃, then only four types of
constraints may appear in C̃. Namely Sv l, l v D, l v l̃ or Dv S. If Dv S is present, then C̃ ∈ Error,
else C̃ ∈ NF .

Lemma 10 (Minimal solution preservation).

C→σ C̃ ∧ σc̃ `min C̃ =⇒ σ Bσc̃ `min C.

Proof. Lemma 8 implies that σc = σ Bσc̃ ` C. To show minimality first note that domσc = domσ ∪
Labels(C̃) = Labels(C) with the union being disjoint. Now assume that l ∈ Labels(C), σ̃ ` C and
consider the following two cases.
l ∈ Labels(C̃): Clearly σ̃ ` C̃. As σc̃ is minimal, ` σc̃(l) v σ̃(l). Thus, from σc(l) = σc̃(l) we get that
` σc(l)v σ̃(l).
l ∈ domσ : σ was obtained by applying rule e) or d). Thus, either σc(l) = σ(l) = S or σc(l) = σ(l) =
D= σ̃(l). In both cases ` σc(l)v σ̃(l) holds.

Theorem 2 (Unique minimal solution).

C→∗ σ C̃ ∧ C̃ ∈ NF =⇒ ∃!σc. σc `min C.
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Proof. We obtain σc̃ such that σc̃ `min C̃ from Lemma 6. By definition we have that ∃k∈N and σ1, . . . ,σk
such that C→σ1 C̃1 →σ2 . . .→σk C̃k = C̃ and σ = σ1 B . . .Bσk. Thus, by introducing C̃0 = C, we get
σi B . . .Bσk Bσc̃ `min C̃i−1 for all 1≤ i≤ k from Lemma 10. Thus, σc `min C with σc = σ Bσc̃.

Combine Theorem 2 and Lemma 5, the minimal solution to any constraint set can be found as follows:
first normalize the constraint set by applying constraint rewrite rules in figure 3, and then find the unique
minimal solution to the normal form constraint set. The composition of the substitutions is the minimal
solution.

5.4 Binding Time Analysis Correctness

Lemma 11 (Completeness). Consider a binding time type environment such that Γb(xi) = τ
bi
i , and

ρ(l0,xi) ∈ Labels. Then, ∀e,s,b:

• Γb ` e : τb =⇒ ∃!σ .σ `min [[e]]l0,l,ρ ∧ σ(l)v b

• Γb ` sb =⇒ ∃!σ .σ `min [[s]]l0,l,ρ ∧ σ(l)v b

Lemma 12 (Soundness). Consider a typing environment such that Γ(xi) = τi, and ρ(l0,xi) ∈ Labels.
There exists a binding time environment such that |Γb|= Γ and

• ∀ e. Γ ` e : τ ∧ σ `min [[e]]l0,l,ρ =⇒ Γb ` e : τσ(l)

• ∀ s. Γ ` s ∧ σ `min [[s]]l0,l,ρ =⇒ Γb ` sσ(l)

The proofs for the two lemmas above are in Section 2 of the supplementary document.

6 Conclusions and Future work

In this paper we showed how the basic hybrid ODE formalism can be extended to support certain types
of partial derivatives and equational constraints. The treatment is generic and so can be applied to any
hybrid systems reachability analysis, and has been implemented in the context of the Acumen modeling
language. Interesting future work includes investigation of more advanced type systems[28, 21] that can
ensure that a dynamic value is a variable so that we can build a type system that is able to detect all
possible run-time errors that can interfere with the elimination of partial derivatives.
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Cam and Follower

x = (1.5− cos( π

2−θ))
2 )∗ (1+ cos2( π

2−θ)
5 ) x = (1.5-cos(pi/2-t)/2)*(1+cos(2*(pi/2-t)/5))

θ̈ = 1 v = ∂

∂θ
x θ̇ a = v̇ t’’ = 1, v = x’[t]*t’, a = (v)’

Compass Gait Biped

q = [θ1,θ2] m1 = 1 m2 = 2 l = 1 q = (t1,t2), m1 = 1, l = 1, m2 =2,

γ = 0.044 g = 9.8 r = 0.044, g = 9.8,

x1 =
1
2 lsinθ1 y1 =

1
2 lcosθ1 x1 = l/2*sin(t1),y1 =l/2*cos(t1),

x2 = lsinθ2 y2 = lcosθ2 x2 = l*sin(t2), y2 = l*cos(t2),

x3 = x2 +
l
2 sin(θ2−θ1) y3 = y2− l

2 cos(θ2−θ1) x3=x2+l/2*sin(t2-t1),y3=y2-l/2*cos(t2-t1),

L = T −V guard = lsinγ(sinθ1 + sin(θ2−θ1)) L=T-V,guard=l*sin(r)*(sin(t1)+sin(t2-t1)),

T = 1
2 m1(ẋ1

2 + ẏ1
2 + ẋ3

2 + ẏ3
2) T = 1/2*m1*((x1)’ˆ2+(y1)’ˆ2+(x3)’ˆ2+(y3)’ˆ2)

+ 1
2 m2(ẋ2

2 + ẏ2
2) + 1/2*m2*((x2)’ˆ2 + (y2)’ˆ2),

V = m1g(y1 + y3)+m2gy2 V = m1*g*(y1+y3)+m2*g*y2,

H = H−1
1 ·H2 · [θ̇1

−
, θ̇2
−
]T H = inv(H1)*H2*trans((t1’,t2’)),

∀i ∈ {1...|q|)}. d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= 0 foreach i in 0:length(q) - 1 do

L’[(q(i))’]’ - L’[q(i)] = 0 ,

H1 = H1 =

[m1l2( 5
4 −

cosθ
−
2

2 )+m2l2 m1
4 l2(1−2cosθ

−
2 ) ((m1*lˆ2*((5/4-cos(t2)/2)+m2*lˆ2),

m1/4*lˆ2*(1-2*cos(t2))),

m1
2 l2cosθ

−
2

m1
4 l2] ( m1/2*lˆ2*cos(t2), m1/4*lˆ2)),

H2 = [−m1
4 l2 +(m2l2 +m1l2)cosθ

−
2 − m1

4 l2 H2 =
((-m1/4*lˆ2+(m2*lˆ2+m1*lˆ2)*cos(t2),-m1/4*lˆ2),

m1
4 l2 0 ] ( m1/4*lˆ2, 0),

if guard < 0∧ ˙guard < 0 then if guard <0 && (guard)’ then
θ
+
1 = θ

−
2 −θ

−
1 θ

+
2 =−θ

−
2 t1 += t2 - t1, t2 += -t2,

θ̇1
+
= H(0) θ̇2

+
= H(1) t1’ += H(0), t2’ += H(1) noelse

Figure 8: Two Examples Problems in Mathematical Notation and in Acumen Syntax
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Value vb ::= kS | eD | 〈vb j
j 〉

j∈1...m

Normal Form Equation wb ::= (xb = vb)b | (x+b
= vb)b | (vb = vb)b | (if vb then wb else wb)b | ({wb j

j }
j∈1...m)b

Function application [[ f (〈vSj 〉 j∈1...m)]] = vS such that vS ≡ f (〈v j〉 j∈1...m)S

Time derivative D f (〈vDj 〉 j∈1...m,〈v′Dj 〉 j∈1...m) = vD such that vD ≡ ( d
dt f (〈vDj 〉 j∈1...m,〈v′Dj 〉 j∈1...m))S

Partial derivative Pf (〈vDj 〉 j∈1...m,〈v′Dj 〉 j∈1...m,xD) = vD such that vD ≡ ∂

∂x f (〈vDj 〉 j∈1...m,〈v′Dj 〉 j∈1...m)D

Free Variables

FV (xb) = {x} FV (〈e j
b j 〉 j∈1...m) =

⋃
j FV (eb j

j ) FV (( f (〈eb j
j 〉

j∈1...m)b)) =
⋃

j FV (eb j
j ) LV (x = e) = {x}

FV (eb
1(e

b
2)

b) = FV (eb
1)∪FV (eb

2) FV ( d
dt (e

b)) = FV (eb) FV ( ∂

∂eb
2
eb

1) = FV (eb
1)∪FV (eb

2) LV ({s j} j∈1...m) =
⋃

j LV (s j)

eb ↪→e vb∪{err}

kb ↪→e kb

eb j
j ↪→e vb j

j

(〈eb j
j 〉

j∈1...m)b ↪→e (〈v
b j
j 〉

j∈1...m)b

eb
1 ↪→e (〈vb

j〉 j∈1...m)b eS2 ↪→e iS

eb
1(e

S
2 )

b ↪→e vb
i

eS ↪→e (〈vSj 〉 j∈1...m)S

f (eS)S ↪→e [[ f (〈v j〉 j∈1...m)]]

eb
1 ↪→e vb

1 eD2 ↪→e vD2
eb

1(e
D
2 )

D ↪→e vb
1(v

D
2 )

D xD ↪→e xD
eD ↪→e vD

f (eD)D ↪→e f (vD)D
eS ↪→e qS

d
dt (e

S)S ↪→e 0S
eb ↪→e xb

d
dt (e

b)b ↪→e x′b
eb

1 ↪→e qD1 eD2 ↪→e xS

( ∂

∂eD2
eb

1)
S ↪→e 0D

eD1 ↪→e xD1 eD2 ↪→e xD2

iD =

{
1D if x1 = x2

0D otherwise

( ∂

∂eD2
eD1 )

D ↪→e iD

eD ↪→e f ((〈vb j
j 〉

j∈1...m)D)D ( d
dt vb j

j )
D ↪→e v j

′b j

d
dt (e

D)D ↪→e D f (〈v
b j
j 〉

D,〈v j
′b j 〉D)D

eD1 ↪→e f ((〈vb j
j 〉

j∈1...m)D)D

eD2 ↪→e xD ( ∂

∂xD vb j
j )

b j ↪→e v j
′b j

∂

∂eD2
eD1 ↪→e Pf (〈v

b j
j 〉

D,〈v j
′b j 〉D,xD)D

sb ↪→s wb∪{err}

FV (eb)∩LV (sbs) = /0 eb ↪→e vb sbs [xb := vb] ↪→s wbs

{xb = eb}b] sbs ↪→s {xb = vb}]wbs

FV (eb)∩LV (sbs) = /0 eb ↪→e vb sbs ↪→s wbs

{x+b1 = eb}b] sbs ↪→s {x+b1 = vb}b]wbs

FV (eb1
1 )∪FV (eb2

2 )∩LV (sbs) = /0
eb1

1 ↪→e vb1
1 eb2

2 ↪→e vb2
2 sbs ↪→s wbs

{eb1
1 = eb2

2 }
b] sbs ↪→s {vb1

1 = vb2
2 }

b]wbs

eS ↪→e tSj sb j
j ↪→s wb j

j sbs ↪→s wbs

FV (eS)∩LV (sbs) = /0 tS1 = trueS tS2 = falseS

{if eS then sb1
1 else sb2

2 }
b] sbs ↪→s wb j

j ]wbs

FV (eD)∩LV (sbs) = /0 eD ↪→e vD

sb1
1 ↪→s wbs

1 sb2
2 ↪→s wbs

2 sbs ↪→s wbs

{if eD then sb1
1 else sb2

2 }
b] sbs ↪→s {if vD then wbs

1 else wbs
2 }

b]wbs

FV (eb)∩LV (sbs) = /0 eb ↪→e (〈vb
j〉 j∈1...m)b

({sb1
1 [n := vb

j ]} j∈1..m)b1 ↪→s ({wb1
j }

j∈1..m)b1

sbs ↪→s wbs

{∀n ∈ eb sb1
1 }

b1 ] sbs ↪→s ({wb1
j }

j∈1..n)b1 ]wbs

Figure 9: Specialization big-step semantics
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