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In this paper we give an overview of partial orders on the sp@robability distributions that carry
a notion of information content and serve as a generalisatiche Bayesian order given inl[8]. We
investigate what constraints are necessary in order to geicue notion of information content.
These partial orders can be used to give an ordering on waordsdtor space models of natural
language meaning relating to the contexts in which wordsuaesl, which is useful for a notion
of entailment and word disambiguation. The constructicgduaso points towards a way to create
orderings on the space of density operators which allow &iioe-grained study of entailment. The
partial orders in this paper are directed complete and faymains in the sense of domain theory.

1 Introduction

Distributional models of natural language form a populay wastudy language in the context of au-
tomated natural language processing. These models relyeobistributional Hypothesis: words that
occur in similar contexts have similar meanings.

The categorical compositional distributional model ofunat language meaning developed by Co-
ecke, Sadrzadeh and Clark [6, 5] also gives a way of compabgtigbutions. It has been corroborated
empirically that on some tests this model performs betien the state of the artl[9].

Recently this model has been expanded to take into accodcal@ambiguity, notions of homonymy
and polysemy([12] and entailment at the word and sentenet bgvpassing from a vector space model
to a density matrix model [1] 2] 3]. In these papers variolations between the density matrices were
explored to get a definition of entailment on the distribaéiblevel, such as the fidelity and the relative
entropy. In[[3] a modified Lowner ordering was used to get tionoof graded entailment. 10 [10] they
constructed a nonsymmetric similarity measure based ondifienh measure of feature inclusion.

In any of these cases the goal is to get a relation betwees @fairords or sentences that captures the
idea of information content. We say that the wolah entails the woraginimalbecause in most contexts
where the wordlogis used, we could use the more general (less specific, lagsnafive) wordanimal

The same is true for word disambiguation. Consider the vibamgk It might meanriver bankor
investment bankWithout any further context we don’t know which one is medrite wordbankoffers
less information than either of these more specific words.c#veconsider it to be in a mixed state of
these pure meanings, which collapses to a pure state whemn @i right context.

It therefore makes sense that to get a notion of disambmuati lexical entailment we should be
looking for a relation that captures the idea of informationtent. The obvious properties that we would
require of such a relation are those of a partial order: reggstransitive and antisymmetric.
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The way word vectors are usually constructed is by countiegcbocurrence with some set of basis
words. The components can then be interpreted as probeditit a word occuring at the same time as
this specific basis word. So in fact, the word vector can ba ase probability distribution.

If aword is instead represented by a density matrix then vithewliagonalised we have a probability
distribution on the diagonal. This means that a relationuwrapg the notion of information content should
at least be a partial order on the space of probability distions.

There is a well known partial order on the space of positiveigiefinite matrices called the Lowner

order, but on the space of density operators no two diffatensity operators are comparable (if we have
X C y then we must have =y). This is a direct effect of the normalisation of the tracehsf operators.
A modification to the Lowner order was made|in [3] in order &t g notion of graded entailment. The
resulting structure was no longer a partial order, sincertbdification removed transitivity and replaced
it with a weaker condition. In this paper we will show two difént modifications to the Lowner order
that do result in proper partial orders.

An example of a nontrivial partial order on the space of philiig distributions that has suitable
information-like properties is the Bayesian order outline [7,[8]. This is in fact the only example the
author could find in literature. The Bayesian order servetth@spiration for this paper and the results
outlined here can be seen as generalisations of the resiatsed to the Bayesian order.

In this paper we will explore what conditions we need in orfierthe resulting partial order to
represent information content. We will also look at whatckof conditions we need in addition to get a
unique notion of information content. Since there has begprsingly little work in the area of partial
orders representing information we will focus on partialens on probability distributions instead of on
the bigger space of density operators. We will also just b&ilg at entailment on the word level and
leave compositionality for further research.

Note also that the results in this paper might prove useftdsource theory and quantum information
theory as density matrices are quantum states and prdbalidiributions are classical states. The partial
orders studied in this paper turn out to be domains: directeaplete partial orders which are exact.

2 Background

We begin by stating the definition of a partial order.

Definition 1. A partial order on a spacé&is a binary relatioriZ which is
1. Reflexivelvxe S: xC x.
2. Transitive:vx,y,ze S:xCyandyC z = XL z
3. Antisymmetric:V¥x,y € S:xCyandyC X = x=Y.

We can restrict a partial order on the density matrices todiagonal density matrices. This is
equivalent to the space of finite probability distributiakis= {(x1,...,%n);X > 0,¥;% = 1}, which can
be interpreted geometrically as tfre— 1)-simplex.

We can then wonder when this procedure can be reversed: whitkal orders on the diagonal
density matrices extend to a partial order on the entireespfdensity matrices? The naive approach is
to definep C’ miff Diag(p) CDiag(m), where Diagp) is the probability distribution of the eigenvalues
of p. However if we take an arbitrary density matpgxhe diagonalisation will not be fully determined:
we can still freely permute the basis vectors. Reflexivityuldothen imply that any permutation of
basis must be equivalent which would in turn break antisytnynéNe must require thgb and T be
diagonalised simultaneously in order for them to be contgaray a partial order oA".
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If two density matrices can be diagonalised simultaneotisn there is still a freedom of permuting
the basis vectors, so a necessary conditiorifoo be extended to the entire space of density operators
is for it to be invariant under basis vector permutation:

Definition 2. Let C be a partial order oAA". We call it permutation invariantif for any permutation
cecS"XCy = ag(X)Ca(y)

It can be shown that a permutation invariant partial ordeéerds to a partial order on the density
matrices (a density matrix is completely determined byijemvalues and an orthonormal basis).

A notion of information content is Shannon entropy. &hthe element with the highest amount of
entropy is the uniform distribution. = %(1,...,1). The elements with the lowest amount of entropy
are the pointed distributions that haxe= 1 for somei and the rest equal to zero, also called the ‘pure’
states. Denote these @s. Intuitively L is the element with the lowest amount of information, and
are the elements with the most amount of information. Weireghat our partial order oA" respects
this: every distribution contains more information tharand every distribution is smaller than at least
one maximal element.

Linguistically a word would be represented by the uniformatiddution if it occured the same amount
of times in any context, but such a word would of course not aaginformation to the sentence. A
candidate for such a word would for instance theg: Realistically no word will be represented by the
uniform distribution, but we would find examples of wordstthee uniformly distributed on a subset of
contexts. Such as the worlanK that we would expect somewhat uniformly in the contexts néfice
and rivers. Stating that each word can be compared to someesfate is akin to stating that each word
can be resolved to some pure meaning.

In order to restrict ourselves to nontrivial partial ordess will require one further property: that the
partial order respects the mixing of information conteefjred as such:

Definition 3. We say that a partial order &' allows mixingwhen we have for any,y andt € [0, 1]:
X<y = x<(1-t)x+ty<y

This states that when an element contains less informadtemanother and this information is com-
parable, then mixing the information content will give sdheg with an information content in between.
Note that the space of probability distributions is convékis demand makes the partial order respect
that convexity in a natural way. We are now ready to give a matidefinition of partial order that
represents information content.

Definition 4. A partial order omA" which is permutation invariant, allows mixing and has théarm
distribution as the minimal element and the pointed digtidns as the maximal elements isiaforma-
tion ordering

There is a unique partial order satisfying the conditionBefinition —>—o < °
4 onA? as seen in Figure 1. The pure distributions are at the ends whi -
the uniform distribution is in the middle. D Gz O

We might hope that these conditions also uniquely deterampetial Figure 1: The unique partial
order for higher values afi, but this is not the case. The inductive Presrder onA2 satisfying Defini-
cedure in[[8] uniquely determines a partial order that d@e tthe right o 4.
properties, but as we will see we can create other partia@rerdithout
using this inductive procedure. The structure tiedixed by these conditions is illustrated for= 3 in
Figure 2.
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We see that the space is cut up into natural regions. We will
refer to these as sectors, and will come back to those later.

For reference we will state a definition of the Bayesian order
here. The other partial orders in this paper will have a simil
format.

Definition 5. The Bayesian orderg is defined ag Cg y iff there
is a permutatioro such that the coordinates ofx) ando(y) are
both monotonically decreasing and we have

Figure 2: The basic structure of any(x);g(y)i;1 < o(y)io(X)is1 forall 1<i<n—1. [8]
information ordering om\3.

(0,0,1) (3,0,3) (1,0,0)

The condition that comparable elements must both be able to
be permuted in the same way might be seen as odd, but it in fact
ensures that the elements are part of the same sector (ohe sinialler triangles in Figure 2). As we
will see in Section 4, the Bayesian order belongs to a clapamial orders that have this property.

3 Non-Uniqueness of Information Orderings

We will start by showing that the requirements of Definitiom4 not strong enough to give a unique
definition of information content. That is: there exist rordersC, andC, such that there are points
X#£ ywith x C1 y buty Ty x.

3.1 Renormalising the Lowner order

As stated in the introduction, the Lowner order givendy y iff y—x > 0 is trivial XCy = x=Y)
onA". This is due to the fact that the components ahdy both need to sum up to 1. By renormalising
the components so that they no longer sum up to the same vaduare able to create a nontrivial order.
There are at least two natural choices for renormalisatiacan set the largest coordinate equal to
1, or we can set the smallest coordinate equal to 1.
The normalisation to the largest coordinate gives the glastder

XL,y < X"y <y for all k.

wherex" is defined ax™ =max{x}. This partial order satisfies all the conditions specifieDdiinition
4, so itis an information ordering.

The normalisation to the smallest coordinate is slightlyrendifficult since the smallest coordinate
could be equal to zero. If both elements have the same ambmeataes we can ignore those and use the
smallest nonzero element. If an elemgias strictly more zeroes tharwe can viewy as being blown
up to infinity while x stays finite, so we would simply defixeC y, as long as their common zeroes are
in the same positions.

Keeping this in mind, we can define the second renormalisedhier order by induction onasx L, Yy
if and only if one of the following holds: 7

1. Thereis & such thaty = 0, yx = 0 andx g[(n_l) V.
2. There is & such thaty = 0, xx = X"
3. Forallk: yg, Xk # 0 andxyy~ < ykX~.
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Herex™ is defined as the smallest nonzero coordinate.

This is a well-defined partial order and it satisfies all theditons specified in Definition 4. In
Figure 3 you can see that these two renormalisations malgdifférence to the resulting partial order.
If we take the pointx = (6,2,2) andy = 4(15,10,5), thenx ;" y andy C; x. So there is at least
one pair of points wherg,” andC; contradict each other. The conditions specified in Definidcare
not strong enough to get a unigue notion of information aante

(@C (b) T,

Figure 3. Upperset (red) and downset (blue) of the distidbuy = 3—10(15, 10,5) with respect to the
renormalised Lowner orders. The point (6,2, 2) is denoted in green.

3.2 Measurements prevent contradictions

A very useful tool to study the relation between differenttighorders araneasurementshe definition
of which we take from([8] and [11].

Definition 6. A measuremeris a Scott-continuous strict monotonic map (P,Cp) — (S Csg).

Monotonicity means that whenCp y we haveu(x) Cs p(y) and strictness states that whenp y
and u(x) = u(y) we havex =y. Scott-continuity is not important for us, but it is a usefubperty in
relation to proving that a partial order is directed comglell the strict monotonic maps in this paper
are also Scott-continuous.

Define the monotone sector Af asA" = {X;xx > x,1}. This corresponds to the lower rightmost
triangle in Figure 2. For eackhe A" there is a uniqug € A" such thaty = o(x) for some permutation
0. This gives us a natural retraction (A",C) — (A",Cjan). 1 is @ measurement for any information
orderingC onA". This means that if we have a measurement\" — Sthis extends to a measurement
of A" by composition withr.

The measurements we will be using are of the farm\" — [0,00)*@ [0,00)* is the positive interval
with the reversed order, so monotonicity means giaty implies u(x) > u(y).

The orderC;" has the measuremept (x) = 1—x*. The order_; has a slightly more complicated
measure. Define the zero counting functif{x) = #{k; x« = 0}. Then wherxC, ywe haveZ(y) > Z(x).

If xC_ yandZ(x) = Z(y), thenx™ >y, and if additionallyx™ =y~ thenx =y. Putting this together

we see thap_(x) = 2n—3—2Z(x)) +x~ is a measurement @f, . We can read this as first counting
the amount of zeroes, and then looking at the lowest coaelifdhe constantrP— 3 is added such that
H(x) = 0 iff x eMax(A").

These two measurements capture different ideas of whatave™about in our information ordering.
Respecting ther, measurement states that the head of a distribution is impiprivhile respecting:_
means we care about the tail of a distribution.

1Any partial order that allows such a measurement is a dcgp [11
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Suppose we have two partial ordérg andC, that have the same measuremgntThen ifx C1y
andy C, x we getu(x) = u(y) which givesx =y. So partial orders with the same measurement can't
contradict each other This gives us a tool for ensuring a class of partial ordera’iaontradict each
other.

4 Restricted Information Orders

We can extend an information order Ahto one on the density operators by allowing comparisonsaf tw
density operators can be diagonalised simultaneouslyeSie have a measurement frdffhito A" we
can wonder if we can do the same sort of procedure for trangiiy) from an information order ofA" to
one onA". That is: we allow comparisons when two elementA'ircan be brought td\" simultaneously
by some permutatioor(x). So in that caser(x),o(y) € A" and we proceed with comparing(x) and
o(y) using a partial order oA". This does however not always result in a valid partial oaeA":
Suppose we haveC y wherex is a border element oh". Then it also lies in a neighbouring sector.
Suppose there is an elemewin this neighboring sector such that_ x. Then by transitivityw C y. But

w andy are in different sectors. So this is a contradiction. A nsagsand sufficient condition to prevent
this and ensure we can extend a partial ordeAbto A" is the following

Definition 7. A partial orderC on A" (or A") satisfies thalegeneracy conditiowhen for allx,y € A"
(or A™) wherex C y andy; = y;j # 0 we havex = x; # 0.

We call this property the degeneracy condition as it ensilvaisborder elements, elements with a
degenerated spectrum, are not above any nondegenerateeinede There is a one-to-one correspon-
dence between information orders satisfying the degepe@uition on\" and those orders oi'. We
will call an information order that satisfies the degenereogdition arestrictedinformation order as
comparisons between elements are restricted to withilmisecthe renormalised Lowner orders are not
restricted information orders, while the Bayesian oiider restricted information order.

We are interested in information-like properties of a distiion x € A". If we suppose that all these
features can be encoded in terms of real numbers, this wowtdrige to a feature vectdf (x) that
is an element oRX for somek. Comparing the information content of distributions isrtheanslated
to comparing the feature vectors of the distributions: y iff F(x) < F(y) where< is the standard
product order oRX: v < wiff v <w, for all i. For instance, fol;f the feature vector components are
F(x); = X" /x. For the Bayesian order the feature vectdf {%); = x; /X1 and for majorization it would
beF(x); = z‘j:lxj. We can classify these types of orders.

Theorem 1. Classification of Restricted Information Orderings All restricted information orderings
of the formx Cy <= F(x) < F(y) for some functiorF : A" — RX can be written as the join or meet of

2Note that two partial orders that do not have the same measmtedon’t necessarily have to contradict each other.
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the set of partial orders a defined as

XCay < fi¥ai(y) < fily)gi(x) forall 1<i<n-1
wheref;(X) = X — Xi4+1
n ) kK
andgi(x) =Yir1+  Ajyjwhere - 5 Aj>0
j=1+2 =142

for2<iandi+1<k<n

n
andgs(X) = y2+ A5+ ;A}yj where 1+ 2A% > 0
J:
k
and 1+ kA + ZA} >0for2<k<n.
J:

Furthermore, all these partial orders allpw as a measurement, which means they are all dcpo’s. The
space of these restricted orders is a complete lattice

Note that the feature vectors of these partial orderd=dre = f;(x)/gi(x). Using f; andg; instead
of F turns out to be easier because we can deal more naturallypwsgible zeroes ig;.

We see that all the parametetk';»: are bounded from below, but not from above. In general, lighe
values for the parameters correspond to partial ordersatkdess strict. The Bayesian order is retrieved
when setting all parameters to zero. In general, the réstriorders don't respect the ordering given
by Shannon entropy. It can be shown that the subset of rnestrarders that alloyu. as an additional
measurement have Shannon entropy as a measurement as Wéle partial orders seen above also
have the property that i C y andxx = 0 thenyx = 0. Or in other words: theupportof y is included
in X. This ensures that the relative entropy betwremdy is finite. These partial orders are therefore
somewhat comparable with the entailment relation_bf [1].

Sharingu_ as a measurement ensures that these partial orders dotragioheach other. So the
degeneracy condition is a sufficient condition to get a umidwection of information content. Because
this space of orderings is a complete lattice there is a enmmuimal order and a unique maximal order.
The difference between these and the Bayesian order is sihdvigure 4.

(a) The minimal order (b) The Bayesian order (c) The maximal order

Figure 4. Upperset (red) and downset (blue) of the same eleosing the minimal, Bayesian and
maximal order om\3,

Note that all the restricted orders ang share the measurement, so they don’t contradict each
other. It can also be shown thgﬁ doesn't contradict any restricted order, so both thesernealisations

can serve as valid extensions of the restricted orders.
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Such an extension is probably necessary. Restricted iafbvm orders only allow comparisons
within sectors. The amount of sectorsifis equal to the factorial af. In an empirical natural language
model we would usually havein the hundreds or thousands, so then there are many moogsstn
there are words. This probably means that restricted irdtion orders are too restrictive to be used in
practice in the study of natural language as each word wilh fite own sector. The renormalised Léwner
orders might be better suited to the task.

These partial orders are all constructed by comparing seatsire vectors with each others. This
allows for a natural modification to support graded entaiime&uppose we have the partial oraer
y <= F(x) <F(y), then we kan define the-entailiment ax ",y <= pF(x) < F(y) for some number
0 < p< 1. Thisis no longer a partial order, but a nonsymmetric éntnt measure. This generalises
the idea of[[3].

5 Information Orders on Density Operators

The central idea behind classifying information orders awbpbility distributions is that we transition
to a feature vector. Let’s look at this more closely. We ha¥e- R¥. R¥ has a natural partial order, the
product order, which is trivial 0A". By using a feature mabp to transformA" to a different subset of
RRK, we can make this partial order nontrivial.

The same sort of procedure can be used on the space of depsigtarsDO(n). This space can
be seen as a subset of the positive operd®@&). PO(n) has a natural partial order in the form of the
Lowner order, which is trivial olDO(n). We can again consider a “feature mdp” DO(n) — PO(n)
which possibly gives rise to a partial ordei_ m <= F(p) C, F(m) whereC, is the Lowner order.
For instance, setting§(p) = p/p* wherep™ is the highest eigenvalue gfis the natural extension to
the density operators of the first renormalised Lowner odéscribed above. In fact, since the Lowner
order restricted to diagonal matrices is equal to the prodrder onRK, this is a natural generalisation
of the construction of information orders &f.

6 Conclusion and Further Research

We have shown that there is a wide variety of partial ordertherspace of probability distributions that
satisfy the necessary conditions to capture the notionfofrimation content. With an extra restriction
(the degeneracy condition) we can make sure that this niianique. Unfortunately in practical lin-
guistic applications this condition might prove to be todcst The renormalised Lowner orderings are
less strict in what they can compare and might prove to be meeéul, although empirical research is
needed to confirm this. The construction of the restrictéorimation orders also points towards a way
to create information orderings on the space of densityaipes, but studying this in detail is outside of
the scope of this paper.

In the pursuit of methods that make comparisons betweernitisons easier we might look at rescal-
ing distributions to study graded entailment (a genertidisaof the approach taken ihl[3]). Another av-
enue of attack that might work is using the fact that in a higheshsional space words are probably far
apart, so that we can be less picky with the comparisons, eindsy whenever some elements within
a certain radius af andy are comparable. This procedure would break antisymmetgnvelonsidering
the entire space, but not when only comparing words (assuthigy are far enough apart). Doing this
might allow elements in different sectors to be compared t®sticted information order.
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