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In this paper we give an overview of partial orders on the space of probability distributions that carry
a notion of information content and serve as a generalisation of the Bayesian order given in [8]. We
investigate what constraints are necessary in order to get aunique notion of information content.
These partial orders can be used to give an ordering on words in vector space models of natural
language meaning relating to the contexts in which words areused, which is useful for a notion
of entailment and word disambiguation. The construction used also points towards a way to create
orderings on the space of density operators which allow a more fine-grained study of entailment. The
partial orders in this paper are directed complete and form domains in the sense of domain theory.

1 Introduction

Distributional models of natural language form a popular way to study language in the context of au-
tomated natural language processing. These models rely on the Distributional Hypothesis: words that
occur in similar contexts have similar meanings.

The categorical compositional distributional model of natural language meaning developed by Co-
ecke, Sadrzadeh and Clark [6, 5] also gives a way of composingdistributions. It has been corroborated
empirically that on some tests this model performs better then the state of the art [9].

Recently this model has been expanded to take into account lexical ambiguity, notions of homonymy
and polysemy [12] and entailment at the word and sentence level by passing from a vector space model
to a density matrix model [1, 2, 3]. In these papers various relations between the density matrices were
explored to get a definition of entailment on the distributional level, such as the fidelity and the relative
entropy. In [3] a modified Löwner ordering was used to get a notion of graded entailment. In [10] they
constructed a nonsymmetric similarity measure based on a modified measure of feature inclusion.

In any of these cases the goal is to get a relation between pairs of words or sentences that captures the
idea of information content. We say that the worddogentails the wordanimalbecause in most contexts
where the worddog is used, we could use the more general (less specific, less informative) wordanimal.

The same is true for word disambiguation. Consider the wordbank. It might meanriver bankor
investment bank. Without any further context we don’t know which one is meant. The wordbankoffers
less information than either of these more specific words. Wecan consider it to be in a mixed state of
these pure meanings, which collapses to a pure state when given the right context.

It therefore makes sense that to get a notion of disambiguation or lexical entailment we should be
looking for a relation that captures the idea of informationcontent. The obvious properties that we would
require of such a relation are those of a partial order: reflexive, transitive and antisymmetric.
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The way word vectors are usually constructed is by counting the coocurrence with some set of basis
words. The components can then be interpreted as probabilities of a word occuring at the same time as
this specific basis word. So in fact, the word vector can be seen as a probability distribution.

If a word is instead represented by a density matrix then whenit is diagonalised we have a probability
distribution on the diagonal. This means that a relation capturing the notion of information content should
at least be a partial order on the space of probability distributions.

There is a well known partial order on the space of positive semi-definite matrices called the Löwner
order, but on the space of density operators no two differentdensity operators are comparable (if we have
x⊑ y then we must havex= y). This is a direct effect of the normalisation of the trace ofthe operators.
A modification to the Löwner order was made in [3] in order to get a notion of graded entailment. The
resulting structure was no longer a partial order, since themodification removed transitivity and replaced
it with a weaker condition. In this paper we will show two different modifications to the Löwner order
that do result in proper partial orders.

An example of a nontrivial partial order on the space of probability distributions that has suitable
information-like properties is the Bayesian order outlined in [7, 8]. This is in fact the only example the
author could find in literature. The Bayesian order served asthe inspiration for this paper and the results
outlined here can be seen as generalisations of the results related to the Bayesian order.

In this paper we will explore what conditions we need in orderfor the resulting partial order to
represent information content. We will also look at what kind of conditions we need in addition to get a
unique notion of information content. Since there has been surprisingly little work in the area of partial
orders representing information we will focus on partial orders on probability distributions instead of on
the bigger space of density operators. We will also just be looking at entailment on the word level and
leave compositionality for further research.

Note also that the results in this paper might prove useful inresource theory and quantum information
theory as density matrices are quantum states and probability distributions are classical states. The partial
orders studied in this paper turn out to be domains: directedcomplete partial orders which are exact.

2 Background

We begin by stating the definition of a partial order.

Definition 1. A partial order on a spaceS is a binary relation⊑ which is

1. Reflexive:∀x∈ S: x⊑ x.

2. Transitive:∀x,y,z∈ S: x⊑ y andy⊑ z =⇒ x⊑ z.

3. Antisymmetric:∀x,y∈ S: x⊑ y andy⊑ x =⇒ x= y.

We can restrict a partial order on the density matrices to thediagonal density matrices. This is
equivalent to the space of finite probability distributions∆n = {(x1, . . . ,xn);xi ≥ 0,∑i xi = 1}, which can
be interpreted geometrically as the(n−1)-simplex.

We can then wonder when this procedure can be reversed: whichpartial orders on the diagonal
density matrices extend to a partial order on the entire space of density matrices? The naive approach is
to defineρ ⊑′ π iff Diag(ρ)⊑Diag(π), where Diag(ρ) is the probability distribution of the eigenvalues
of ρ . However if we take an arbitrary density matrixρ the diagonalisation will not be fully determined:
we can still freely permute the basis vectors. Reflexivity would then imply that any permutation of
basis must be equivalent which would in turn break antisymmetry. We must require thatρ andπ be
diagonalised simultaneously in order for them to be comparable by a partial order on∆n.
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If two density matrices can be diagonalised simultaneouslythen there is still a freedom of permuting
the basis vectors, so a necessary condition for⊑ to be extended to the entire space of density operators
is for it to be invariant under basis vector permutation:

Definition 2. Let ⊑ be a partial order on∆n. We call it permutation invariantif for any permutation
σ ∈ Sn: x⊑ y =⇒ σ(x)⊑ σ(y)

It can be shown that a permutation invariant partial order extends to a partial order on the density
matrices (a density matrix is completely determined by its eigenvalues and an orthonormal basis).

A notion of information content is Shannon entropy. On∆n the element with the highest amount of
entropy is the uniform distribution⊥ = 1

n(1, . . . ,1). The elements with the lowest amount of entropy
are the pointed distributions that havexi = 1 for somei and the rest equal to zero, also called the ‘pure’
states. Denote these as⊤i. Intuitively ⊥ is the element with the lowest amount of information, and⊤i

are the elements with the most amount of information. We require that our partial order on∆n respects
this: every distribution contains more information than⊥ and every distribution is smaller than at least
one maximal element.
Linguistically a word would be represented by the uniform distribution if it occured the same amount
of times in any context, but such a word would of course not addany information to the sentence. A
candidate for such a word would for instance be ‘the’. Realistically no word will be represented by the
uniform distribution, but we would find examples of words that are uniformly distributed on a subset of
contexts. Such as the word ‘bank’ that we would expect somewhat uniformly in the contexts of finance
and rivers. Stating that each word can be compared to some pure state is akin to stating that each word
can be resolved to some pure meaning.

In order to restrict ourselves to nontrivial partial orderswe will require one further property: that the
partial order respects the mixing of information content, defined as such:

Definition 3. We say that a partial order on∆n allowsmixingwhen we have for anyx,y andt ∈ [0,1]:

x≤ y =⇒ x≤ (1− t)x+ ty≤ y

This states that when an element contains less information than another and this information is com-
parable, then mixing the information content will give something with an information content in between.
Note that the space of probability distributions is convex.This demand makes the partial order respect
that convexity in a natural way. We are now ready to give a minimal definition of partial order that
represents information content.

Definition 4. A partial order on∆n which is permutation invariant, allows mixing and has the uniform
distribution as the minimal element and the pointed distributions as the maximal elements is aninforma-
tion ordering.

(0,1) ( 1
2
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2
) (0,1)

Figure 1: The unique partial
order on∆2 satisfying Defini-
tion 4.

There is a unique partial order satisfying the conditions ofDefinition
4 on∆2 as seen in Figure 1. The pure distributions are at the ends while
the uniform distribution is in the middle.

We might hope that these conditions also uniquely determinea partial
order for higher values ofn, but this is not the case. The inductive pro-
cedure in [8] uniquely determines a partial order that does have the right
properties, but as we will see we can create other partial orders without
using this inductive procedure. The structure thatis fixed by these conditions is illustrated forn= 3 in
Figure 2.
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Figure 2: The basic structure of an
information ordering on∆3.

We see that the space is cut up into natural regions. We will
refer to these as sectors, and will come back to those later.

For reference we will state a definition of the Bayesian order
here. The other partial orders in this paper will have a similar
format.

Definition 5. The Bayesian order⊑B is defined asx⊑B y iff there
is a permutationσ such that the coordinates ofσ(x) andσ(y) are
both monotonically decreasing and we have
σ(x)iσ(y)i+1 ≤ σ(y)iσ(x)i+1 for all 1≤ i ≤ n−1. [8]

The condition that comparable elements must both be able to
be permuted in the same way might be seen as odd, but it in fact

ensures that the elements are part of the same sector (one of the smaller triangles in Figure 2). As we
will see in Section 4, the Bayesian order belongs to a class ofpartial orders that have this property.

3 Non-Uniqueness of Information Orderings

We will start by showing that the requirements of Definition 4are not strong enough to give a unique
definition of information content. That is: there exist partial orders⊑1 and⊑2 such that there are points
x 6= y with x⊑1 y but y⊑2 x.

3.1 Renormalising the L̈owner order

As stated in the introduction, the Löwner order given byx⊑ y iff y−x≥ 0 is trivial (x⊑ y =⇒ x= y)
on ∆n. This is due to the fact that the components ofx andy both need to sum up to 1. By renormalising
the components so that they no longer sum up to the same value,we are able to create a nontrivial order.

There are at least two natural choices for renormalisation:we can set the largest coordinate equal to
1, or we can set the smallest coordinate equal to 1.

The normalisation to the largest coordinate gives the partial order

x⊑+
L y ⇐⇒ x+yk ≤ y+xk for all k.

wherex+ is defined asx+ =max{xk}. This partial order satisfies all the conditions specified inDefinition
4, so it is an information ordering.

The normalisation to the smallest coordinate is slightly more difficult since the smallest coordinate
could be equal to zero. If both elements have the same amount of zeroes we can ignore those and use the
smallest nonzero element. If an elementy has strictly more zeroes thanx we can viewy as being blown
up to infinity whilex stays finite, so we would simply definex⊑ y, as long as their common zeroes are
in the same positions.
Keeping this in mind, we can define the second renormalised L¨owner order by induction onn asx⊑−

L,n y
if and only if one of the following holds:

1. There is ak such thatxk = 0, yk = 0 andx⊑−
L,(n−1) y.

2. There is ak such thatyk = 0, xk = x−.

3. For allk: yk,xk 6= 0 andxky− ≤ ykx−.
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Herex− is defined as the smallest nonzero coordinate.
This is a well-defined partial order and it satisfies all the conditions specified in Definition 4. In

Figure 3 you can see that these two renormalisations make a big difference to the resulting partial order.
If we take the pointsx = 1

10(6,2,2) andy= 1
30(15,10,5), thenx⊑+

L y andy⊑−
L x. So there is at least

one pair of points where⊑+
L and⊑−

L contradict each other. The conditions specified in Definition 4 are
not strong enough to get a unique notion of information content.

(a)⊑+
L (b)⊑−

L

Figure 3: Upperset (red) and downset (blue) of the distribution y = 1
30(15,10,5) with respect to the

renormalised Löwner orders. The pointx= 1
10(6,2,2) is denoted in green.

3.2 Measurements prevent contradictions

A very useful tool to study the relation between different partial orders aremeasurements, the definition
of which we take from [8] and [11].

Definition 6. A measurementis a Scott-continuous strict monotonic mapµ : (P,⊑P)→ (S,⊑S).

Monotonicity means that whenx⊑P y we haveµ(x) ⊑S µ(y) and strictness states that whenx⊑P y
andµ(x) = µ(y) we havex = y. Scott-continuity is not important for us, but it is a usefulproperty in
relation to proving that a partial order is directed complete. All the strict monotonic maps in this paper
are also Scott-continuous.

Define the monotone sector of∆n asΛn = {x;xk ≥ xk+1}. This corresponds to the lower rightmost
triangle in Figure 2. For eachx∈ ∆n there is a uniquey∈ Λn such thaty= σ(x) for some permutation
σ . This gives us a natural retractionr : (∆n,⊑) → (Λn,⊑|Λn). r is a measurement for any information
ordering⊑ on ∆n. This means that if we have a measurementµ : Λn → S this extends to a measurement
of ∆n by composition withr.

The measurements we will be using are of the formµ : Λn → [0,∞)∗.1 [0,∞)∗ is the positive interval
with the reversed order, so monotonicity means thatx⊑ y impliesµ(x)≥ µ(y).

The order⊑+
L has the measurementµ+(x) = 1−x+. The order⊑−

L has a slightly more complicated
measure. Define the zero counting functionZ(x)= #{k;xk = 0}. Then whenx⊑−

L ywe haveZ(y)≥Z(x).
If x⊑−

L y andZ(x) = Z(y), thenx− ≥ y−, and if additionallyx− = y− thenx= y. Putting this together
we see thatµ−(x) = 2n−3−2Z(x))+ x− is a measurement of⊑−

L . We can read this as first counting
the amount of zeroes, and then looking at the lowest coordinate. The constant 2n−3 is added such that
µ(x) = 0 iff x∈Max(∆n).

These two measurements capture different ideas of what we “care” about in our information ordering.
Respecting theµ+ measurement states that the head of a distribution is important, while respectingµ−

means we care about the tail of a distribution.
1Any partial order that allows such a measurement is a dcpo [11].
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Suppose we have two partial orders⊑1 and⊑2 that have the same measurementµ . Then if x⊑1 y
andy⊑2 x we getµ(x) = µ(y) which givesx = y. So partial orders with the same measurement can’t
contradict each other2. This gives us a tool for ensuring a class of partial orders won’t contradict each
other.

4 Restricted Information Orders

We can extend an information order on∆n to one on the density operators by allowing comparisons if two
density operators can be diagonalised simultaneously. Since we have a measurement from∆n to Λn we
can wonder if we can do the same sort of procedure for transitioning from an information order onΛn to
one on∆n. That is: we allow comparisons when two elements in∆n can be brought toΛn simultaneously
by some permutationσ(x). So in that caseσ(x),σ(y) ∈ Λn and we proceed with comparingσ(x) and
σ(y) using a partial order onΛn. This does however not always result in a valid partial orderon ∆n:
Suppose we havex ⊑ y wherex is a border element ofΛn. Then it also lies in a neighbouring sector.
Suppose there is an elementw in this neighboring sector such thatw⊑ x. Then by transitivityw⊑ y. But
w andy are in different sectors. So this is a contradiction. A necessary and sufficient condition to prevent
this and ensure we can extend a partial order onΛn to ∆n is the following

Definition 7. A partial order⊑ on Λn (or ∆n) satisfies thedegeneracy conditionwhen for allx,y ∈ Λn

(or ∆n) wherex⊑ y andyi = y j 6= 0 we havexi = x j 6= 0.

We call this property the degeneracy condition as it ensuresthat border elements, elements with a
degenerated spectrum, are not above any nondegenerated elements. There is a one-to-one correspon-
dence between information orders satisfying the degeneracy condition onΛn and those orders on∆n. We
will call an information order that satisfies the degeneracycondition arestricted information order as
comparisons between elements are restricted to within sectors. The renormalised Löwner orders are not
restricted information orders, while the Bayesian orderis a restricted information order.

We are interested in information-like properties of a distribution x∈ ∆n. If we suppose that all these
features can be encoded in terms of real numbers, this would give rise to a feature vectorF(x) that
is an element ofRk for somek. Comparing the information content of distributions is then translated
to comparing the feature vectors of the distributions:x ⊑ y iff F(x) ≤ F(y) where≤ is the standard
product order onRk: v≤ w iff vi ≤ wi for all i. For instance, for⊑+

L the feature vector components are
F(x)i = x+/xi . For the Bayesian order the feature vector isF(x)i = xi/xi+1 and for majorization it would
beF(x)i = ∑i

j=1x j . We can classify these types of orders.

Theorem 1. Classification of Restricted Information Orderings. All restricted information orderings
of the formx⊑ y ⇐⇒ F(x)≤ F(y) for some functionF : ∆n →R

k can be written as the join or meet of

2Note that two partial orders that do not have the same measurement don’t necessarily have to contradict each other.
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the set of partial orders⊑A defined as

x⊑A y ⇐⇒ fi(x)gi(y)≤ fi(y)gi(x) for all 1≤ i ≤ n−1

where fi(x) = xi −xi+1

andgi(x) = yi+1+
n

∑
j=i+2

Ai
jy j where 1+

k

∑
j=i+2

Ai
j > 0

for 2≤ i andi +1< k≤ n

andg1(x) = y2+A1
0+

n

∑
j=3

A1
j y j where 1+2A1

0 > 0

and 1+kA1
0+

k

∑
j=3

A1
j > 0 for 2< k≤ n.

Furthermore, all these partial orders allowµ− as a measurement, which means they are all dcpo’s. The
space of these restricted orders is a complete lattice

Note that the feature vectors of these partial orders areFi(x) = fi(x)/gi(x). Using fi andgi instead
of Fi turns out to be easier because we can deal more naturally withpossible zeroes ingi .

We see that all the parametersAi
j are bounded from below, but not from above. In general, higher

values for the parameters correspond to partial orders thatare less strict. The Bayesian order is retrieved
when setting all parameters to zero. In general, the restricted orders don’t respect the ordering given
by Shannon entropy. It can be shown that the subset of restricted orders that allowµ+ as an additional
measurement have Shannon entropy as a measurement as well. All the partial orders seen above also
have the property that ifx ⊑ y andxk = 0 thenyk = 0. Or in other words: thesupportof y is included
in x. This ensures that the relative entropy betweenx andy is finite. These partial orders are therefore
somewhat comparable with the entailment relation of [1].

Sharingµ− as a measurement ensures that these partial orders don’t contradict each other. So the
degeneracy condition is a sufficient condition to get a unique direction of information content. Because
this space of orderings is a complete lattice there is a unique minimal order and a unique maximal order.
The difference between these and the Bayesian order is shownin Figure 4.

(a) The minimal order (b) The Bayesian order (c) The maximal order

Figure 4: Upperset (red) and downset (blue) of the same element using the minimal, Bayesian and
maximal order on∆3.

Note that all the restricted orders and⊑−
L share the measurementµ−, so they don’t contradict each

other. It can also be shown that⊑+
L doesn’t contradict any restricted order, so both these renormalisations

can serve as valid extensions of the restricted orders.
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Such an extension is probably necessary. Restricted information orders only allow comparisons
within sectors. The amount of sectors in∆n is equal to the factorial ofn. In an empirical natural language
model we would usually haven in the hundreds or thousands, so then there are many more sectors than
there are words. This probably means that restricted information orders are too restrictive to be used in
practice in the study of natural language as each word will bein its own sector. The renormalised Löwner
orders might be better suited to the task.

These partial orders are all constructed by comparing soms feature vectors with each others. This
allows for a natural modification to support graded entailment. Suppose we have the partial orderx ⊑
y ⇐⇒ F(x)≤ F(y), then we kan define thep-entailment asx⊑p y ⇐⇒ pF(x)≤ F(y) for some number
0≤ p≤ 1. This is no longer a partial order, but a nonsymmetric entailment measure. This generalises
the idea of [3].

5 Information Orders on Density Operators

The central idea behind classifying information orders on probability distributions is that we transition
to a feature vector. Let’s look at this more closely. We have∆n ⊆ R

k. Rk has a natural partial order, the
product order, which is trivial on∆n. By using a feature mapF to transform∆n to a different subset of
R

k, we can make this partial order nontrivial.
The same sort of procedure can be used on the space of density operatorsDO(n). This space can

be seen as a subset of the positive operatorsPO(n). PO(n) has a natural partial order in the form of the
Löwner order, which is trivial onDO(n). We can again consider a “feature map”F : DO(n) → PO(n)
which possibly gives rise to a partial orderρ ⊑ π ⇐⇒ F(ρ) ⊑L F(π) where⊑L is the Löwner order.
For instance, settingF(ρ) = ρ/ρ+ whereρ+ is the highest eigenvalue ofρ is the natural extension to
the density operators of the first renormalised Löwner order described above. In fact, since the Löwner
order restricted to diagonal matrices is equal to the product order onRk, this is a natural generalisation
of the construction of information orders on∆n.

6 Conclusion and Further Research

We have shown that there is a wide variety of partial orders onthe space of probability distributions that
satisfy the necessary conditions to capture the notion of information content. With an extra restriction
(the degeneracy condition) we can make sure that this notionis unique. Unfortunately in practical lin-
guistic applications this condition might prove to be too strict. The renormalised Löwner orderings are
less strict in what they can compare and might prove to be moreuseful, although empirical research is
needed to confirm this. The construction of the restricted information orders also points towards a way
to create information orderings on the space of density operators, but studying this in detail is outside of
the scope of this paper.

In the pursuit of methods that make comparisons between distributions easier we might look at rescal-
ing distributions to study graded entailment (a generalisation of the approach taken in [3]). Another av-
enue of attack that might work is using the fact that in a high dimensional space words are probably far
apart, so that we can be less picky with the comparisons, and set x⊑ y whenever some elements within
a certain radius ofx andy are comparable. This procedure would break antisymmetry when considering
the entire space, but not when only comparing words (assuming they are far enough apart). Doing this
might allow elements in different sectors to be compared by arestricted information order.
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