
Adel Bouhoula Tetsuo Ida and Fairouz Kamareddine (Eds.):

Symbolic Computation in Software Science 2012 (SCSS2012)

EPTCS 122, 2013, pp. 85-95, doi:10.4204/EPTCS.122.8

Delegation Management Modeling in a Security Policy based
Environment

Ryma Abassi

Higher School of Communication, SUP’ COM,
University of Carthage

Tunis, Tunisia
ryma.abassi@supcom.rnu.tn

 Sihem Guemara El Fatmi

Higher School of Communication, SUP’ COM,
University of Carthage

Tunis, Tunisia
sihem.guemara@supcom.rnu.tn

Abstract. Security Policies (SP) constitute the core of communication networks protec-
tion infrastructures. It offers a set of rules allowing differentiating between legitimate ac-
tions and prohibited ones and consequently, associates each entity in the network with a
set of permissions and privileges. Moreover, in today's technological society and to allow
applications perpetuity, communication networks must support the collaboration between
entities to face up any unavailability or flinching. This collaboration must be governed by
security mechanisms according to the established permissions and privileges. Delegation
is a common practice that is used to simplify the sharing of responsibilities and privileg-
es. The delegation process in a SP environment can be implanted through the use of ade-
quate formalisms and modeling. The main contribution of this paper is then, the proposi-
tion of a generic and formal modeling of delegation process. This modeling is based on
three steps composing the delegation life cycle: negotiation used for delegation initiation,
verification of the SP respect while delegating and revocation of an established delega-
tion. Hence, we propose to deal with each step according to the main delegation charac-
teristics and extend them by some new specificities.

Keywords: security policy, delegation, revocation, multiplicity, affiliation, monotonici-
ty.

1 Introduction

Nowadays, communication networks are more and more faced to the collaboration between entities. In
order to avoid any unavailability or data loss, this collaboration must be secured and governed by in-
volved entities permissions and privileges. In fact, any active entity, called subject, may need to share
its permissions with another subject. This can be useful in case of an absence for example. Such kind
of interaction is called delegation. Delegation is defined as the process whereby a user without any
administrative prerogatives obtains the ability to grant some authorizations [1]. It can be considered as
a potential approach in addressing the problem of providing dynamic access control decisions in activ-
ities with a high level of collaboration [2]. Hence, delegation is used in order to facilitate responsibili-
ties interaction between subjects. The subject delegating a given permission is called grantor while the
beneficiary is called, grantee. Moreover, a grantor can delegate some of his permissions to the grantee
according to several characteristics including monotonicity (does the grantor preserve the delegated
permission?), permanence (is the delegation permanent?), multiplicity (can several grantees benefit of
a unique delegation?), level of delegation (can a grantee re-delegate an obtained permission?), lateral
agreement (who is the delegation initiator?), etc.

2 Delegation Management Modeling in a Security Policy based Environment

In this paper, we propose a generic delegation model based on the most known delegation characteris-
tics enumerated above. The proposed modeling is designed as an extension of a previously proposed
framework using SP for network securing [7]. Consequently and for sake of compatibility, the present
modeling is based on the same concepts such as subjects, channels, etc. and extends them by delega-
tion’s characteristics such as monotonicity, permanence, revocation, etc. A special attention is given to
an important delegation aspect, revocation. Revocation is a significant aspect for delegation when
permissions are required to get back. Since delegation can be made following several aspects, it seems
obvious that its revocation also has to be made following several schemes.

The remaining part of this paper is organized as follows. In Section 2, we introduce our delegation
modeling basing on several well established characteristics as well as new proposed ones. In Section
3, the whole delegation process modeling is depicted. Section 4 presents the revocation modeling and
differentiates between several revocation schemas. Finally, Section 5 concludes this paper.

2 Related Work

During the last years, several works dealing with delegation have been proposed.
Barka and al. [4] proposed the first delegation model. Nevertheless, this model only deals with role

level delegation, and does not consider sufficient constraints to manage the delegation policy. In [1],
Ben Ghorbel-Talbi and al. describe a delegation approach for role-based access controls models. Their
modeling is based on the AdOrBAC model and specifically on different administrative views. A view
is an organizational concept used to structure the policy specification. Therefore, inserting an object
in a view enable an authorized user to assign a user to a role and consequently to a permission. Con-
versely, deleting an object from a view, enable a user to perform a revocation. Recently, Crampton
and al. [7], propose an orBAC model that focuses on the issue of roles and permissions transfer. In
fact, this model defines specific components to manage each delegation level. For instance, predicates
such as grantP1 and xferP1 are used to perform a permission delegation and a permission transfer,
respectively. In [5], the authors focused on the delegation of obligations using the Alloy specification
language.

Most of these works are based on Role-Based Access Control models and propose to extend it with
some delegation aspects. Our proposition, in this paper, is a generic model that can be applied to sev-
eral communication domains.

3 DELEGATION MODELING

In this section, we build our delegation modeling according to the delegation characteristics such as
introduced in the literature.

3.1 Delegation basics

Let’s recall that delegation is the process whereby a user without any administrative prerogatives
obtains the ability to grant some authorizations such as introduced in [1]. The user initiating the dele-
gation is called ‘grantor’ while the delegation beneficiary is called ‘grantee’. In order to propose a
complete framework dealing with delegation, we identified the main delegation characteristics [1, 4, 5,
7]. These latter comprise permanence, monotonicity, totality, levels of delegation, multiple delega-
tion, lateral agreements and revocation.

Monotonicity: refers to the state of the authorization that the delegating member possesses after the
delegation. A monotonic delegation means that upon delegation the delegating member maintains the
delegated power. With a non-monotonic delegation, upon delegation the delegating member loses the
delegated power for the duration of the delegation.

Ryma Abassi and Sihem Guemara El Fatmi 3

Permanence: refers to types of delegation in terms of their time duration.
Levels of delegation: defines whether or not each delegation can be further delegated and how many

times. Single step delegation does not allow the delegation to be further delegated. Multi-step delega-
tion allows the delegated member to further delegate his or her delegated permission to a third user,
and so on.

Lateral agreements: refers to the delegation protocol between the delegator and the delegated
members. It is of two types: bilateral agreement and unilateral agreement. A bilateral agreement is an
agreement wherein delegation is accepted by both the delegating role member and the delegated mem-
ber. A unilateral agreement, on the other hand, is a one-way decision.

Totality: in the context of role-based delegation models, totality refers to how completely the per-
missions assigned to that role are delegated.

Multiple Delegations: This type of delegation refers to the number of people to whom a delegating
member can delegate at any given time.

Revocation: refers to the process by which a delegating user can take away the privileges that he or
she delegated to another user who is a member of another role.

Based on the previously introduced characteristics, we depict in the following the proposed delega-
tion modeling.

3.2 Monotonicity modeling

In this work, we distinguish between ‘delegation’ and ‘delegation policy’. The first concept repre-
sents, as introduced above, the process allowing to a user to delegate some of his rights to another us-
er. The delegation policy (DP) however, is a set of rules differentiating between legitimate and illegal
delegations. Besides, we designate by “permission” any delegated right. A permission p is structured
similarly to a SP rule as follows:

p: {type, modality, object, action, [constraint], [event]}
Let’s have a grantor gr ∈ S (subjects set), a grantee gt ∈ S, p a permission, some delegation con-

straints dc ∈ C (constraint set), some delegation events de ∈ E (event set) and resp ∈ {yes, no}, the
response rule.

A grant request is formalized as follows:

grt-req (gr, gt, (p), dc) → resp

A transfer request is formalized as follows:

tsf-req (gr, gt, (p), dc) → resp

Unlike requests and according to the proof that we presented in [8], obligations cannot be granted
but only transferred. Hence, we model a transfer obligation as:

tsf-ob (gr, gt, (p), dc ,de)

Globally, a delegation rule can be represented by the following structure:

(t, m, gr, gt, p, dc, de)

where t ∈ {grt-req, tsf-req, tsf-ob} is the rule type such as grt-req identifies a grant request ; tsf-req
identifies a transfer request and tsf-ob identifies a transfer obligation. m is the rule modality, positive
or negative. gr and gt represent respectively the grantor and the grantee. p is the delegated permission.
dc are delegation constraints and de are delegation events.

3.3 Permanence and level of delegation modeling

Permanence is related to delegation constraints. Hence, we assume that a delegation is active while
its constraints are valid which implies that constraints absence is synonym of a permanent delegation.

4 Delegation Management Modeling in a Security Policy based Environment

Furthermore, we propose to model three permanence constraint types: temporal constraints, spatial
constraints and general constraints.

Temporal constraints ‘t-c’ deal with the delegation duration. A temporal constraint can be defined
through a given interval characterized by a begin date and an end date, or can occur before or after a
given date. Furthermore, a temporal constraint can be a conjunction or a disjunction of other temporal
constraints. For instance, the temporal constraint BEFORE Wednesday restricts the delegation use to
Monday and Tuesday. This can be formalized as follows:

t-c ::= DURING interval | BEFORE date |AFTER date| ¬t-c | t-c ∧ t- c|t-c ∨ t-c

interval ::= ‘[‘ date ‘-’ date ‘]’ | literal

date ::= jj ‘/’ mm ‘/’ aa

jj ::= number

mm ::= number

aa ::= number

The second constraint type that we consider deals with spatial constraints ‘s-c’. These latter restrict
the application of the delegation process to a given site. So, we propose two constraint kinds related to
the presence in a given site or the absence from it. This can be formally represented as follows:

s-c ::= IN location | ¬s-c |s-c ∧ s-c | s-c ∨ s-c

location ::= literal

For instance, the spatial constraint IN classroom restricts the delegation use to the presence in the
classroom.

General constraints ‘g-c’ express varied constraints besides temporal and spatial ones related to the
grantee such as his belonging, his old, etc. These constraints can be formally represented as follows.

g-c ::= HAS constraint | IS constraint |¬g-c | g-c ∧ g-c | g-c ∨ g-c

constraint ::= literal

Another essential characteristic for delegation is the delegation levels. It concerns the ability of the
grantee to re-delegate a given delegation to another user. In this context, we propose another constraint
type, the level constraints. Level constraints ‘l-c’ express a constraint authorizing delegated permis-
sion to be re-delegated. This means, that the grantee will be able to take advantage of the delegated
permission or delegate it again. This is formally expressed as follows:

l-c ::= ‘MULTI-LEVEL DELEGATION’

3.4 Lateral Agreement Modeling

A delegation can be initiated spontaneously by the grantor or by a common agreement. In the first
case, the grantor delegates his permission without referring to the grantee. Whereas, in the second
case, the delegation can be initiated by the grantee who requests some permission from the grantor or
by the grantor who delegates his permission after a common agreement with the grantee.

Ryma Abassi and Sihem Guemara El Fatmi 5

According to Fig. 1, three types of lateral agreement are modeled. In the first case, a spontaneous
delegation is formulated. This can be modeled by the following elementary operations:

(1) Grantor gr requests to delegate a permission to the grantee gt spontaneously and thus through
a request submitted to the DP (gr-write)

(2) The DP receives this requests (DP-read)

In the second case, the delegation is triggered by the grantee. This can be modeled as follows:
 (0-1’) the grantee gt requests a given permission to the grantor gr (dlg-claim)
 (0-2’) the grantor gr receives this request and accepts it (dlg-approval).

(1) Grantor gr submits a request to the DP (gr-write)
(2) The DP receives this requests (DP-read)

In the third case, delegation is triggered by the grantor. This can be modeled as follows:
 (0-1) The grantor gr request the grantee’s approval for a delegation (dlg-claim)
 (0-2) The grantee gt receives this request and accepts it (dlg-approval)

(1) The grantor gr submits a request to the DP (gr-write)
(2) The DP receives this requests (DP-read)

Once the accord is achieved and the delegation process triggered, the DP can accept or deny this

delegation. In the first case, the request will be handled according to its type i.e. transfer or grant
where in the second case the request is simply dropped and a notification is sent back through steps (8)
and (9) of Fig. 1.

3.5 Multiple Delegation Modeling

This characteristic refers to the number of grantees to whom a grantor can delegate the same per-
mission at any given time. This number, let’s say Nd, is fixed by the administrator. For each delega-
tion request, the DP verifies that the number of delegations of the request’s permission is less than Nd.
This principle supposes the existence of a procedure counting the number of delegations each time a
request, including the permission in question, is submitted by a grantor. We assume also, that the DP
has a permission-Nd list from which it checks each arriving delegation request to decide whether it is
bounded by a given number of delegation Nd or not.

Notice that when the request does not appear in this list i.e. Nd is not used, the number of grantees
to whom a subject can delegate is not restricted.

4 Delegation process modeling

Based on the previously introduced concepts, our delegation modeling process can be depicted by
Fig 1 as follows.

(0-1)The grantor gr (respectively grantee gt) requests to delegate (respectively receive) a permission
p (dlg-claim).

(0-2)The grantee gt (respectively grantor gr) accepts this delegation (dlg-approval).
(1) The grantor gr puts into the channel the delegation request (gr-write).
(2) The DP extracts this request (DP-read).
(3) The DP verifies the legitimacy of the request based on the existing SP (dlg-legitimacy).
(4) If the request is accepted, a rule is added to the SP (add-rule).

(4’) In case of a transfer, the initial rule is simply modified (modify-rule)
(5) The DP then, notifies the grantee gt (DP-write)
(6) The grantee gt receives this notification (gt-read).
(7) Nevertheless, if the request is denied, it is simply dropped into the channel out (deny).
(8) A reject notification is then sent back to the grantor gr (DP-write).

6 Delegation Management Modeling in a Security Policy based Environment

(9) The grantor gr receives the notification (gr-read).

Let’s note that the dlg-claim and dlg-approval steps concern the lateral agreement. Moreover, once
accepted by the DP, a grant request implies the addition of a new rule in the SP. A transfer however,
implies the modification of the rule handling the delegated permission (for the grantor) i.e. the grantor
field is replaced by the grantee value.

Since, delegation updates an existing SP, a verification process must go with it. We propose two
verification tasks: (1) delegation legitimacy verification when a delegation request is submitted and (2)
SP consistency verification when the SP is updated.

Delegation legitimacy verification is performed by DP in order to check whether a given grantor has
actually the right to delegate. Algorithm 1 depicts our proposition.

For each rule r ∈ SP \ (r.s==p.gr) do
 If (r∩ p <>∅) then
 If (r.modality == yes) then
 dlg-legitimacy
 else not(dlg-legitimacy)
 else not(dlg-legitimacy)
od

Algorithm 1 Delegation request verification

Having a SP and a given permission p that a grantor wants to delegate to a grantee, this algorithm
verifies the existence of a rule granting p for the considered grantor. Hence, we check only rules hav-
ing a subject field equal to the grantor. For each of these rules, we compute its intersection with p. If
the intersection is not empty then we look at the rule modality: a positive modality implies that the
grantor has actually the delegated right where a negative modality implies that he hasn’t this right.
However, if the computed intersection is empty this mean that the grantor hasn’t the permission p and
consequently cannot perform the delegation.

The second verification task concerns SP consistency verification after an update due to
delegation process. In fact, we have to verify whether the SP doesn’t contain conflicts after
the addition of the new rules. In a recent paper [9], we have proposed a framework detecting SP
inconsistency. Hence, in the following we use the obtained results and interested reader may refer to
the original paper for more details.

Having a SP (assumed consistent) and a given rule added by the delegation process dr, Algorithm 2
verifies whether there exist a rule r in the SP having a domain relation ‘R’ with the added rule dr and
a contradictory modality. If such rule exists, then there is an inconsistency.

For each rule r ∈ SP \ (r.s == dr.s) do
 If (dom(r) R dom (dr)) and (r.modality != dr.modality)
 Then inconsistancy
 Else consistency
od

Algorithm 2 SP consistency verification

Once a conflict is detected, it must be resolved. This resolution must take into account the fact that
delegation is temporary process and that the initial SP must be preserved. Hence, we propose to re-

Ryma Abassi and Sihem Guemara El Fatmi 7

solve conflict using priorities as well as partial order relation. Let’s have P a finite set of priorities and
let’s assume that P is associated to a partial order relation < such that if p1 and p2 ∈ P then p1 < p2

means that p2 has a greater priority than p1. We propose to associate to the rule added by the delega-
tion process the greatest priority. In fact, delegation is performed in order to satisfy a given need in the
SP environment consequently, a rule generated by delegation must have a greater priority than existing
rules.

Furthermore, when the rule is revoked, then the partial order relation is deleted.
Let’s consider the following example depicted two conflicting rules and where rule 1 was added by

delegation:
Rule1: (req, positive, assistant, present, course, during-professor-absence)
Rule2: (req, negative, assistant, present, course)
These two rules cause a SP conflict since the SP will not be able to decide whether an assistant is

authorized to present a course or not. Using our proposition, this is solved as follows. Two priorities
are defined,

P = {p1 , p2 } such that p1 < p2

Then the greater priority is associated to the rule added by delegation (Rule1).
Rule1: (req, positive, assistant, present, course, during-professor-absence, p2)
Rule2: (req, negative, assistant, present, course, p1)
Hence, Rule 2 will not be used by SP while delegation is not revoked.

5 REVOCATION MODELING

Delegation is needed, as we mentioned it, in order to facilitate user’s interaction. This is the case,
for example, when a user responsible of doing some tasks is not able to fulfill them. In such case, this
user can delegate some of his permissions to another user. However, he must be able to recover them
when initial constraints (of the delegation) are no more fulfilled. This is done by the revocation pro-
cess. Revocation refers to the process by which a grantor can take away the permissions that he dele-
gated to another user, the grantee.

In this section, we present our revocation framework dealing with its modeling and management.

5.1 Revocation dimensions

Following the classification defined by Hagstrom and al. [3], revocation can be categorized into
three main different dimensions: propagation, dominance and resilience. However, while studying the
main delegation features, we found that three other dimensions could be added: we propose mono-
tonicity, multiplicity and affiliation.

4.1.1. Propagation distinguishes revocations according to space. Propagation is said local if the revo-
cation affects only the direct grantees and global if its affects all grantees authorized by the direct ones
[3]. A direct grantee is a grantee of the first level for the delegation.

In our modeling, this dimension is handled through two procedures L-revoke invoked when local
propagation is used and G-revoke invoked when global propagation is used. Algorithm 3 depicts its
principle: according to the request type, a new rule is removed (grant) or the grantee field is replaced
by the grantor value (transfer).

L-revoke (p, gt, dp, sp)
 t :=find (t.p,DP)
 r:= find (p,sp)
 if (t == grt-req)
 then remove (r) {grant}

8 Delegation Management Modeling in a Security Policy based Environment

 else add-rule (r, gr) {transfer}
end

Algorithm 3 Local Revocation Procedure

Algorithm 4 depicts the procedure G-revoke concerning the global propagation. For each grantee
having received the permission from a direct grantee, we invoke the L-revoke procedure in order to
remove (or modify) the concerned rule.

G-revoke (p, gt, dp, sp)
 L-revoke (p, gt, dp, sp)
 For all derived –dlg (gt’) do
 L-revoke (p, gt’, dp, sp)
 od
end

Algorithm 4 Global Revocation Procedure

4.1.2. Dominance deals with conflicts arising when a subject losing permission in a revocation still
has permissions from other grantors [3]. A revocation is said strong if the grantor initiating the revoca-
tion (revoker) dominates other grantors and revokes their delegated permissions too. It is said weak,
however, when the revoker can only revoke permissions coming directly from him.

In our modeling, there is no restriction concerning the delegation of the same permission from sev-
eral grantors. Hence, we adopt this dimension by defining a grantor hierarchy associated with a partial
order relation ‘dominates ⊑ ’. Formally, we consider H a finite set of hierarchies. We assume that H is
associated with a partial order relation ⊑such that if ℎ1 ⊑ ℎ2 means that grantor h1 dominates h2
and consequently that the grantor associated with h1 dominates the grantor associated to h2.

4.1.3. Resilience distinguishes revocation via removal from revocation via a negative permission [3].
Therefore, a revocation is said to be persistent if a negative permission with a greater priority is given.
The effect of this permission remains until it is revoked. The second case concerns the non-persistent
revocation where the delegated permission is just removed.

In our modeling, we do not consider resilient revocation, since we considered that delegation con-
cerns only positive permissions.

4.1.4. Monotonicity differentiates between the grant and the transfer delegation as introduced in sec-
tion 4. Grant allows to a grantor to share some of his permissions while transfer allows to a grantor to
hand over some of his permission to a grantee. Hence, we propose two revocation schemas, a mono-
tonic revocation and a non-monotonic revocation, handling to the two types. A monotonic revocation
(delete) concerns the grant revocation and induces the removal of the rule handling the concerned
permission from the grantee(s). A non-monotonic revocation (modify) concerns the transfer revocation
and induces simply the modification of the rule (handling the concerned permission for the grantee) by
replacing the subject field by the grantor value.

4.1.5. Multiplicity deals with multiple revocations. It is said multiple if the delegation affects all the
grantees of a given delegation and single if the revocation concerns only one grantee. We have to note,
however, that the loss of the permission by the grantor implies an automatic revocation of all his
grantees.

4.1.6. Affiliation deals with revocation triggers. In fact, we found that a revocation can be triggered
according to three cases: (1) a constraint violation e.g. an expired date (2) a grantor request or (3) the

Ryma Abassi and Sihem Guemara El Fatmi 9

loss by the grantor of the permission. If the grantor loses a permission he delegated, it is obvious that
the delegation must be revoked.

These dimensions are combined to provide sixteen revocation schemes. However, in the following
sub-sections, we describe only four schemes due to the paper length limits.

5.2 Revocation categorization

 We have to note, that only the grantor request affiliation dimension can be combined with other
dimensions. In fact, the two other (the constraint violation and the grantor permission loss) trigger an
automatic revocation. In the first case, only the grantee (s) related to the constraint is (are) affected
while in the second case, all direct grantees are affected (and consequently their direct grantees, etc.).
Table 1 depicts the remaining schemes where each one has a unique description with respect to the
four dimensions.

4.2.1. Weak local single delete. In this schema, there is no dominance and no propagation, only one
grantee is affected and the rule issued from the delegation is deleted.

Let’s consider the situation where an assistant professor ‘A’ belongs to several university depart-
ments. When ‘A’ no longer belongs to a given department, professor ‘P’ revokes A’s authorizations,
but he may still have access to the same objects as a member of other departments. Other assistants are
not affected except that their direct grantor may no longer be ‘A’. For ‘P’ to weakly locally single
revoke a permission given to ‘A’, the operation consists in removing one permission and making sure
that all the permissions ‘A’ has granted are still valid. If necessary, ‘P’ must assume the grantor role
for the permissions that ‘A’ granted.

4.2.2. Weak local plural delete. This schema differs from the single variant in the plurality aspect, i.e.
the professor ‘P’ attempt to revoke a permission granted to a given assistant ‘A’ will remove also in a
ripple effect the other grantees beneficiary of the same permission from the same ‘P’.

4.2.3. Weak global single delete. This schema is useful if professor ‘P’ loses trust in assistant ‘A’ but
still trusts others grantees having received the same permission at the same time. Also, since ‘P’ no
longer trusts ‘A’ in term, he no longer trusts any subject trusted by ‘A’.

4.2.4. Strong local plural delete. In this schema, the revocation affects all direct grantees whatever
their grantor.

6 Conclusion

The importance of security in communication networks is no longer in question. Hence, any effi-
cient security solution must be adapted to the specific needs of the network that it governs. One of
these needs concerns users’ interaction where a given user may share its permissions or even transfer
them. This is what we call delegation.

In this work, we proposed a delegation modeling designed to complete a previously proposed SP
modeling and to interact with him. Hence, we separate two delegation types: the grant and the transfer
and for each type, we depict a modeling dealing with the initial agreement process, the permanence,
the delegation levels, multiple delegations and the revocation. Three agreements processes were pro-
posed based on the initiator of the delegation. We also formalized three request rules: grant request,
transfer request and revocation request. Moreover, a special focus was given to revocation manage-
ment and thus through five dimensions: two preexist i.e. propagation and dominance and three newly
proposed i.e. monotonicity, affiliation and plurality. These dimensions were combined to provide six-

10 Delegation Management Modeling in a Security Policy based Environment

teen revocation schemes. Finally, we proposed a formal syntax formalizing our modeling. This syntax
will be the first step towards implementation.

7 References

1. Ben Ghrobel-Talbi M, Cuppens F, Cuppens-Boulahia N and Bouhoula A, “Managing Delegation
in Access Control Models”, 15th International Conference on Advanced Computing & Communi-
cation (AD’COM 2007), Guwahati, India, pp. 744-751, 2007, doi 10.1109/ADCOM.2007.105

2. Pham Q, Reid J, McCullagh A, Dawson E, On a taxonomy of delegation, Computers and Security,
Volume 29, Issue 5, July 2010, Pages 565-579.

3. Hagstrom A., Jajodia S., Parisi-Persicce F., and Wijesekera D. “Revocation - a Classification”. In
Proceedings of the 14th Computer Security Foundation Workshop (CSFW'01), Cape Breton, Nova
Scotia, Canada, 2001, doi 10.1109/CSFW.2001.930135.

4. Barka E, Sandhu R. S. “A role-based delegation model and some extensions”. In Proceedings of
the 23rd National Information Systems Security Conference NISSC 2000, Baltimore.

5. Schaad A and Moffet J.D. , “Delegation of obligations”, IEEE Policies for Distributed Systems
and Networks (POLICY 2002), Monterey, pp.25-35, 2002, doi 10.1007/1-4020-8128-6_4.

6. Cuppens F. and Miège A. “Administration Model for Or-BAC”, International Journal of
Computer Systems Science and Engineering (CSSE), 2004.

7. Crampton J and Khambham-mettu. H “Delegation in Role-Based Access Control”. International
Journal of Information Security (IJIS), 7(2):123-136, 2008, doi 10.1007/s10207-007-0044-8.

8. Abbassi R. and Guemara El Fatmi S, “A Generic Model for Delegation in Security Policies”, In
Proceedings of the International Conference on Communications and Networking, Tunisia, 2009,
doi 10.1109/COMNET.2009.5373559.

9. Abbassi R. and Guemara El Fatmi S. “A Model for Specification and Validation of Security Poli-
cies in Communication Networks: the firewall case”, In Proceedings of the Third International
Conference on Availability, Reliability and Security, Barcelona, pp. 467-473, 2008, doi
10.1109/ARES.2008.124.

Ryma Abassi and Sihem Guemara El Fatmi 11

Fig1. The Generic Delegation Model

Affiliation Monotonicity Dominance Propagation Plurality

G
ra

n
to

r
re

qu
es

t

No No No No weak local single modify
No No No Yes weak local plural modify
No No Yes No weak global single modify
No No Yes Yes weak global plural modify
No Yes No No strong local single modify

No Yes No Yes strong local plural modify
No Yes Yes No strong global single modify
No Yes Yes Yes strong global plural modify
Yes No No No weak local single delete
Yes No No Yes weak local plural delete
Yes No Yes No weak global single delete

Yes No Yes Yes weak global plural delete
Yes Yes No No strong local single delete

Table 1. Categorization of revocation schemes

(1)

gr-write

 (7) deny

Grantee
(gt)

Gran-
tor

DP

(2)

DP-read (5)

DP-write
(6)

gr-read

(8)

DP-write

(9)

gr-read

SP

(11)

update (r)
(3)

dlg-legitimacy

(4)add-rule

(4’) modify-rule

(0-1’)

dlg-claim

(0-2’)

dlg-approval

(0-1)

dlg-claim

Trigger of Events

(0-1’’) e

