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Recently efficient model-checking tools have been developed to find flaws in security protocols spec-
ifications. These flaws can be interpreted as potential attacks scenarios but the feasability of these
scenarios need to be confirmed at the implementation level. However, bridging the gap between an
abstract attack scenario derived from a specification and a penetration test on real implementations of
a protocol is still an open issue. This work investigates an architecture for automatically generating
abstract attacks and converting them to concrete tests on protocol implementations. In particular we
aim to improve previously proposed blackbox testing methods in order to discover automatically new
attacks and vulnerabilities. As a proof of concept we have experimented our proposed architecture
to detect a renegotiation vulnerability on some implementations of SSL/TLS, a protocol widely used
for securing electronic transactions.

1 Introduction

Personal, commercial and administrative communications are increasingly routed through open networks
like Internet and rely on security protocols such as SSL to protect their privacy. However new vulnerabil-
ities are discovered every day by hackers on these protocols based on implementation flaws or improper
parameter setting.

Formal verification of cryptographic protocols [11, 4, 6, 2, 10] is a widely developed area but it
is insufficient in general to ensure that the protocol implementations are secure. Technical details are
often abstracted in formal verification and they are the source of many vulnerabilities. Moreover imple-
mentations often diverge from the initial specification for instance when the implementer misinterprets
ambiguous documentations.

Penetration testing permits the test of implementations based on the tester initial knowledge. The
tester tries to get unto the system by performing manually attack scenarios. Depending, on its knowledge
of the protocol implementation we find three major category: White Box, Grey Box and Black Box
testing. Different from penetration testing, fuzzing techniques bombs the protocol implementation with
random inputs which are not conform with the protocol specification. It is a well known method for
finding software failures because it targets the error handling part. We need more effective methods
to improve the efficiency of implementation testing tools, as most of the existing approaches resort to
random or manual t-esting. Since model-checkers have been remarkably efficient in finding flaws in
security protocol specifications we propose to exploit the power of these formal verification tools for
implementation testing too.

Contribution. In this work we adopt a model-based approach to protocol testing. We start from a
secure formal model of the protocol under test. The first phase which is not an original contribution
from ours, follows the proposal in [7] to generate plausible flaws in the model by relying for instance

∗This work is supported by FP7 NESSoS project and DAST Investissement d’Avenir project.

http://dx.doi.org/10.4204/EPTCS.122.4


40 Compiling Symbolic Attacks

on well suited mutation techniques for focusing on specific meaningful security properties. We assume
that an executable protocol mutant potentially witnesses an implementation flaw. Then we use CL-AtSe
model-checker [9] to generate attack traces that exploit specific security vulnerability w.r.t. authentica-
tion or confidentiality on the protocol mutant. These generated attack traces represent attacks at a formal
level, and we need to confirm the vulnerabilities at the implementation level. However, bridging the gap
between an abstract attack trace and a penetration test on real implementations of the protocol is still an
open issue. We propose an architecture for automatically compiling abstract attack traces to concrete ex-
ecutable tests on protocol implementations. In particular we contribute to improve previously proposed
blackbox testing methods by providing more computer assistance to discover new attacks and vulner-
abilities. As a proof of concept In our experiments we have found a vulnerability on XAMPP version
1.7.2/openSSL v0.9.8k : The server accepts SSL renegotiation requests initiated by the client. However
more recent SSL versions have been protected against this vulnerability.

The mutation method involves some guessing. However instead of being fully random (like in
fuzzing) the mutation is oriented towards guessing ”standard programming mistakes”. Hence the com-
binatorial problem is reduced. Much less erroneous models (scenarios) need to be tested against the
concrete implementation. By using our plateform solution, the whole process of scenarios translating to
concrete tests is automated, however, it is worth to say that a preliminary work have to be mannually
done. It consist in mannual configuration of the test environment which depends on the test scenario. For
brevity, this paper mainly concentrates on the description of the proposed approach and on its validation
by means of a real-life size case study. Formal definitions, more implementation details and other case
studies will be included in the extended next version of this paper.

Related works. Recent works have proposed several interesting mutation techniques [7] for crypto-
graphic protocol specifications. However these method are not yet harnessed in order to compile towards
concrete implementation tests. A similar work to ours has been published independently (but after Hatem
Ghabri’s master [5]) proposing also to compile abstract attacks to concrete penetration tests on imple-
mentation [3]. They derive a message construction procedure to compile their attacks but we show that
we can reuse directly an existing efficient and complete procedure that is implemented in Avantssar
platform [1]. The method in [3] has been applied to different protocols from ours too.

2 SSL/TLS formal modelling and attack trace generation

2.1 Overview of SSL/TLS protocol

Secure Sockets Layer (SSL) or its updated version Transport Layer Security (TLS) is a cryptographic
protocol designed to provide communication security over the internet. TLS encrypts all the traffic data
at the Application Layer for the Transport Layer, using asymmetric cryptography for key exchange,
symmetric encryption for privacy, and message authentication codes integrity. Protocols such as HTTP,
SMTP; POP3 and others use TLS to create secure connections.

Handshake Protocol In order to get an SSL session with a server, the Client, a Web browser, proceeds
by following a handshake sequence described by the handshake protocol. During the handshake there
is a negotiation of session information between the client and the server. This information consists of
a session ID, peer certificates, the cipher specification, the compression algorithm and a shared secret
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that is used to generate keys. The Cipher Specification indicates what methods to use for Key Exchange,
Data transfer and creation of message authentication Code, MAC.

Below we refer to the client as A (Alice) and the server as B (Bob) as it is usual for authentication
protocols. At the start of a handshake, A sends a Client Hello message to B supplying a session identifier
Sid and a nonce Na, called client random. Client Hello message also contains a cryptosuite offer Pa
which is set of Aś preferences for encryption and compression.

Client hello : A→ B : A,Na,Sid,Pa (1)

In response, the server B sends a Server Hello message, containing his nonce Nb (server random), a
cipher suite and a compression method selected from ones proposed by the client. Agent B, also, repeats
the session identifier Sid.

Server Hello : B→ A : Nb,Sid,Pb (2)

The server’s public key, Kb is delivered in a certificate signed by a trusted third party; it is generally
an X.509 certificate.

Server Certi f icate : B→ A : certi f icate(B,Kb) (3)

The client, optionally, sends a certificate message which contains the client’s certificate Then he gen-
erates a pre-master-secret PMS, a 48-byte random string, and sends it to B with his public key in a Client
Key Exchange. A optionally sends a certificate verify message to authenticate himself.

Client Certi f icate∗ : A→ B : certi f icate(A,Ka) (4)

Client Key Exchange : A→ B : {PMS} Kb (5)

Certi f icate Veri f y∗ : A→ B : {Hash{Nb,B,PMS}} inv(Ka) (6)

The notation {}k stands for the message X encrypted using the key K. Now both parties calculate
the master-secret M from the nonces and the pre-master-secret using a secure pseudo-random-number
function PRF. They calculate session keys and MAC secrets from the nonces and master secret. Each
session involves a pair of symmetric keys; A encrypts using one and B encrypts using the other. Similarly,
A and B protect message integrity using separate MAC secrets. Before sending application data, both
parties exchange Finished messages to confirm all details of the handshake and to check that clear text
parts of messages have not been altered.

Master Secret M = PRF(PMS.Na.Na) (7)

FinishedMessage = Hash{M.A.B.Na.Pa.Sid} (8)

Client Finished : A→ B : {Finished} ClientK (9)

Server Finished : B→ A : {Finished} ServerK (10)
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The symmetric key client is intended for client encryption, while server is for server encryption. The
corresponding MAC secrets are implicit because our model assumes strong encryption.

Clientk = KeyGen(A,Na,Nb,M) (11)

ServerK = KeyGen(B,Na,Nb,M) (12)

Once a party has received the other’s ”Finished” message and compared it with her own, she is ensured
that both sides agree on all critical parameters, including M and the preferences Pa and Pb. Now she may
begin sending confidential data.

2.2 Formal model

We can model the interactions between two roles in the SSL/TLS Protocol, using the Multiset Rewrit-
ing in Dolev-Yao Model:

A→ B : A,Na,Sid,Pa
B→ A : Nb,Sid,Pb
B→ A : {B,Kb} inv(Ks)
A→ B : {A,Ka} inv(Ks)
A→ B : {PMS} Kb
A→ B : {H(Nb,B,PMS)} inv(Ka)
A→ B : {Finished} Keygen(A,Na,Nb,M)
B→ A : {Finished} Keygen(B,Na,Nb,M)

The previous notation gives us a clear illustration of the messages exchanged in a normal run of a given
protocol. But it is not precise enough to specify execution steps and transitions of the protocol. That is
why we also use HLPSL language [2] to specify the actions of each kind of participant as a module. For
each type of participant, in a protocol, there will be one basic role specifying his sequence of actions.
This specification can later be instantiated by one or more agents playing the given role. Each basic role
describes what information the participant can use initially (parameters), its initial state, and ways in
which the state can change (transitions). The AVISPA platform [2], uses back-ends to analyse a model
in HLPSL and check if the security goals are satisfied or violated. If a security goal of the specification is
violated, the back-ends provide a trace which shows if the sequence of events leading up to the violation
and displays which goals are violated. The command-line AVISPA Tool outputs attack traces in a textual
form we will see later.

2.3 Mutation techniques

Mutation is a technique that consists in introducing faults into a model in order to generate test cases.
Model checkers can then be employed to detect flaws caused by the introduced mutation. There exist
many mutation techniques and we try to present some (see [7]) that are well adapted to our context.
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Agent identifier mutant This technique eliminates some agent identity verifications from the pro-
tocol. Indeed, each communicating partner sends identification information within each message. At
reception, each partner verifies the correctness of the provided identity. If it is not correct the protocol
closes the communication. Let us consider these reception instructions in HLPSL: RCV ({A,B}k) and
RCV ({A,B′}k). In the second instruction we remark that B is primed which means that the value is
new. Hence at reception this value cannot be checked against a previously known name. So, any value
including intruder provided one will be accepted. This can be exploited to mount an attack. In order to
perform this mutation at the source code level, it suffices to delete identity verification.

Nonce mutant In order to verify the session freshness and the agent presence in a cryptographic pro-
tocol nonces are random messages generated by the communication partners. An agent creates its own
nonces, sends them to the other parties and waits to get them back in some response. Let us consider
these HLPSL instructions: RCV ({msg,Na}k) and RCV ({msg,Na′}k). In the first instruction the agent
will compare the received nonce Na with a previous copy that it possesses. In the second instruction,
there is no verification since Na′ is considered to be new. So, this mutation creates a flaw.

Mutation techniques permit one to focus the search for implementation vulnerabilities and generate
relevant attack trace scenarios. In our work we have used automatic mutation operators that affects
specific security properties.

Attack trace Using mutation techniques and the CL-Atse Protocol Analyser [9] we can generate mul-
tiple attack traces each one describing an attack scenario against a specific security property. An attack
trace is given by a set of instructions. In our case, we aim to test the existence of the renegotiation vulner-
ability in SSL/TLS protocol server implementation; A vulnerability in the way SSL and TLS protocols
allow renegotiation requests may allow an attacker to inject plaintext into an application protocol stream.
This could result in a situation where the attacker may be able to issue commands to the server that
appear to be coming from a legitimate source www.kb.cert.org/vuls/id/120541. The following
attack trace model describes the renegotiation process:

I→ B : start
I→ B : (I.Ni.Sid.Pi1)
B→ I : (Nb.Sid.Pb)
I→ B : pair{crypt(Kb,PMS),crypt(IntruderK,Finished)}
B→ I : crypt(IntruderK,Finished1)
I→ B : crypt((I.Ni.Sid.Pi2), IntruderK)

3 A testing platform architecture

As discussed above, the attack trace is rather abstract and in order to be able to detect real attacks that
affects protocol implementations we need a platform that provides:

i) Messages format conversion from a formal level to the implementation level

ii) Real communications with the system under test.

www.kb.cert.org/vuls/id/120541
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These are the main aspects of our solution. We introduce the platform architecture by describing
their components, their functionalities and their interactions. The platform architecture has three main
components each with a specific role:

1. Attack Trace Compiler: identifies agents, messages types and operations.

2. Scenario Execution Engine: generates ( and verify) outgoing (resp. incoming) messages.

3. Attack Simulator: simulates the scenario on real communication channels

As shown in Figure 1, the platform takes as input the attack trace and the mutated model of the
protocol under test, and returns as a result an indication whether the considered attack on the examined
implementation exists or not.

3.1 Attack Trace Compiler:

The Attack Traces Compiler transforms an (abstract) attack trace into an (executable) attack scenario.
This module provides an attack scenario which describes in detail the actions which should be done by
the intruder while executing the attack. The attack scenario is structured into steps and elementary
instructions. Each step corresponds to an abstract attack trace elementary step. This module takes
as inputs an attack trace and the protocol formal model written in HLPSL Language. The abstract
trace serves as a guide for the intruder implementation. The HLPSL model is used to collect some
information such as the intruder initial knowledge. The Attack Trace Compiler identifies messages types
and operations.

The output is the attack trace scenario describing the intruder behaviour. It is a set of elementary
steps used by the Scenario Execution Engine to implement this intruder. In order to explain well the
process of compiling the attack trace, we give here a simple example of an attack trace treatment:

Attack trace model :
i→ a : start
a→ i : crypt(kb, pair(Na,a))
i→ a : crypt(ka, pair(Na, pair(Nb,b)))
a→ i : crypt(kb,Nb)

AttacktraceScenario o f I
Step −1 :

0 = start = iknown
1 = a = iknown
2 = b = iknown
3 = ka = iknown
4 = kb = iknown
5 = ki = iknown
6 = inv(ki) = iknown
7 = i = iknown

Step 0 :
!0 = start

Step 1 :
?8 = crypt(kb, pair(Na,a))
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Step 2 :
!11 = crypt(ka, pair(Na, pair(Nb,b)))
8 = ”received at step : 1”

Step 3 :
?16 = crypt(kb,Nb)
13 = ”generated nonce at step : 2”
15 = ”generated nonce at step : 2”
14 = pair(15,2)
16 = crypt(4,15)
12 = pair(13,14)
11 = crypt(3,12)

Step 4 :
f inish()

The steps are indexed. The first one stores the Initial Knowledge (keys or agent’s identities) deduced
from the protocol model. We note that ”?” (and ”!”) symbol refers to a receive (resp. send) operation.
The result of each operation is saved in an intermediate indexed variable (Xi). This will help the scenario
execution engine to handle the generated flow of information.

Scenario Generation Algorithm In order to generate an executable attack scenario, for each step in
A→ B : M in the attack trace, where A is an agent controlled by the intruder, one needs to check whether
the intruder can compose M from the pieces of knowledge he has at this step. Therefore we need to use
a procedure to verify whether a message t can be composed from a set of messages E by the intruder
simulator. The method provides A sequence of operations that allows one to construct a given message.
When several sequences are possible, the choice does not matter for the remaining of our process. The
method is complete in the sense that if the message can be constructed we derive (at least) one sequence
of operations for that.

This algorithm is well-known in protocol analysis (e.g. [8]) and it is implemented in Avantssar Plat-
form [1] as part of the Orchestration module. We have reused an optimized version for our purpose. The
algorithm provides us with the sequence of operations to apply in order to generate t from E whenever
it is possible. This sequence of operations is represented as a term t. The proposed method constructs t
from knowledge set E.This is done by checking which subterm in E ∪{t} can be constructed. Several
passes are necessary since after constructing some keys one can decrypt more messages. Hence, itera-
tively, more and more messages get constructible. At the end of the main loop one checks whether the
message t is in the set of constructible messages K1.

3.2 Scenario Execution Engine

This module is responsible of translating the attack scenario from formal level to the implementation
level. It ensures the association between abstract messages and concrete ones, stored in the Data Store
module. Operation execution is held with the functionality provided by the Primitive Holder.

Primitive Holder Our execution environment works at the implementation level. The exchanged mes-
sages are real network messages. Therefore, we have to relate abstract messages with actual messages
and operations. This is the main role of the Scenario Execution Handler. We can classify the attack
scenario instructions into three categories:
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1. Message construction,

2. Message sending

3. Message receiving.

To do this, we use cryptographic primitives (crypt, pair and unpair) and network primitives (send and
receive). In fact, we define all the needed cryptographic operations in the Primitive Holder Module.
Corresponding to the specification of the protocol SSL/TLS, this entity provides operations such as
encryption, decryption, nonce generation, signature and concatenation. In order to execute the whole
scenario without errors the Primitive Holder provides all the possible operations accepted by the protocol
implementation.

Data Store Message creation depends from the scenario’s previous steps (we consider stateful proto-
cols). Hence all the messages handled by the platform are saved in the Data Store in their real format and
indexed way. This facilitates data processing. The Scenario Execution Handler, retrieve data by provid-
ing their index. The same technique is used while storing the information. The Data Store contains also
all objects required for intermediate computations like encryption keys, data nonces, agent identities and
submessages.

Scenario Execution Handler This module handles the instantiation of abstract operations by concrete
executable ones. Taking as input, the elementary steps of an attack scenario, it processes each instruction
in order to identify the operation to perform and its arguments. It interacts with the Primitive Holder
module to execute cryptographic operations and with the Data store module to save or retrieve operation
arguments. Here we give the algorithm that describes the interactions of the different modules:

Algorithm 1: Scenario Execution Handler
Input: Instruction
Output: Request to another component

1 Let I contain instruction value;
2 Case {I is send(Xi)} then
3 Get data from the Data Store at position i ;
4 Call A-Simulator to send message

Case {I is Xi=receive()} then
5 Call A−Simulator to get the received message ;
6 Store the message on the Data Store at position i

Case{I is Xi=operator(Xy,Xz)} then
7 Get data from Data Store at positions y and z;
8 Call the Primitive Holder to execute the primitive;
9 Store the message on the Data Store at position i

Case{I is finish()} then
10 Exit with success

The last case of Algorithm 1 is the message construction or decomposition. In both cases the Handler
invokes the Data Store and the Primitive Holder modules Consider for instance the instruction X1 =
Crypt(X2,X3). First, the Scenario Execution Handler collects the arguments by requesting them from
the Data Store through the data buffer. Then, it requests the Primitive Holder to construct the message.
Finally, the latter’s response is stored at the result position X1 in the Data Store. At the end of the attack
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scenario execution, the Scenario Execution Engine sends a “finish” message. This means that the attack
works on the tested implementation.

3.3 Attack Simulator

After transforming a message from the formal to the real format, the Scenario Execution Handler pro-
cesses the sending and the receiving operations. In such case, it sends a request to the Attack Simulator
module which is the interface of the platform with the external environment. At the formal level, the
intruder interacts with the other agents via channels. Moreover, he has the capacity either to intercept
messages in the passive attack case or to block and send (altered) messages when he wants to imper-
sonate other agents. This is the active attack case. In both cases, Attack Simulator should provide the
following functions:

• Create the real communication channels.

• Send messages.

• Intercept messages.

• Block messages.

• Redirect messages.

• Create agent (depending on the attack scenario)

This module represents our platform interface with the system under test. It’s responsible not only for
ensuring real communication but also for validating the execution of the whole attack scenario.

Architecture and Functioning The execution environment is composed of the agents and the intruder.
They interact over the network through the communication channels.The agents are protocol process
running at a separate hosts. We propose to simulate attack scenarios in a local network to get a full
control on different instantiated agents and also to avoid any low violation caused if the attack scenario
succeed. The attack simulator, creates agents depending on the attack scenario.This is done manually .
For instance, in the case of a Man In The middle attack, there is three agents A,B and I. A is a legitimate
client, B is a legitimate server and I simulates our intruder. If we assume that B is the system under test.
Therefore, the attack simulator will create two agents; a legitimate one A and malicious one I.

Attack validation Attack validation is the most important step of the test. The simulator logs all the
exchanged traffic between the platform and the System Under Test. Indeed, every transiting packet is
checked especially the received ones. They may be either a response to a previous request from the
platform or an error message. The error messages are provided by the protocol owner. We put them in a
configuration file. If the protocol response is one of them, we are sure that the protocol implementation
does not accept the attack scenario. The formal attack does not exist in implementation. Otherwise, if
the packet source is the Scenario Execution Engine and its content is a “finish” message. Therefore, our
attack scenario execution confirms a security flaw on the implementation.

4 Conclusion

We have introduced a platform architecture for protocol blackbox testing. The platform exploits an attack
trace to guide the generation of an intruder implementation. Then, using a simulation module, the attack
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scenario can be played on a real protocol implementation and allow us to know if this implementation is
vulnerable.
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Figure 1: Platform Architecture

Figure 2: Attack Trace Compiler


	1 Introduction
	2 SSL/TLS formal modelling and attack trace generation
	2.1 Overview of SSL/TLS protocol
	2.2 Formal model
	2.3 Mutation techniques

	3 A testing platform architecture
	3.1 Attack Trace Compiler:
	3.2 Scenario Execution Engine
	3.3 Attack Simulator

	4 Conclusion

