
John Derrick, Eerke Boiten, Steve Reeves (Eds.):
Refinement Workshop 2013
EPTCS 115, 2013, pp. 68–83, doi:10.4204/EPTCS.115.5

c© N. Amálio
This work is licensed under the
Creative Commons Attribution License.

Relaxing Behavioural Inheritance

Nuno Amálio
University of Luxembourg

6, rue Richard Coudenhove-Kalergi, L-1359, Luxembourg
nuno.amalio@uni.lu

Object-oriented (OO) inheritance allows the definition of families of classes in a hierarchical way. In
behavioural inheritance, a strong version, it should be possible to substitute an object of a subclass
for an object of its superclass without any observable effect on the system. Behavioural inheritance
is related to formal refinement, but, as observed in the literature, the refinement constraints are too
restrictive, ruling out many useful OO subclassings. This paper studies behavioural inheritance in
the context of ZOO, an object-oriented style for Z. To overcome refinement’s restrictions, this paper
proposes relaxations to the behavioural inheritance refinement rules. The work is presented for Z,
but the results are applicable to any OO language that supports design-by-contract.

1 Introduction

Object-oriented (OO) designs are structured around abstractions called classes, which represent sets
of objects with certain properties in common. OO inheritance [20] defines families of classes with a
hierarchical structure, in which higher-level abstractions (superclasses) capture state and behavioural
properties that all of its specialised abstractions (subclasses) have in common. Inheritance addresses
reuse, an important software engineering concern; in a hierarchy, subclasses reuse the behaviour of their
superclasses, and add some specialised behaviour of their own.

Inheritance hierarchies have an is-a semantics. A child abstraction (a subclass) is a kind of a parent
abstraction. The child may have extra properties, but it has a strong conceptual link with the parent; an
object of a descendant is at the same time also an object of the parent class (a parent class includes all
objects that are its own direct instances plus those of its descendants).

A consequence of the is-a semantics is substitutability: a subclass object can be used whenever a
superclass object is expected. Substitutability is enforced in two different ways. Most OO systems
enforce substitutability by checking interface conformity using type-checking: the signatures of the sub-
class operations that specialise superclass operations must conform according to certain type rules. This
guarantees that subclasses can be asked to do whatever their superclasses offer. However, a subclass
may comply with the interface of its superclass, but it may go along and do something different. This
problem is addressed by behavioural inheritance [18], a strong flavour of inheritance, which enforces
substitutability by checking behavioural conformity using proof: not only the interfaces must conform,
the behaviour must conform also. This ensures that any subclass object may replace an object of the
superclass without any effect on the superclass object’s observable behaviour.

As observed in Liskov and Wing’s seminal paper [18], behavioural inheritance is related to data
refinement, which is also concerned with substitutability. In [15], Hoare et al define data refinement
as: “One datatype (call it concrete) is said to refine another data type [. . .] (call it abstract), if in all
circumstances and for all purposes the concrete type can be validly used in place of the abstract one.”
Inheritance relations should, therefore, observe a refinement relationship between subclass (concrete) and
superclass (abstract). The difference is that whereas in data refinement the refinement relation varies,

http://dx.doi.org/10.4204/EPTCS.115.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

N. Amálio 69

in behavioural inheritance this relation always follows the same pattern: a function from subclass to
superclass. Behavioural inheritance is, therefore, a specialisation of data refinement.

The drawback of data refinement models of inheritance is that they are over-restrictive. Liskov and
Wing [18] mention: “the requirement we impose is very strong and raises the concern that it might
rule out many useful subtype relations”. This paper investigates behavioural inheritance and proposes
relaxations to lift certain behavioural inheritance constraints and proof obligations. The investigation is
in the context of Z [24], a formal modelling language based on typed set theory and predicate calculus,
with a mature refinement theory [24, 11]. The work is part of ZOO, the OO style for Z presented in [6, 2],
that is the semantic domain of the UML+Z framework [2, 7] and the Visual Contract Language (VCL)
for graphical modelling of software designs [3, 4, 5].

This paper’s main contributions are three relaxations to facilitate use of rigorous behavioural inheri-
tance in OO design, which are a result of a careful examination of mainstream OO inheritance in a Z data
refinement setting using ZOO. The paper makes another contribution: it provides a way of specifying
inheritance hierarchies in Z extending what is presented in [6] and that improves previous work.

2 ZOO: A Z model of OO

Sys

BA

●

●

…

●oA1

●oA2

…

oAi

oAn

…

●

●

…

●oB1

●oB2

…

oBi

oBn

…

StAa

…

StAk

…

StAn

…

StAb

StBa

…

StBk

…

StBn

…

StBb

Figure 1: A ZOO system (Sys) made of two
classes and an association between them.
Class A comprises the set of all its object
atoms (OA) and the set of all possible ob-
ject states (StA); likewise for class B. As-
sociation comprises a set of tuples relating
objects of classes A and B (sets OA and OB).
A legend for the figure is given in Fig. 2c

ZOO [6, 2] is an approach to specify OO models in Z: a
Z style of object-orientation. Its OO model is based on
Z abstract data types (ADTs) represented as Z schemas,
constituting an OO model based on records [10]. ZOO is
an extension of Hall’s OO Z style [14, 13].

2.1 Overview

ZOO represents objects as atoms. It considers that, like
a set, a class has dual meaning. Class intension de-
fines a class in terms of the properties shared by its ob-
jects (for example, class Person with properties name

and address). Class extension defines a class in terms
of its currently existing objects (for example Person is
{MrSmith,MrAnderson,MsFitzgerald}). This duality is
expressed in terms of the representation of a class as a pro-
moted Z ADT [24, 22] that is made up of an inner (or lo-
cal) type (the class intension), and an outer (or global) type

containing the actual object instances and defining the interface to the environment (the class extension).
ZOO represents OO associations between classes as binary relations between the sets of objects of each
class. A system is a collection of classes and their associations. Figure 1 illustrates ZOO’s OO model
with a OO system made of classes A and B with an association between them.

2.2 Classes and Promotion

Promotion [24, 22] is a technique to build composite structures in the Z schema calculus, so called
because the inner type is promoted to a global state, without the need to redefine the encapsulated ADT.
Typically, the state of a promoted ADT is described as a partial function f : I 7→ S, where I is a set of
identities and S a set of states. Promotion builds operations of an ADT P in terms of operations of an

70 Relaxing Behavioural Inheritance

PS (=ɸS)

●

●

…

●oS1

●oS2

…

oSi

oSn

…

StSa

…

StSk

…

StSn

…

StSb

S

SA SB

OA OB

ɸOA

ɸOB

(a) A ZOO class as a Z pro-
moted ADT

A

B

C

…

oCi

oBi●

oB2

oB1

…
…

●

●

…

●oA1

●oA2

…

oAi

oAn

…

StAa

…

StAj

…

StAk

…

StAb

●
●

StBa

…

StBk

…

StBn

…

StBb

●

●

●
oC1

●oC2

…

oCn

…

StCa
…

StCk

…

StCn

…
StCb

StAn

…

●

…

oBn

(b) The extensional viewpoint

function stA
function stB
function stC

Name Class

Set name ADT
Operation

Sys
System

Name Class
intension

Name State
Component

Promotes
Relationship

(c) Legend

B

C
A

SA SB

SC

SD

OA OB

OC

OD

(d) The intensional viewpoint

Figure 2: ZOO’s model of inheritance. In (a), a class PS is represented as promoted Z ADT, separating
its extensional and intensional viewpoints. Class intension (d) and extension (b) in the context of OO
inheritance are illustrated with a class A and its subclasses B and C. In extension (b), A includes all its
own objects (OAs) and all the objects of its subclasses (OBs and OCs). Each class includes a set of all
possible states of its objects (StAs, StBs, StCs); each class has its own mapping function. In intension (d),
subclasses extend superclasses with further state (state components SC and SD in Fig. 2d) and operations
(OC and OD) using Z schema calculus conjunction.

encapsulated ADT S modularly (without changing S). In the context of a ZOO class, I represents a set of
object identities of some class (the class extension), and S represents the state space of the class’s objects
(the class intention). This is depicted in Fig. 2a and captured by ZOO’s class generic:

SCl[OS,OST]
os : POS
oSt : OS 7→OST

dom oSt = os

Here, the parameter OS represents the set of possible objects of the class and OST represents the set of
possible states of the class (the class intension).

2.3 Inheritance

A OO model of inheritance needs to consider: (a) subclassing as subsetting, (b) subclass specialisation
and (c) abstract classes and polymorphism. These concerns are address by ZOO’s model of inheritance,
depicted in Fig.2.

• Extensionally, subclassing is subsetting. A subclass object is also an object of its superclasses; the
sets of subclass objects are subsets of their superclasses. In Fig. 2b, class A has subclasses B and

N. Amálio 71

C; set of A objects comprises its own (oAi), plus those of its subclasses (oBi and oCi).

• Subclasses specialise or extend the state and behaviour of their superclasses. This is emphasised
in the intensional viewpoint of inheritance illustrated in Fig. 2d: classes B and C extend the state
and behaviour components that they inherit from A. In Fig. 2b, each subclass has its own state; the
states of subclasses, however, extend the state of their superclasses. As each subclass object can
been as an object of either superclass or subclass, there are mapping functions that map a subclass
object to either superclass or subclass state (mapping functions in Fig. 2b). Constraints ensure that
the states of subclass objects are kept consistent.

• In ZOO, abstract classes do not have direct instances. If class A in Fig. 2 were abstract, then it
would just consist of objects of classes B and C. Polymorphism refers to the ability of treating
objects of abstract classes polymorphically: the actual behaviour of some objects depends on their
direct classes. This is a matter of selecting the right behaviour given a superclass object (the next
section shows how this is specified in ZOO).

3 Specification of inheritance in ZOO

join (item : [item])
leave () : [Item]

items : seq [Item]
Queue

reset ()

RBQueue
BQueue

Figure 3: An inheritance hierar-
chy of queues formed by classes
Queue, BQueue (bounded-queue), and
RBQueue (resettable-bounded-queue).

ZOO’s approach to inheritance is illustrated with a class hierar-
chy of Queues (Fig. 3). Class Queue stores a sequence of items
(attribute items); it is an abstract class. It comprises two oper-
ations: join adds an element to the queue, and leave removes
the element at front of the queue. Class BQueue (bounded
queue) bounds the size of the queue. Class RQueue (resettable-
bounded queue) introduces the extra operation reset, to empty
the sequence of items.

The following builds the ZOO model corresponding to
Fig. 3 for each view of the ZOO style. The full model is given

at http://bit.ly/ftKZCp. The behavioural inheritance examination conducted in this paper uses this
hierarchy.

3.1 Structural view

The following defines the sets CLASS (all class atoms), OBJ (all possible objects) and abstractCl (all
abstract classes), and the relation subCl (subclass relation):

CLASS ::= QueueCl | BQueueCl
| RBQueueCl

[OBJ]

abstractCl : PCLASS
subCl : CLASS↔CLASS

abstractCl = {QueueCl}
subCl = {BQueueCl 7→QueueCl,RBQueueCl 7→BQueueCl}

In inheritance, the set of objects of a class includes its own objects and those of its subclasses.
Function O gives all possible objects of a class. Function Ox gives the direct set of objects of a class
(excludes objects of subclasses). These two functions are defined as:

http://bit.ly/ftKZCp

72 Relaxing Behavioural Inheritance

Ox : CLASS→P1 OBJ
O : CLASS→P1 OBJ

disjoint Ox
∀cl : abstractCl •Ox cl =∅
∀cl : CLASS •O cl =Ox cl∪

⋃
(Ox L (subCl+)∼ L{cl}MM)

∀cl,cl′ : CLASS | cl 7→ cl′ ∈ subCl •O cl⊆O cl′

Above to the left, the first axiom says that the sets of direct objects of each class are mutually disjoint.
The second says that abstract classes have an empty set of direct objects. The third defines O in terms
of Ox : the set of objects of a class includes its own objects and those of its descendants. Above to the
right, there is a useful law that can be extracted from the axioms to the left, which says that the set of all
possible objects atoms of a subclass is a subset of its superclass counter-parts.

3.2 Intensional view

3.2.1 Class Queue

This class comprises a sequence of items. Initially, the sequence is empty. Operation join receives an
item as input and adds it to the back of the sequence. Operation leave removes and outputs the item at
the head of the sequence. The intensional (or local) definition of Queue is as follows:

Queue[Item]
items : seq Item

QueueInit[Item]
Queue ′[Item]

items′ = 〈〉

QueueJoin[Item]
∆Queue[Item]
item? : Item

items′ = itemsa 〈item?〉

QueueLeave[Item]
∆Queue[Item]
item! : Item

items 6= 〈〉

item! = head items ∧ items′ = tail items

3.2.2 Class BQueue

The intension of BQueue is defined by extending Queue, its superclass. The constant maxQ defines the
maximum number of items in the queue. The invariant states that the sequence is bound by this constant.

maxQ : N1

BQueue[Item]
Queue[Item]

items≤ maxQ

BQueueInit[Item]
BQueue ′[Item]
QueueInit[Item]

BQueueJoin[Item]
∆BQueue[Item]
QueueJoin

BQueueLeave[Item]
∆BQueue[Item]
QueueLeave

N. Amálio 73

3.2.3 Class RBQueue

Class RBQueue is defined similarly by extending BQueue. RQueue’s extra operation, Reset, resets the
sequence of items to the empty sequence:

RBQueue[Item]
BQueue[Item]

RBQueueInit[Item]
RBQueue ′[Item]; BQueueInit[Item]

RBQueueJoin[Item]
∆RBQueue[Item]
BQueueJoin

RBQueueLeave[Item]
∆RBQueue[Item]
BQueueLeave

RBQueueReset[Item]
∆RBQueue[Item]

items′ = 〈〉

3.3 Extensional View

Class extensions of all classes (abstract and non-abstract) are defined like normal classes (see [6]): by
instantiating the SCl Z generic. State extensions of Queue, BQueue, and RBQueue are:

SQueue[Item] == SCl[O QueueCl,Queue[Item]][sQueue/os,stQueue/oSt]

SBQueue[Item] == SCl[O BQueueCl,BQueue[Item]][sBQueue/os,stBQueue/oSt]

SRBQueue[Item] == SCl[O RBQueueCl,RBQueue[Item]][sRBQueue/os,stRBQueue/oSt]

For each subclassing, there is a schema expressing the required constraints, namely: (a) the set of
existing objects of a subclass is a subset of its superclass, and (b) the mapping functions of both classes
must be consistent. The subclassing schema for Queue/BQueue is:

SBQueueIsQueue[Item]
SQueue[Item]; SBQueue[Item]

sBQueue⊆ sQueue
∀oBQueue : sBQueue • (λ BQueue[Item] • θ Queue)(stBQueueoBQueue) = stQueueoBQueue

Here, the second conjunct of the predicate says that the inherited state of a BQueue object must be the
same no matter the object is seen as BQueue or Queue.

Operations of non-abstract classes are formed using promotion like those of normal classes (see [6]).
The update operations of BQueue, defined from the promotion frame ΦSBQueueUI defined below, are:

SBQueueJoin[Item] == ∃∆BQueue[Item] •ΦSBQueueUI[Item] ∧ BQueueJoin[Item]

SBQueueLeave[Item] == ∃∆BQueue[Item] •ΦSBQueueUI[Item] ∧ BQueueLeave[Item]

Promotion frames of subclass operations need to take the subsetting constraint into account. There
is an intermediate frame to specify the action in the superclass, there are intermediate frames in the
subclasses that extend the superclass frame. The intermediate frames for Queue and BQUeue are:

ΦSQueueUI0[Item]
∆SQueue[Item]
∆Queue[Item]
oQueue? : OQueueCl

sQueue′ = sQueue
stQueue′ = stQueue⊕{oQueue? 7→θ Queue ′}

ΦSBQueueUI0[Item]
ΦSQueueUI0[Item][oBQueue?/oQueue?]
∆SBQueueIsQueue[Item]
∆BQueue[Item]
oBQueue? : O BQueueCl

sBQueue′ = sBQueue
stBQueue′ = stBQueue⊕{oBQueue? 7→θ BQueue ′}

74 Relaxing Behavioural Inheritance

abstract
initialisation

(ai)

concrete
initialisation

(ci)

abstract
operation (co)

concrete
operation (co)

�

�

abstract
finalisation (af)

concrete
finalisation (cf)

abstract
operation (ao)

concrete
operation (co)

R R R R

(a) Data refinement simulation

ao

ɸ(ao)

ɸ(co)

R

R
R

R
co

(b) Simulation in the context of promotion refinement

Figure 4: Simulation in the context of data refinement.

Here, the predicate of both update frames says that the set of existing objects remains the same, and that
the state function is updated (using function overriding) for the updated object with the updated state.

The subclass final promotion frame extends the intermediate frame with the required precondition:

ΦSBQueueUI[Item]
ΦSBQueueUI0[Item]

oBQueue? ∈ sBQueue∩Ox BQueueCl
θ BQueue = stBQueueoBQueue?

Note that the promotion frames of the subclass ensure satisfaction of the subsetting constraint: whenever
an object is added to the subclass it is also added to the superclass.

Polymorphic operations are specified as choice of behaviours (a disjunction). They are built in a
bottom-up fashion. Polymorphic operation BQueue.join offers a choice between BQueue and RQueue:

SBQueueJoinP[Item] == SBQueueJoin[Item] ∨ SRQueueJoin[Item]

The operation join on Queue offers the polymorphic operation of BQueue:

SQueueJoin[Item] == SBQueueJoinP[Item]

3.4 Global View

The system schema includes all class extensions and subclassing schemas:

System[Item]
SQueue[Item]; SBQueue[Item]; SRBQueue[Item]

SBQueueIsQueue[Item] ∧ SRBQueueIsBQueue[Item]

4 Behavioural inheritance and Z Data Refinement

As discussed above, the correctness of inheritance hierarchies with respect to substitutability (behavioural
inheritance) is checked using data refinement methods. This enables the application of the theory of data
refinement, which is mature and well-developed, to the setting of OO design.

In Z, the correctness of a refinement is demonstrated using the concept of a simulation (Fig. 4a) with
the aim of comparing ADTs inductively on a step by step basis [15]. This means that for each operation

N. Amálio 75

in the abstract type, there must be a corresponding operation in the concrete type. The correctness of the
refinement involves proving certain conjectures, known as simulation rules. The setting for refinement in
Z is as follows: (a) find a simulation relation relating concrete and abstract data types, (b) demonstrate the
correctness of the refinement by proving the required conjectures. The conjectures vary with the type of
relation and the setting of refinement. A forwards (or downwards) simulation establishes a map from the
concrete to the abstract type; and a backwards (or upwards) simulation is the other way round [15]. There
are two settings for refinement in Z [11]: non-blocking (contractual) refinement interprets an operation as
a contract and so outside the precondition anything may happen, whilst blocking (behavioural) refinement
says that outside the precondition an operation is blocked.

ZOO’s inheritance model allows Z data refinement to be applied to the OO setting: class refinement
is simply the data refinement of the class’s inner and outer ADTs. In Z, this is well studied, and known
as promotion refinement [11, 24, 19] (Fig. 4b). One result of promotion refinement is particularly useful:
under certain circumstances, promotion is compositional with respect to refinement [19]. That is, a
promoted ADT refines another if there is a refinement between the types being promoted. Formally,
suppose promoted ADTs PC and PA promote, respectively, C and A; then to prove that PC refines PA it
is sufficient to show that C refines A. This applies when the promotion is free (discussed below).

Next sections study behavioural inheritance in the context of the inner type (or class intension).
Behavioural inheritance conformance is checked by proving the correctness of some refinement.

4.1 A Refinement Relation for Behavioural Inheritance

To define a particular subclassing at the local level (inner type or intension), the subclass schema extends
its superclass using Z schema conjunction. Formally, for a class A (abstract) and its subclass C (concrete),
the state of C is defined in the intensional view by the following Z schema calculus formula, where X
represents the extra state of C. In this setting, we can describe the relation between a subclass and its
superclass as the function f :

C == A ∧ X f = λ C • θ A
This total function projects the subclass state in terms of the superclass state, removing the state added
in the subclass (referred to as subclass-extra state).

4.2 Refinement rules for behavioural inheritance

Refinement rules for the above refinement function are derived in [2]. For backward and forward simu-
lation, the rules reduce to a single set (unlike the general case, where the simulations have separate rule
sets). However, as expected, some simulation rules differ for blocking and non-blocking refinements.

Let A and C be class intensions defined in Z such that C extends A (i.e. C = A ∧ X). Let A and C
have initialisation schemas AI and CI, operations AO and CO, and finalisation schemas AF and CF1. For
non-blocking (NB) refinement, C conforms to the behaviour of A, (C w A), if and only if:

1. `? ∀C ′ • CI⇒ AI (Initialisation)

2. `? ∀C; i? : I • preAO⇒ preCO (Applicability)

3. `? ∀C ′; C; i? : I; o! : O • preAO ∧ CO⇒ AO (NB Correctness)

4. `? ∀C • CF⇒ AF (Finalisation)

1The finalisation condition describes a condition for the deletion of objects; e.g. a bank account may be deleted provided its
balance is 0.

76 Relaxing Behavioural Inheritance

In a OO setting, A above corresponds to a superclass and C to a subclass. The first rule allows subclass
initialisations to be strengthened. The second rule allows the precondition of a subclass operation (CO)
to be weakened. The third rule says that the subclass operation must conform to the behaviour of the
superclass operation (AO) whenever the superclass operation is applicable; this means that the postcon-
dition may be strengthened. The last rule allows the finalisation to be strengthened; if the finalisation is
total (the ADTs do not have a finalisation condition) the fourth rule reduces to true.

In the blocking setting, the correctness rule is strengthened to require the precondition to remain the
same:

3a. `? ∀C ′; C; i? : I; o! : O • CO⇒ AO (B Correctness)

These rules dictate the proofs necessary for subclass initialisation, finalisation and operation special-
isations (that is, operations that exist in the superclass), but not subclass-extra operations.

4.3 Extra operations

Data refinement simulation requires that for each valid execution in the concrete type there is a corre-
sponding execution in the abstract. Each execution step in the concrete type must be simulated by the
abstract. Thus, when a new operation is added to a subclass, the refinement proof needs to show that the
new operation (concrete) simulates something in the superclass (abstract).

A common approach to ensure that refinement holds is to routinely include in the abstract model an
operation that does nothing (called a stuttering step or a skip operation), and then prove that the new
concrete operation refines skip. The intuition is simple. Consider an ADT as a machine operated by
buttons; the user presses a button to execute an operation. In the abstract type, the skip operation button
exists but does nothing; in the concrete type, the button executes the new operation.

The rules for checking subclass-extra operations are obtained from the rules above by replacing AO
with skip (ΞA in Z).This imposes a constraint that the state is not changed by the operation.

4.4 Liskov and Wing [18] revisited

The rules above are consistent with those of Liskov and Wing [18]. They allow any function between
subtype and supertype as subtyping is not necessarily inheritance; here there is only one function to
reflect the specific inheritance setting. Their rules correspond to the blocking rules presented above
without initialisation and finalisation. There are similar rules for extra operations, which are either a
combination of those in the superclass or change subclass-extra state only (like skip).

5 The refinement straight-jacket

The refinement rules of the previous section are over-restrictive. Common inheritance relations of OO
design, such as the queues example of section 3, cannot be deemed behavioural inheritance conformant.

5.1 Subclass-extra constraints

In the inheritance hierarchy of Fig. 3, class BQueue does not refine Queue. The applicability conjec-
ture for the operation join does not hold. The precondition of Queue.join is, true, whilst that of
BQueue.join is # items < maxQ. The former does not imply the latter and so applicability fails. In
refinement, the concrete type may weaken the precondition; here, the subclass precondition is stronger.

N. Amálio 77

Sys

BQueue

join

leave

RBQueue
join

leave

reset

(a) Classical Refinement

Sys

ɸBQueue ɸRBQueueBQueue RBQueueQueue

ɸjoin

ɸleave

join

leave

join

leave

ɸjoin

ɸleave

ɸresetreset

leave

join

(b) Setting of OO Refinement used in this paper

Sys System

name ADT Operation

Name Z Local ADT

ɸName
Z Promoted

ADT
Promotes

Relationship

ɸname Promoted
operation

Figure 5: Classical setting of data refinement vs OO-based data refinement used here illustrated with the
queues example. Classical setting (a) assumes that operations of ADTs are exposed to the environment.
In this paper’s OO setting (b), it is the promoted operations of a promoted ADT (a class) that are visible
to the environment; not all operations are necessarily promoted and, hence, not all of them are visible to
the environment.

That the refinement proof fails is reasonable. An operation is a contract to the outside world. Ab-
stract operation join contracts to do its job under any circumstance. The concrete operation, however,
introduces a pre-condition. This violates substitutability, because the behaviour is observably different
when the concrete type is used in place of the abstract one. Imagine a braking system of a car, where
the abstract type says “upon brake slow down in any circumstance” (precondition true), and the con-
crete type says, “upon brake slow down only when speed is less than 160 Km per hour” (precondition
speed < 160); the concrete type is obviously not a valid substitute of its abstract counter-part.

5.2 Subclass-extra operations changing inherited state

The inheritance refinement proof for RBQueue also fails. The reset operation does not refine skip:
the correctness conjecture is not provable because reset violates the ΞQueue constraint by updating the
inherited attribute items.

5.3 Working round the restrictions of refinement

There are two ways to address the problems imposed by the refinement restrictions: (a) we can refactor
the OO models to conform to the refinement requirements, or (b) we can relax the formal restrictions.

Refactoring, a common software engineering practice, seeks to change a model whilst preserving its
meaning. In this particular example, however, the refactoring would involve merging the behaviours of
the three classes into a single class. The reset operation changes abstract state, so it needs moving in to
the superclass. BQueue’s specialised behaviour would also need to be moved to the superclass. This is a
valid refactoring, albeit cumbersome: we lose the flexibility and modularity that inheritance provides.

6 Relaxations to the refinement constraints
The relaxations presented here exploit the specificities of the OO-based data refinement setting (Fig. 5).
The general theory of data refinement (the classical setting) assumes that ADTs are exposed to the system
environment (Fig. 5a): operations of ADTs (buttons in our metaphor) are used by the environment to
interact with the system. However, ADTs are often concealed from the environment and only used
internally and this applies to the OO setting based on Z promotion used here (Fig. 5b): the inner ADT

78 Relaxing Behavioural Inheritance

Sys
RBQueue

ɸBQueue
BQueue

ɸRBQueue

join

leave

reset

reset

leave

join

join

leave

join

leave

reset

(a) Extra sub-class operations

Sys

BQueue

SBQueue

RBQueue
Queue

ɸBQueue

join

leave

leave

join

join

leave

join

leave

reset

ɸRBQueue

join

leave

reset

J
o
i
n

l
e
a
v
e

⋁ ⋁

(b) OO abstract classes

Name Virtual operation

⋁ Schema
Composition

with disjunction

Figure 6: Behavioural inheritance relaxations. In relaxation for extra sub-class operations (a), extra
operation is simulated by an internal virtual operation that is never promoted and not called from the
environment. In relaxation based on OO abstract classes (b), the inner ADT of the abstract superclass
is never called from the environment so we can lift the applicability constraint. The operations of the
abstract superclass that are made available to the environment are polymorphic (a disjunction).

(class intension) is concealed; some operations of inner ADTs may not be promoted and are, hence, also
concealed. The following relaxations to behavioural inheritance exploit this.

6.1 Relaxing with virtual superclass operations

As discussed in section 4.3, the skip approach preserves substitutability to the environment: if pressed
on the abstract type it does nothing; if pressed on the concrete type it does something, but respects the
behaviour set by the abstract type. Because of restrictions of simulation in data refinement, we cannot
just eliminate skip. What we need is to find a more liberal replacement. This can be found by exploiting
the following: in the setting of OO inheritance a skip-like button will never be pressed because it is not
made available to the environment (Fig. 6a). For example, when RBQueue is used when a BQueue is
expected, all is needed are operations join and leave: the simulating substitute of operation reset is
never called from the environment (Fig. 6a).

The relaxation requires a superclass virtual operation to simulate the operation in the subclass. In
general, given a subclass-extra operation co there is a virtual superclass operation ao that simulates its
behaviour. The refinement function enables the calculation of this virtual operation. Briefly, given a
subclass operation (concrete):

co = {CO • θ C 7→θ C ′}

the required superclass virtual operation (abstract) is given by the formula:

ao = f ∼ #co # f

In [2], it is proved that any concrete operation (co) refines the calculated abstract operation (ao). This
means that subclass extra operations can be added freely: for any concrete operation co there is always
an abstract operation ao that simulates it!

N. Amálio 79

Using this relaxation, RBQueue becomes behavioural inheritance conformant with BQueue. BQueue’s
extension provides only two operations to the environment, join and leave. Internally, RBQueue pro-
vides those operations and reset; the calculated virtual operation simulates reset in BQueue’s intension
and is not made available to the environment (Fig. 6a).

6.2 Relaxing by using OO abstract classes

A second relaxation exploits OO abstract classes2. In OO, an abstract class has no direct instances.
Its operations definitions provide a basis for reuse and polymorphism, but are never called from the
environment; they are inherently virtual. This is the basis of the relaxation.

The relaxation is: if a subclass inherits from an OO abstract class, the applicability proof obligation
is lifted. The operation of an abstract class binds behaviour for its descendants, so we need to prove
correctness, but there is no need to prove applicability because OO-abstract superclasses are never called
from the environment. In the button analogy, when the superclass is OO-abstract, only its non-abstract
subclasses can offer buttons to the environment; the operations of the abstract class are inherently virtual
(Fig. 6b). This relaxation makes BQueue behavioural-inheritance conformant with Queue.

Care is needed when using OO abstract classes for relaxation: the precondition of the operation defi-
nition of an abstract class should not be relied upon to set an applicability behaviour for its descendants.

7 The effect of global constraints
The previous section demonstrated the behavioural inheritance conformance of the Queues hierarchy
(Fig. 3) using the proposed relaxations. The analysis was done in a local scope, where individual objects
are isolated from other objects of the system. This section analyses behavioural inheritance under a more
global perspective to investigate the interference of global constraints.

7.1 Promotion Refinement Revisited

As mentioned in section 4, promotion is compositional with respect to refinement provided it is free. In
the OO context exploited here, this means that, provided the promotions are free, checking behavioural
conformance at the local level is sufficient to conclude conformance for the whole system.

A Z promotion is free if the inner type is not constrained from the global space. The following
analyses the freeness constraint for the queues example, before showing how the freeness constraint can
be relaxed so that the compositionality result is applicable to a wider range of situations.

7.2 When inner behavioural conformance is not sufficient
Consider the classes BQueue and RBQueue of figure 3. Suppose, we introduce a global constraint that
affects the state of the objects of RBQueue, namely, the size of the sequence must be strictly less than 2:

SRBQueue[Item]
SCL[O RBQueueCl,RBQueue][sRBQueue/os,stRBQueue/oSt]

∀o : sRBQueue • #(stRBQueueo).items < 2

The new constraint violates behavioural inheritance, because, under certain circumstances, the be-
haviour of RBQueue objects diverge from BQueue objects. Suppose that we create objects oQ of class

2not to be confused with a class that is abstract in the context of formal refinement!

80 Relaxing Behavioural Inheritance

BQueue and oRQ of class RBQueue (both queues are empty). If we execute operation join twice on
them, the observed behaviour is the same. However, a third call to join on oQ allows the object to be
added to the sequence, but fails on oRQ because the call is outside the precondition (there are already two
items in the queue). In the non-blocking interpretation, any outcome is permitted, whilst in the blocking
interpretation, the operation blocks. Substitutability is violated: oRQ cannot be used in place of oQ.

7.3 Relaxing the freeness rule
The relaxation to the freeness rule takes the form of a design guideline: global constraints should be ex-
pressed in terms of superclasses, otherwise they may interfere with behavioural conformance proofs. So
we have relaxed from “promotion refinement is compositional provided that the inner types of the inher-
itance hierarchy are free from global constraints”, to “promotion refinement is compositional provided
global constraints affect only the inner types of classes with no ascendants”.

To use this relaxation, we need to move the constraint in RBQueue to the superclass, BQueue:

SBQueue[Item]
SCL[OBQueueCl,BQueue][sBQueue/os,stBQueue/oSt]

∀o : sBQueue • #(stBQueueo).items < 2

SRBQueue[Item] == SCL[ORBQueueCl,RBQueue][sRBQueue/os,stRBQueue/oSt]

Now there is no divergence: a superclass extension includes all objects of its subclasses; all subclass
objects are equally affected by the constraint. If the precondition on a superclass object fails, it also fails
on the objects of its subclasses.

8 Discussion
Behavioural inheritance relaxations. This paper showed how over-restrictive traditional refinement
constraints can be to inheritance: many intuitive specialisations are not behavioural inheritance refine-
ments in the strict sense. It highlights the importance of relaxations to the refinement rules: without
them it is very difficult (if not impossible) to reconcile behavioural inheritance with the flexible scheme
of incremental definition that makes the OO paradigm and OO inheritance so popular.

This paper proposes three relaxations to facilitate behavioural inheritance conformance:

• The first allows the addition of extra operations to the subclass freely. In [2], it is proved that for
any subclass-extra operation it is possible to find a virtual operation that simulates it and satisfies
the refinement constraints. This paper argues that there is no harm in introducing such operations
because they are never executed; this is a property of OO systems that we can rely on. This
relaxation is further confirmed by recent relaxations in other data refinement settings (see below).

• The OO abstract class relaxation is perhaps more controversial, and needs to be applied with care to
avoid misunderstandings because it introduces a new kind of refinement contract that differs from
the classical one. An OO abstract class operation defines a more liberal contract, which effectively
binds a behaviour, but allows subclasses to narrow the precondition. This seems odd because it
appears to allow divergent behaviour, but there is no real divergence because an OO abstract class
has no direct instances. The objects of an abstract class are the instances of its subclasses only; its
operations are never executed (they are virtual); collectively, the objects of an OO abstract class
are polymorphic: they are allowed to have a multitude of behaviours that can slightly diverge from
each other. As the Queue model and the other models in [2] show, with due caution this relaxation

N. Amálio 81

is extremely useful; it is key in enabling OO inheritance designs that are flexible, make use of
polymorphism and preserve semantic behaviour.

• The third relaxation is the result of studying how global constraints interfere with local proper-
ties. Proving behavioural conformance at the local level is not the end of the story. The assurance
that the local behavioural conformance property holds in the global system rests on the composi-
tionality of promotion with respect to refinement when the promotion is free [19]. This paper’s
third relaxation, a design guideline, widens the applicability of the freeness result; the paper ar-
gues informally its safety. When this relaxation is not applicable there is not a practical way to
demonstrate behavioural correctness; refinement proofs of global states are very complicated even
in small systems. This global relaxation has a different nature from the local relaxations given
above. Whereas the local relaxations lift certain refinement constraints to allow more refinements,
this global one relaxes the proof obligations, extending the freeness rule to more situations to allow
more refinement definitions without the need for global proofs.

The Queues example presented here illustrates how often inheritance hierarchies are incorrectly as-
sumed to be refinements. The subclassing of an unbounded queue by bounded one is a kind of inheritance
common in the OO literature that is not, however, a behavioural inheritance refinement. In general, a
bounded data type does not refine an unbounded one. This paper shows that it is possible to demonstrate
behavioural conformance for the Queues inheritance model using the relaxations and without refactoring
the hierarchy; we note, however, that this is not always possible. In many cases, the best solution would
be to refactor the hierarchy ([2] gives some examples). All behavioural inheritance refinement proofs of
the Queues example were automatically proved in Z/Eves. Usually, proofs at the level of inner (or local)
types are trivial; most of them are automatically provable in Z/Eves.
Behavioural inheritance related concepts. This work helps to clarify the relation between various
concepts that have distinct designations in the literature, such as, behavioural subtyping, behavioural
inheritance, data refinement, class refinement and promotion refinement. The original concept of be-
havioural subtyping equates to data refinement in the OO setting, where an arbitrary refinement relation
is allowed. Class refinement extends the theory of data refinement (which applies to ADTs) to classes;
in this work class refinement equates to Z promotion refinement. Behavioural inheritance is just one
specific class refinement because the refinement relation is fixed (there may be alternative formulations
of this refinement relation).
ZOO and other OO models. ZOO’s high-order OO model with a representation of classes as Z promo-
tions is akin to mathematical models of OO programming languages with a formal semantics. Meyer [20]
argues that the OO approach is based on the mathematical theory of abstract data types; he sees classes
as having a type view and a module view, which correspond to ZOO’s class intension and extension.
This means that the results presented here are applicable to other OO settings with a formal semantics,
especially those based on design-by-contract, such as Eiffel and JML. ZOO’s model, however, differs
from first-order models, such as Alloy’s [17], where class fields or attributes are represented as relations;
this results in models where everything is global and flat.
Multiple Inheritance. ZOO’s style presented here support multiple-inheritance. [2] gives a queues ex-
ample with multiple-inheritance. In the setting of multiple-inheritance, a subclass must be a behavioural-
inheritance refinement of all its direct superclasses.

9 Related Work
It has long been observed the mismatch between the constraints of formal refinement and the needs of
more practical software development [8]. Retrenchment [8, 9] is a more liberal approach to formal-

82 Relaxing Behavioural Inheritance

refinement that tries to address this problem. This paper uses this liberalisation idea in the context of
mainstream OO inheritance: by studying OO inheritance in the context of data refinement, the paper
is able to provide relaxations to the refinement constraints that do not violate the key substitutability
principle of both refinement and behavioural inheritance.

In [1], Abrial proposes keep operations (or actions) to overcome the restrictions of the skip approach.
A keep is a non-deterministic operation that is guaranteed to preserve the invariant. Abrial argues that
it is safe to add keep operations to abstract types. This is similar to the superclass virtual operations
proposed here, which are safe because they are not visible to the environment.

Whilst the OO model of Liskov and Wing [18] is similar to ZOO’s (there is a mapping from objects
(atoms) to their state), their approach is based on a earlier method of data refinement [16] that does
not consider initialisation and finalisation. This paper uses data refinement based on simulation [15], the
enduring basis of the theory, which accounts for object creation (initialisation) and deletion (finalisation);
behavioural conformance cannot be guaranteed if these are not checked as behaviour of subclass and
superclass objects may diverge. Liskov and Wing’s rules correspond to the rule for blocking refinement
presented here. Relaxations are not considered.

ZOO’s OO inheritance approach presented here improves Hall’s [14]. ZOO represents clearly a class
modularly as a promoted ADT and introduces an approach to specify polymorphic operations. ZOO
borrows Hall’s behavioural inheritance refinement function; Hall proposes some behavioural inheritance
proof rules without a formal proof in the data-refinement setting. Relaxations are not considered.

Wehrheim and Fischer [12, 23] investigate behavioural subtyping in the context of concurrency and
the CSP process algebra. They studied how extra subclass operations may interfere with the behaviour
of the superclass as observed from the environment, and under which conditions are safety and liveness
properties preserved by the subclasses. They propose several inheritance refinement relations; the more
liberal they are, the higher the risk of interference. The one that is closer to ZOO’s relaxation on extra
operations is weak subtyping, which says that the subclass should have the same behaviour as its super-
class as long as no extra operations are called; the extra operations are not considered in the comparison.
The authors also proposed a more restricted relation, optimal subtyping, which does not allow altering
the behaviour of the superclass at all; it is the same as the skip behaviour.

Object-Z [21, 11] defines a formal semantics for inheritance and a notion of class refinement, but a
discussion of behavioural inheritance is generally absent in its books. In [11], behavioural inheritance
and its relation to refinement is discussed, but no proof obligations are proposed to check its correctness.

10 Conclusions
This paper investigates behavioural inheritance using ZOO, a Z style of object-orientation, and the theory
of Z data refinement. It shows how over-restrictive refinement constraints are to inheritance, and how
important it is to relax such constraints in order to reconcile incremental definition with behavioural
conformance. The paper proposes two new relaxations to the refinement rules that do not compromise
the principles of data refinement allowing more refinements than the classical setting. The paper also
shows how global properties can interfere with behavioural inheritance conformance that is only proved
locally, and proposes a relaxation to the proof obligations at the global level that allows the important
property of composition of promotion with respect to refinement to be more widely applicable in a OO
setting, allowing more refinement definitions without the need for global proofs. This paper’s main
contributions are these three relaxations addressing behavioural inheritance conformance, which are the
result of a careful examination of OO inheritance in the setting of data refinement. To the author’s
knowledge, these relaxations have not been proposed before. A secondary contribution is the approach
to specify inheritance in Z that improves Hall’s approach [14].

N. Amálio 83

Acknowledgements. Many thanks to Susan Stepney and Fiona Polack for their helpful comments,
insight and encouragement on this work.

References
[1] J.R. Abrial, D. Cansell & D. Méry (2005): Refinement and Reachability in Event B. In: ZB2005, LNCS

3455, Springer, pp. 222–241, doi:10.1007/11415787 14.
[2] N. Amálio (2007): Generative frameworks for rigorous model-driven development. Ph.D. thesis, Dept.

Computer Science, Univ. of York.
[3] N. Amálio, C. Glodt & P. Kelsen (2011): Building VCL models and automatically generating Z specifica-

tions from them. In: FM 2011, LNCS 6664, Springer, pp. 149–153, doi:10.1007/978-3-642-21437-0 13.
[4] N. Amálio & P. Kelsen (2010): Modular Design by Contract Visually and Formally using VCL. In: VL/HCC

2010, IEEE, pp. 227–234, doi:10.1109/VLHCC.2010.39.
[5] N. Amálio, P. Kelsen, Q. Ma & C. Glodt (2010): Using VCL as an Aspect-Oriented Approach to Require-

ments Modelling. TAOSD VII, pp. 151–199, doi:10.1007/978-3-642-16086-8 5.
[6] N. Amálio, F. Polack & S. Stepney (2005): An Object-Oriented Structuring for Z based on Views. In: ZB

2005, LNCS 3455, Springer, pp. 262–278, doi:10.1007/11415787 16.
[7] N. Amálio, F. Polack & S. Stepney (2006): UML+Z: Augmenting UML with Z. In H. Abrias & M. Frappier,

editors: Software Specification Methods, ISTE, doi:10.1002/9780470612514.ch5.
[8] R. Banach & M. Poppleton (1998): Retrenchment: An engineering variation on refinement. In: B’98,

LNCS 1393, Springer, pp. 129–147, doi:10.1007/BFb0053358.
[9] R. Banach, M. Poppleton, C. Jeske & S. Stepney (2007): Engineering and theoretical underpinnings of

retrenchment. Science of Computer Programming 67(2–3), pp. 301–329, doi:10.1016/j.scico.2007.04.002.
[10] L. Cardelli (1988): A semantics of multiple inheritance. Information and Computation 76, pp. 138–164,

doi:10.1016/0890-5401(88)90007-7.
[11] J. Derrick & E. Boiten (2001): Refinement in Z and Object-Z: foundations and advanced applications.

Springer.
[12] C. Fischer & H. Wehrheim (2000): Behavioural subtyping relations for object-oriented formalisms. In:

AMAST 2000, LNCS 1816, Springer, pp. 469–483, doi:10.1007/3-540-45499-3 33.
[13] A. Hall (1990): Using Z as a Specification Calculus for Object-Oriented Systems. In A. Hoare, D. Bjørner

& H. Langmaack, editors: VDM ’90, LNCS 428, Springer, pp. 290–318, doi:10.1007/3-540-52513-0 16.
[14] A. Hall (1994): Specifying and Interpreting Class Hierarchies in Z. In: Z User Workshop, Workshops in

Computing, Springer, pp. 120–138, doi:10.1007/978-1-4471-3452-7 8.
[15] J. He, A. Hoare & J.W. Sanders (1986): Data Refinement Refined. In: ESOP’86, LNCS 213, Springer, pp.

187–196, doi:10.1007/3-540-16442-1 14.
[16] A. Hoare (1972): Proof of Correctness of data representations. Acta Informatica 1(1), pp. 271–281,

doi:10.1007/BF00289507.
[17] D. Jackson (2006): Software Abstractions: logic, lanaguage, and analysis. MIT Press.
[18] B. Liskov & J. Wing (1994): A Behavioral Notion of Subtyping. ACM Trans. Program. Lang. Syst. 16(6),

pp. 1811–1841, doi:10.1145/197320.197383.
[19] P.J. Lupton (1990): Promoting forward simulation. In: Z User Workshop, Springer, pp. 27–49.
[20] B. Meyer (1997): Object-Oriented Software Construction. Prentice-Hall.
[21] G.P. Smith (2000): The Object-Z Specification Language. Kluwer Academic Publishers, doi:10.1007/978-1-

4615-5265-9.
[22] S. Stepney, F. Polack & I. Toyn (2003): Patterns to Guide Practical Refactoring: examples targetting

promotion in Z. In: ZB 2003, LNCS 2651, Springer, pp. 20–39, doi:10.1007/3-540-44880-2 3.
[23] H. Wehrheim (2000): Behavioral Subtyping and property preservation. In S.F. Smith & C.L. Talcott,

editors: FMOODS 2000, Kluwer, pp. 213–231, doi:10.1007/978-0-387-35520-7 11.
[24] J. Woodcock & J. Davies (1996): Using Z: Specification, Refinement, and Proof. Prentice-Hall.

http://dx.doi.org/10.1007/11415787_14
http://dx.doi.org/10.1007/978-3-642-21437-0_13
http://dx.doi.org/10.1109/VLHCC.2010.39
http://dx.doi.org/10.1007/978-3-642-16086-8_5
http://dx.doi.org/10.1007/11415787_16
http://dx.doi.org/10.1002/9780470612514.ch5
http://dx.doi.org/10.1007/BFb0053358
http://dx.doi.org/10.1016/j.scico.2007.04.002
http://dx.doi.org/10.1016/0890-5401(88)90007-7
http://dx.doi.org/10.1007/3-540-45499-3_33
http://dx.doi.org/10.1007/3-540-52513-0_16
http://dx.doi.org/10.1007/978-1-4471-3452-7_8
http://dx.doi.org/10.1007/3-540-16442-1_14
http://dx.doi.org/10.1007/BF00289507
http://dx.doi.org/10.1145/197320.197383
http://dx.doi.org/10.1007/978-1-4615-5265-9
http://dx.doi.org/10.1007/978-1-4615-5265-9
http://dx.doi.org/10.1007/3-540-44880-2_3
http://dx.doi.org/10.1007/978-0-387-35520-7_11

	1 Introduction
	2 ZOO: A Z model of OO
	2.1 Overview
	2.2 Classes and Promotion
	2.3 Inheritance

	3 Specification of inheritance in ZOO
	3.1 Structural view
	3.2 Intensional view
	3.2.1 Class Queue
	3.2.2 Class BQueue
	3.2.3 Class RBQueue

	3.3 Extensional View
	3.4 Global View

	4 Behavioural inheritance and Z Data Refinement
	4.1 A Refinement Relation for Behavioural Inheritance
	4.2 Refinement rules for behavioural inheritance
	4.3 Extra operations
	4.4 Liskov and Wing Subtyping:LW:1994 revisited

	5 The refinement straight-jacket
	5.1 Subclass-extra constraints
	5.2 Subclass-extra operations changing inherited state
	5.3 Working round the restrictions of refinement

	6 Relaxations to the refinement constraints
	6.1 Relaxing with virtual superclass operations
	6.2 Relaxing by using OO abstract classes

	7 The effect of global constraints
	7.1 Promotion Refinement Revisited
	7.2 When inner behavioural conformance is not sufficient
	7.3 Relaxing the freeness rule

	8 Discussion
	9 Related Work
	10 Conclusions

