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This paper provides an overview of the CODA framework for modelling and refinement of component-
based embedded systems. CODA is an extension of Event-B and UML-B and is supported by a plug-
in for the Rodin toolset. CODA augments Event-B with constructs for component-based modelling
including components, communications ports, port connectors, timed communications and timing
triggers. Component behaviour is specified through a combination of UML-B state machines and
Event-B. CODA communications and timing are given an Event-B semantics through translation
rules. Refinement is based on Event-B refinement and allows layered construction of CODA models
in a consistent way.

1 Introduction

Simulation-based modelling methods for embedded systems are typically structured in terms of com-
municating model components as this closely reflects their design structure. In addition, diagrammatic
languages such as UML (Unified Modelling Language) [5] provide intuitive notations for representing
both architectural structure (e.g., component diagrams) and behaviour (e.g., state machine diagrams) and
these find acceptance in industrial practice. While simulation tools play an indispensable tool in system
verification, these approaches typically lack two important development concepts: layering of models at
multiple abstraction levels (i.e., model refinement) and formal verification. CODA (Co-Design Archi-
tecture) is a component-based modelling framework that aims to combine the advantages of component-
based graphical modelling and simulation with refinement and formal verification. These aims fulfil
AWE’s need for an engineer-friendly environment for systems development with a formal underpinning.

AWE is particularly focused on embedded systems that are combinations of software and hardware.
The original proposal for CODA was inspired by Sandia National Laboratories’ simulation environment
called Orchestra [14] within which system models can be refined and decomposed into a collection of
communicating components, representing as software, hardware or mechanical devices. While Orchestra
does support modelling at different abstraction levels, it is a simulation-based approach and does not have
a formal definition of refinement nor does it include formal verification.

Rather than starting from scratch, we have defined CODA as an extension to the existing Event-B
formal approach [2]. In Event-B a system is modelled in terms of state variables and guarded events
that alter that state. Central to Event-B is the notion of refinement that allows essential properties to be
expressed at a very abstract (hence simple and clear) level and then progressive refinements allow more
and more detail to be added until the full detail of the system has been described. At each refinement
the consistency of the model has to be proven including the correctness of the refinement (i.e. that
no new traces have been introduced and that the refined state has equivalence with the abstract state).
Defining CODA as an extension of Event-B is in the spirit of UML-B which augments Event-B with
specialisations of UML entities, including UML class diagrams and state machine diagrams [12]. UML-
B includes notions of refinement that correspond to natural extensions of UML-like diagrams: class
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diagrams are refined through class extension and class addition mechanisms while state machines are
refined by added nested substates within more abstract states [10].

In CODA we inherit the UML-B state machine construct and specialise it for our purpose. We also
add component diagrams with constructs that are influenced by the Orchestra approach. A component di-
agram consists of a collection of individual components. Following the Orchestra approach, components
interact through asynchronous timed channels. The behaviour of a component is defined through one
or more state machines. Notational extensions are provided with operations for reading and writing to
timed channels, as well as constructs for specifying timing-based ‘wake-ups’. It is also possible to define
some component behaviour through textual Event-B guards and actions directly. In CODA we typically
start with an abstract model that has a small number of components and some simple state machines
that capture essential properties of a system. We use three main forms of structural refinement: addition
of new components, addition of state machines, and refinement of state machines through addition of
nested state machines.

In Event-B, an abstract model comprises a machine that specifies the high-level behaviour and a
context, made up of sets, constants and their properties, that represents the type environment for the
high-level machine. The machine is represented as a set of state variables, v and a set of events, guarded
atomic actions, which modify the state. If more than one action is enabled, then one is chosen non-
deterministically for execution. Event-B defines proof obligations to ensure that events preserve invari-
ants on the variables. A more concrete representation of the machine may then be created which refines
the abstract machine, and the abstract context may be extended to support the types required by the re-
finement. Gluing invariants are used to verify that the concrete machine is a correct refinement: any
behaviour of the concrete machine must satisfy the abstract behaviour. Gluing invariants give rise to
proof obligations for pairs of abstract and corresponding concrete events.

We have developed tool support for CODA based on the Rodin toolset [1] . The Rodin toolset is an
extensible environment for modelling with Event-B. It includes automatic tools to generate proof obli-
gations of the models consistency and provers that attempt to automatically discharge these obligations.
ProB [7] is a model checker and animator that is available as an extension to the Rodin toolset. The
UML-B plug-in supports modelling and refinement of class diagrams and state machines and translates
models into Event-B for animation, model checking and proof. We have developed a prototype frame-
work for the CODA approach that supports modelling at different refinement levels and is integrated as
a plug-in within the Rodin environment. This enables animation, model checking and proof of CODA
models. Rodin, ProB and UML-B are important ingredients that we have built on in order to achieve the
CODA tool.

Since our work was inspired by Orchesra, we provide an overview of Orchestra in the next section.
We then proceed with an overview of the CODA modelling language (Section 3) followed by an outline
of how CODA models are mapped to Event-B (Section 4). Section 5 provides an outline of refinement in
CODA an Section 6 outlines the application of the CODA approach to a washing macchine case study. In
Section 7 refinement in CODA is extended to cover refinement of inputs and outputs. Section 8 outlines
the role of model checking and simulation in CODA development and Section 9 concludes the paper.

2 Background on Orchestra

Orchestra is a simulation environment for embedded systems [14] within which system models can be
refined and decomposed into a collection of communicating components, modelled as software, hard-
ware (including emulated hardware) or as mechanical devices. The notion of refinement in Orchestra,
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however, is not formal and is not supported by any formal method. Orchestra provides a discrete event
simulation environment which is based on the established simulation technology used by industrial Ver-
ilog [13], VHDL [9] and SystemC [8] simulators. The essence of the Orchestra environment is described
in Figure 1 which is taken from [14] .

Figure 1: The Orchestra API

Orchestra simulation modules communicate via input and output ports which are connected using
channels. A module may also communicate directly with another module using a method call. The Or-
chestra API provides an object-oriented interface that allows synchronisation and communication using
the following fundamental calls.

The Orchestra sim.addEvent(e) method call encapsulates the event e and the simulation time at
which a call-back method, executeEvent, provided by the model developer, will be invoked by the simu-
lator kernel. Within the call-back method, the developer can get or assert values on ports.

The porto.assertValue(e.in f o,duration) method call will assert a value, e.info, on the channel con-
nected to the output port porto, and this value will be made available to any input port connected to this
channel after a delay of value duration via a call-back method, portChanged, provided by the model
developer. If a module is connected to more than one channel via input ports and the value changes on
more than one input port simultaneously, the call-back is only invoked once.

The porti.getValue() method call returns the value on the input port porti.

3 Overview of the CODA modelling language

Figure 2 shows a CODA component diagram for a washing machine system. The model consists of four
components: a control panel (CP), a door system, a drum system and washing machine controller (WM).
These components are connected via typed asynchronous channels. For example, the lock channel is used
to send boolean messages from the WM component to the DOOR component while the level channel
is used to send water level values from the DRUM SY ST EM to WM. Model specific types may be
introduced in Event-B contexts and used to define channel types, such as the PID type used in the CI
channel from CP to WM.

Components may contain state machines and operations and these are listed within the component
on the diagram. For example WM includes a state machine called wmsm (immediately below the WM
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Figure 2: Component Diagram for a Washing Machine

name in the WM box. The WM component also contains a list of operations such as start, ignoreStart,
assumeLocked etc.

If a component is connected to the input side of a channel, then operations of that component may
perform port-send actions on that channel. A port-send action represents the action of sending data over
a connector and can be added to any operation in a component that has an outgoing connection to the
connector. When a message is sent, it is specified to be delivered at some later time, defined by a delay
value. A component connected to the output side of a channel has special operations, called port-wake
operations, that are triggered when a message arrives at that component from the channel. A port-wake
operation is needed in the receiving component of the connector in order to respond to the receipt of data
on the connector. A port-wake operation is always associated with exactly one channel. For example,
the startFillingHot port-wake operation of the DRUM SY ST EM is associated with the hotFill channel
meaning when a value becomes available at the receiving end of that channel, then the startFillingHot
operation is executed.

A component can also set an internal wake-up through a self-wake setting action. Setting a self-wake
causes a self-wake operation to be triggered at a later time. Components may also have operations that
represent environment events, internal transitions of state machines and method calls used for modelling
software method calls.

Component operations can be one of five types as indicated by the letters P,S,E,T,M:
P Port-wake operation which is triggered by arrival of a message from a channel at the specified time.

S Self-wake operation which is triggered by the expiry of a self-wake.

E Environment operation that represent an external stimulus from the environment.

T Transition operation that represents transitions of a state machine.

M Method operation.
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Figure 3: State Machine for Drum System Component

Timing: Similar to Orchestra, CODA includes a timing model based on a global dicrete clock. A
port-send operation sets the future time at which the corresponding port-wake operation will be triggered
through a delay argument. Similarly self-wake operations are triggered to occur at a specific future
time when the self-wake is set. Operations and transitions may be synchronised, meaning they occur at
most once per clock cycle, or unsynchronised, meaning they may occur multiple times per cycle. Port
wakes, self wakes and methods are synchronised. Environment operations are not synchronised with
the clock. We assume that a finite number of environment operations may occur within a clock cycle.
In practice, environment operations are assumed to occur more slowly than the system clock. State
machine transitions may be synchronised or unsynchronised. We need to ensure that only a finite number
of unsynchronised transitions may occur per clock cycle. This can be achieved through a convergence
proof, i.e., exhibiting a variant that is decreased by unsynchronised transitions.

From the beginning, CODA was designed to support a state machine based development and ver-
ification method. CODA re-uses the state machine modelling and refinement capabilities of UML-B
unchanged and is therefore able to leverage any developments in this area. The CODA Component View
introduces a graphically-based level of abstraction. Our initial work on CODA using just state machines
confirmed AWE’s need for a Component View as it fits in with engineering practice. They demonstrated
that a state machine abstraction was not sufficient in itself to enable CODA modelling at an appropriately
high level of abstraction. Even though the facility for delayed communication was already in place, it
was difficult for the user to introduce this communication at the state machine level. The Component
View encapsulates the component and connections in a clear way and enables the user easily to annotate
the component diagrams with timing information at a high level of abstraction. The Component View
and the State Machine View sit side by side to enable efficient development and refinement of CODA
models.

Figure 3 shows the drumState state machine that is contained with the DRUM SY ST EM component
of the washing machine. Operations may be associated with a transition of a state machine, meaning
that state transition is synchronised with execution of the operation. For example, the startFillingHot
port-wake operation of the DRUM SY ST EM is associated with the transition from the EMPTY state to
the FILLING state of the drumstate state machine. This means that when the DRUM SY ST EM receives
a message on a channel (in this case the hotFill channel) it makes the transition from the EMPTY state
to the FILLING state.

To model software behaviour, method call actions can be added to operations and corresponding
method operations must be added to service the calls. A method call action immediately enables a par-
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ticular method operation, which must then complete within the same clock cycle. External operations
represent events that occur in the environment of a controller. The timing of these events is uncon-
trolled and therefore not synchronised to the clock. These events may perform any of the operation
actions (port-wake, self-wake, method calls) described above. Two kinds of state-machine are available.
Asynchronous state-machines are not linked to the clock whereas synchronous state-machines are tightly
linked to the clock so that, while enabled, only one transition may be taken on each clock tick.

Note that the CODA model shown in Figure 2 represents the fourth level of a refinement chain. In
Section 6, we will see how this is arrived at from a more abstract model with a simpler structure.

4 Mapping CODA models to Event-B

CODA models are given a formal semantics through translation to an underlying Event-B model. State
machines are mapped to an underlying Event-B model in the standard UML-B way as described in [10].
In this paper we focus on the representation of the port- and self-wake operations. Component operations
contribute guards and actions to an event in the underlying Event-B model. Operations may have ordinary
guards and actions expressed in the Event-B notation but they will also have special kinds of guards and
actions associated with port-wakes, self-wakes and method calls.

A connector is modelled in Event-B as a partial mapping from discrete time points to values of an
appropriate type as follows:

connector ∈ N 7→ type

Thus, if we have t 7→ v ∈ connector, then value v is received from that connector at time t triggering the
associated port-wake operation to be invoked. Use of timing constructs gives rise to a variable in the
underlying Event-B model representing the current time. A send action is of the form

send(connector,v,delay)

This specifies that value v should be sent on the connector to be received at exactly delay time units in
the future. This is mapped to the following underlying Event-B action:

connector(current time+delay) := value

When a value is received from a connector, it should be the most recent value on the connector. The
mapping from discrete time points to values is sparse so the following guard is used to specify the most
recently available value on the connector (that must not be in the future):

connector(max({ t | t ∈ dom(connector) ∧ t ≤ current time})) = value

For synchronisation, port-wake operations are grouped according to the combination of incoming
connectors that they respond to. Therefore if two port-wake operations in the same component have port-
wake properties on the same group of connectors they will use the same synchronisation flag and hence
exactly one of them will respond to the simultaneous arrival of data on that group of connectors. Which
one does so may be controlled via other guards such as particular values arriving on the connectors. If
more than one event should occur as a result of a part-wake, then the port-wake calls a method.

Self-wakes are modelled in a similar way to connectors. A component can be scheduled to wake
at some time in the future by adding to a queue of wake events. This results in a queue variable in the
underlying Event-B, one for each component, to contain the scheduled event times specified as follows:

component wakeup ∈ N 7→WakeKind
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The range type here is WakeKind to allow for different kinds of wake event, for example, a collection
of interrupt priorities. (At the moment only one kind is supported.) In CODA a wake-up is set using an
action of the following form:

sel f wake(component,kind,delay)

The underlying Event-B representation for this is as follows:

component wakeup(current time+delay) := kind

When a component wake up event is reached, all of the component’s self-wake operations are enabled
subject to their other guards. This time based enabling of self-wake operations is represented with the
following guard in the underlying Event-B:

current time ∈ dom(component wakeup)

As well as requiring the current time variable, the underlying Event-B has an event for advancing
time. There should be no pending connector receives nor pending wakes at the current time if the time is
progressed, thus the event for advancing time has guards as follows for each connector and component:

current time 6∈ (dom(connectori))

current time 6∈ dom(compi wakeup)

5 Refinement in CODA

In the CODA method, modelling begins with an abstract, un-timed model of the system, together with
its environment, as a single component which represents the abstract specification of the system together
with its interactions with the environment.

In the first refinement, a feature of the system is singled out and the rest of the system/environment
is left at the abstract level. The top-level abstract component is therefore refined into two components,
one that represents the feature to be modelled in more detail and one that represents the rest of the
system/environment, with timed communication established between the components by means of one
or more connections. Typically the introduction of communication events in a refinement requires the
refinement of state machines through the introduction of nested states. It must now be established that
this two-component model is a correct refinement of the abstract single component model.

In subsequent refinements, features of the system are singled out from the abstract component for
attention; after the second refinement, two components now communicate via timed connections with
what remains of the abstract system/environment component. The component chosen may be a target
hardware/software component, a mechanical component or a system environment component such as a
control surface.

The modelling of time in CODA ensures that this refinement can be verified formally; as outlined in
the previous section, time is modelled as a natural number and always advances by a single tick, the finest
possible granularity of activity within the CODA model as it is refined. The CODA modeller is able to
specify delayed communication at a high-level of abstraction in terms of port sends, port wakes and self
wakes. These abstractions have been developed in a way that does not inhibit refinement proof; starting
with an un-timed abstraction, it is possible to introduce more and more detailed timing information in
successive refinements.
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Systematic refinement continues until every component of the system and its environment has been
modelled. The refinement method does not restrict the modeller and supports back-tracking to an abstract
model to make changes. At this stage, the high-level CODA model is complete.

Proof of the correctness of the CODA refinements is undertaken at the level of the underlying Event-
B. On the case studies that we have undertaken, we have found that, at each stage of this refinement
process, it is possible within CODA either to prove that each refinement step is correct, or to reveal
unforeseen problems that require re-modelling.

6 Example

6.1 Abstract Model

The modelling process begins by describing a single, abstract state machine wmsm that represents the
washing machine together with its environment. Four states represent the modes of the system: IDLE,
WASHING, RINSING and SPINNING and seven transitions represent how the system modes evolve. A
component WM is also introduced to represent the complete system. It contains the state-machine and
owns operations that link to the transitions in the state-machine. The top-level component and state
machine are shown in Figure 4.

Figure 4: Abstract Component Diagram for Washing Machine

This system-level state machine is un-timed and non-deterministic. For instance, when the system
is in state RINSING, the system will immediately move to either state SPINNING or WASHING non-
deterministically. The state machine represents all the possible mode traces of the system.

Before proceeding, we animate the system-level state machine to validate that states and transitions
correctly represent the system-level view of the washing machine. This is a validation process requiring
subjective evaluation of the model against system requirements. Graphical animation of the state ma-
chines is supported by the UML-B plug-in. In addition to animation, proof and model checking can be
applied to the underlying Event-B model in the usual way with Rodin and ProB.
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6.2 First Refinement

The single component and abstract state machine is now refined into a system comprising two compo-
nents as shown in Figure 5. The first component is the Control Panel and the second the abstract washing
machine sub-system. Two connectors enable communication between the two components. The first
connector, CI, is used to pass the Washing Program ID (PID) to the washing machine sub-system and
the second connector, WMSTAT E, passes the status of the sub-system back to the Control Panel to be
displayed. The state machine is unchanged except for the addition of a self transition on state IDLE
which constrains the sendWaiting operation so that it only sends the waiting status over the WMSTAT E
connector while the washing machine is idle.

Figure 5: First Refinement: Introduce the Control Panel

The external operation, UserStart, in component CP represents the user starting the wash by passing
the selected wash program, using a port-send action on connector CI to the washing machine sub-system.
A corresponding port-wake operation, start, in the washing machine sub-system receives the program
ID that will, in a subsequent refinement, be decoded to control the wash. A further port-wake operation,
ignoreStart, manages inadvertent start requests from the user. Note that this is necessary due to a design
decision not to constrain the sending of start messages from CP. If WM is not in a state to respond to
the start an explicit ignoreStart is needed to avoid the system deadlocking. When the washing machine
sub-system receives the pid, it responds with a port-send action on connector WMSTAT E to inform the
Control Panel that the washing machine is now RUNNING. The Control Panel receives the message
from the washing machine sub-system with the port-wake operation Running so that this information
can be displayed to the washing machine user.

6.3 Second Refinement

The washing machine sub-system component is now further refined, as shown in Figure 6, into two com-
ponents, the DOOR sub-system and an abstract component, WM, that represents the rest of the washing
machine sub-system. Two connectors enable communication between these two components. The first,
lock, passes a Boolean signal to the DOOR sub-system to lock the door. The second, doorPosition,
informs the Washing Machine sub-system when the door is opened or closed.

Note that the DOOR component has two external operations, closeDoor and openDoor, which rep-
resent the interaction of the user with the door. Care is needed in this refinement to ensure that the system
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Figure 6: Second Refinement: Introduce the Door Component

cannot get into an unsafe state; the door should always be locked when the washing machine is washing,
rinsing or spinning so that the user cannot inadvertently open the door and release potentially very hot
water.

The state-machine for the washing machine is refined to split the WASHING state into sub-states
LOCKINGDOOR and INPROGRESS and IDLE into UNLOCKINGDOOR and IDLEWAIT ING (Fig-
ure 7). This is necessary to accommodate the new transitions concerned with locking and unlocking
the door. Comparing the state machine of Figure 4 with the state machine of Figure 7, we can see the
introduction of nested states in the IDLE and WASHING states.

Figure 7: Refined State Machine of WM in the Second Refinement

An invariant,
DOORLOCKED = T RUE,
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is introduced in the sub-system state machine for states INPROGRESS, RINSING and SPINNING.
A new state machine is introduced for the DOOR component as shown in Figure 8. The door may

be open (DOOROPEN) in which case any instructions to lock the door are ignored (ignoreLock) or it
may be closed (DOORCLOSED). When the door is closed it may be unlocked (DOORUNLOCKED)
or locked (DOORLOCKED). Note that the transitions unlockDoor and lockDoor are drawn with the
superstate DOORCLOSED as their source indicating that they can fire irrespective of whether the door
is locked or not.

The washing machine sub-system sends a message via the lock connector to the door sub-system to
lock the door if it has received a message from the door via the doorPosition connector indicating that
the door is closed. The washing machine sub-system then initiates a self-wake, delayed by 3 time units.
If the door is still closed at the self-wake, then it is assumed that the door is locked and the system can
proceed to the INPROGRESS state. The alternative transition is abortWash which has the negated guard
WM doorPosition 6=CLOSED.

Figure 8: New State Machine for the Door Component in the Second Refinement

In the first version of our refinement, the proof obligations generated for the safety invariant could not
be discharged. Model checking does indeed show immediately that the safety invariant is violated and
provides a counterexample. Although the refinement models the latency that exists between the washing
machine sub-system and door sub-system, it allows the user to open and close the door repeatedly in
zero-time. Modelling this Zeno behaviour is unrealistic and results in a scenario where the user can close
the door and then open it again immediately just before it is locked.

The solution is to model more realistically the latency that must exist in the opening and closing of the
door by introducing a delay on the External Event, closeDoor. This corresponds to an assumption that
the system’s time response makes it impossible to open and close the door without it being detected. This
is sufficient to ensure that any changes of door state are successfully transmitted to the WM component.
The addition of the latency guard allows the refinement proof obligations to be discharged.

6.4 The Third Refinement

Now we refine the notion of the Program. We associate with each PID a washTime, rinseTime and
spinTime and also introduce a WashCount and SpinCount. These properties constrain and make deter-
ministic the operation of the washing machine sub-system for a given PID. The number of washes or
rinses associated with a program is modelled using a counter which is decremented and hence completes
at rinseCounter = 0.

The state machine for this refinement (not shown), invariants concerning the counters have been
added to the INPROGRESS and RINSING states. These invariants help ensure that no mistakes have
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been made in constructing the counters.

6.5 The Fourth Refinement

The washing machine sub-system is now further partitioned into two components: the drum sub-system
and an abstract component representing the remaining washing machine sub-system, following the pat-
tern of previous refinements. The component diagram is shown in Figure 2. Three boolean connectors
pass messages from the washing machine sub-system to the drum to open and close the hot or cold water
valves and to switch the drain pump on or off. Two further natural number connectors pass the water
level and the water temperature back from the drum to the washing machine sub-system. The washing
machine state machine is now further refined to manage the filling and emptying of the drum by monitor-
ing the water level as shown. The value TRUE is sent on the coldFill connector. The drum sub-system
receives the value on the coldFill connector and starts filling the drum. The drum sub-system sends the
value of water level and water temperature repeatedly at unit delay intervals using a self-wake operation
sendLevel. The washing machine sub-system switches off the water valve when it detects that the water
level associated with the PID has been reached.

6.6 Summary

A method for system modelling and refinement has been illustrated using the washing machine case study
example. Modelling begins with an abstract state machine model of the system, which is systematically
refined into a set of communicating processes: the hardware/software controller under development
and the components that represent the controller environment. At each refinement step, formal proof
and model checking are used to validate the model against the requirements and to show absence of
deadlock. The final hardware/software controller component can then be verified within a component-
based environment using the CODA Oracle Simulator (Section 8.2).

7 Refinement of Input and Output

The previous section demonstrates how to perform abstract modelling and refinement using the CODA
components. This section outlines how a refinement can be introduced which models the hardware
I/O level behaviour. The model uses a synchronised state-machine, which allows a sequence of clock
synchronised I/O events to be performed in order to achieve an abstract data transmission.

In the abstract model, shown in Figure 9, a simple Controller component sends data to enable a
Device component. This is modelled as a port-send belonging to a self-wake operation SendData, a
connector chan and a port-wake operation Enable. The self-wake is scheduled by the RecvPowerU p
operation, so that its timing represents the completion of an envisaged concrete operation which takes
time to complete.

Figure 9: Simple Controller Send Message to Device
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In the refined model, shown in Figure 10, the concrete data transmission operations are introduced.
In this example, two connectors are used, A for the data bit stream and B for a data ready semaphore.
Operations, SetA, SetB, ResetA and ResetB send 1, 1, 0 and 0 on these connector channels respectively.
In order to ensure these operations are invoked in the desired iterative sequence, a synchronised state-
machine IO is attached to the Controller component.

Figure 10: Simple Controller Send Message to Device

The transitions of this state-machine, Figure 11, are linked to the same events as the component oper-
ations that send the data bits. Hence these operations are constrained to execute in the iterative sequence
defined by the state-machine. Furthermore, because this is a synchronised state-machine, it is forced to
fire exactly one transition on each clock cycle while it is enabled. The state-machine becomes enabled
when the initial transition is taken and this is linked to a method operation of the Controller component
that is called by the RecvPowerU p operation. Guards and Actions in the bit sending operations allow
the state-machine to complete 16 cyclic sequences before taking the FinishIO transition that disables
the state-machine. The data sent by the operation SendData was calculated to be received by operation
Enable at the same clock cycle as the last bit is received on connector A representing the end of the bit
level transmission.

Figure 11: I/O Level State Machine

In this refinement the abstract data connector and associated operation behaviour have been retained
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although they are now redundant because they are replaced by the I/O level connector behaviour. The
abstract data connector can be removed so that we prove that the I/O level is a refinement of the abstract
connector. It may be useful to retain the abstract data connector for later generation of temporal assertions
in generated output such as VHDL.

8 Model checking and simulation with CODA

8.1 Model Checking in the CODA Method

Complex, multi-process embedded systems with inter-process communication are prone to deadlock.
Traditionally in hardware design, state machine abstraction has been shown to help reduce the opportu-
nities for introducing deadlock into a design, but when multiple state machines interact it is possible for
one of them to be in the wrong state to receive an incoming message and the system can deadlock.

During the development of the case studies, it was found that ProB animation and deadlock check-
ing provided a necessary adjunct to formal refinement proof to validate the CODA model. Inadvertent
strengthening of event guards can lead to a correct refinement but results in a model which deadlocks.
Since time in CODA is modelled as an incrementing natural number, it is not possible to perform an ex-
haustive state space search. However, using the transition coverage metric provided by the ProB model
checker, it is possible to show that deadlock is absent when all transitions have been covered. Although
not a proof it gives confidence in the model development and verification process.

8.2 The CODA Simulator Oracle

Our experience with the ProB animator in the CODA case study development highlighted some deficien-
cies of its standard interface in the CODA flow which have been addressed by developing a simulation
facility within CODA. Figure 12 shows the display for the simulator front-end to ProB that we imple-
mented for CODA. This has become an important tool within the CODA development and verification
method. First, it operates at the appropriate CODA level of abstraction in terms of Components and Con-
nectors. Second, it understands the CODA concept of time. Third it automates the animation process so
that simulation tests may be quickly and efficiently generated by the user. Fourth, it enables animations
to be repeated automatically for regression testing purposes and for results to be compared against a
golden file. It is the long term goal of this simulation work to enable tests developed in CODA to drive
Orchestra simulations.

During model development, it is useful to ensure that as changes are made at a given level of refine-
ment, the required behaviour is retained. The simulator oracle ensures that the traces of the variables
in the modified model match that of the golden simulation. The oracle can also be used to verify the
variable trace of a refinement against the model it refines to ensure that inadvertent strengthening of the
guards has not introduced unintended behaviour.

9 Related verification work

A key concept in CODA is the use of state machines augmented with timed operations. Knapp et al [6]
describe an approach to reasoning about timed UML state machines. They augment UML state machines
with a timing annotation: a transition from state A to state B annotated with a f ter(t) occurs t time units
after state A has become active. They then define a mapping scheme from these augmented state ma-
chines to Uppaal [3]. This allows them to verify temporal properties of timed state machines. While the
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Figure 12: CODA Simulator Display

a f ter annotation provides similar modelling capability to CODA, our approach is based on verification
of refinement between models rather than verification of temporal properties.

Our Event-B representation of timing behaviour is similar to the approach taken by Cansell et al [4].
An activation variable, relating future events to their activation time, is introduced and progress of the
clock is constrained so that events occur at exactly their activation time.

Sarshogh & Butler [11] introduce three discrete timing annotations to Event-B: delay, deadline and
expiry. These allow upper and lower bounds on the duration between trigger-response event pairings.
They identify refinement patterns that allow abstract timing properties to be refined by more complex
timing properties involving the introduction of intermediate events between the abstract trigger-response
pairs.

10 Concluding

We have introduced the CODA modelling and verification framework that builds on Event-B, Rodin,
ProB and UML-B to provide a component-based diagrammatic approach to development of embedded
systems that matches well the Orchestra approach. Our experience to date with several case studies is
that the layered approach using refinement fits well with a development in which requirements are clearly
allocated to appropriate refinement levels in a clear and traceable way. The Event-B basis provides a
formal notion of consistency between abstraction levels of CODA models and Rodin provides the means
to verify this consistency. In addition ProB provides a powerful means to validate the accuracy of models
through simulation.

References

[1] J.-R. Abrial, M. Butler, S. Hallerstede, T.S. Hoang, F. Mehta & L. Voisin (2010): Rodin: an open toolset for
modelling and reasoning in Event-B. STTT 12(6), pp. 447–466, doi:10.1007/s10009-010-0145-y.

[2] J.R. Abrial (2010): Modeling in Event-B: System and Software Engineering. Cambridge Univ Pr,
doi:10.1017/CBO9781139195881.

[3] Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson & Wang Yi (1995): UPPAAL
- a Tool Suite for Automatic Verification of Real-Time Systems. In Rajeev Alur, Thomas A. Henzinger &
Eduardo D. Sontag, editors: Hybrid Systems, Lecture Notes in Computer Science 1066, Springer, pp. 232–
243, doi:10.1007/BFb0020949.

[4] Dominique Cansell, Dominique Méry & Joris Rehm (2007): Time Constraint Patterns for Event B Devel-
opment. In Jacques Julliand & Olga Kouchnarenko, editors: B, Lecture Notes in Computer Science 4355,
Springer, pp. 140–154, doi:10.1007/11955757 13.

http://dx.doi.org/10.1007/s10009-010-0145-y
http://dx.doi.org/10.1017/CBO9781139195881
http://dx.doi.org/10.1007/BFb0020949
http://dx.doi.org/10.1007/11955757_13


Butler Et Al 51

[5] I. Jacobson, G. Booch & J. Ramgaugh (1999): The Unified Software Development Process. Addison Wesley.
[6] Alexander Knapp, Stephan Merz & Christopher Rauh (2002): Model Checking - Timed UML State Ma-

chines and Collaborations. In Werner Damm & Ernst-Rüdiger Olderog, editors: FTRTFT, Lecture Notes in
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