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The majority of modern systems exhibit sophisticated concurrent behaviour, where several system
components modify and observe the system state with fine-grained atomicity. Many systems (e.g.,
multi-core processors, real-time controllers) also exhibit truly concurrent behaviour, where multi-
ple events can occur simultaneously. This paper presents data refinement defined in terms of an
interval-based framework, which includes high-level operators that capture non-deterministic ex-
pression evaluation. By modifying the type of an interval, our theory may be specialised to cover
data refinement of both discrete and continuous systems. We present an interval-based encoding of
forward simulation, then prove that our forward simulationrule is sound with respect to our data
refinement definition. A number of rules for decomposing forward simulation proofs over both se-
quential and parallel composition are developed.

1 Introduction

Data refinement allows one to develop systems in a stepwise manner, enabling an abstract system to be
replaced with a more concrete implementation by guaranteeing that every observable behaviour of the
concrete system is a possible observable behaviour of the abstract. A benefit of such developments is the
ability to reason at a level of abstraction suitable for the current stage of development, and the ability to
introduce additional detail to a system via correctness-preserving transformations. During development,
a concrete system’s internal representation of data often differs from the abstract data representation,
requiring the use of arefinement relationto link the concrete and abstract states.

Over the years, numerous techniques for verifying data refinement techniques have been developed
for a number of application domains [30], including methodsfor refinement of concurrent [10] and
real-time [23] systems. However, these theories are rootedin traditional notions of data refinement,
where refinement relations are between concrete and abstract states. In the presence of fine-grained
atomicity and truly concurrent behaviour (e.g., multi-core computing, real-time controllers), proofs of
refinement are limited by the information available within asingle state, and hence, reasoning can often
be more difficult than necessary. Furthermore, the behaviours of corresponding concrete and abstract
steps may not always match, and hence, reasoning can sometimes be unintuitive, e.g., for the state-based
data refinement in Section 2, a concrete step that loads a variable corresponds to an abstract step that
evaluates a guard.

When reasoning about concurrent and real-time systems, oneis often required to refer to a system’s
evolution over time as opposed to its current state at a single point in time. This paper therefore presents
a method for verifying data refinement using a framework thatallows one to consider the intervals within
which systems execute [16, 18, 29, 32]. Thus, instead of reasoning over the pre and post states of each
component, one is able to reason about the component’s behaviour over an interval, which may comprise
several atomic steps. The concurrent execution of two or more processes is defined as the conjunction
of the behaviour of each process in the same interval [1, 26];hence, reasoning about a component
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AInit:¬grd
Processap

ap1: if grd then
ap2: m := 1
ap3: elsem := 2 fi

Processaq
aq1: if b then
aq2: grd := true
aq3: else skip fi

Figure 1: Abstract program with guardgrd

CInit:v≤ u< ∞
Processcp

cp1: if u< v then
cp2: m := 1
cp3: elsem := 2 fi

Processcq
cq1: if 0< u then
cq2: v := ∞
cq3: elsev :=−∞ fi

Figure 2: Concrete program with guardu< v

naturally takes into account the behaviour of the component’s environment (e.g., other concurrently
executing processes). Using an interval-based framework enables us to incorporate methods for apparent
states evaluation [16, 18, 25], which allows one to take intoaccount the low-level non-determinism of
expression evaluation at a high level of abstraction.

The main contribution of this paper is an interval-based method for verifying data refinement, simpli-
fying data refinement proofs in the presence of true concurrency. A forward simulation rule for interval-
based refinement is developed, and several methods of decomposing proof obligations are presented,
including mixed-mode refinement, which enables one to establish different refinement relations over dis-
joint parts of the state space. We present our theory at the semantic level of interval predicates, i.e.,
without consideration of any particular programming framework. Hence, the theory can be applied to
any existing framework such as action systems, Z, etc. by mapping the syntactic constructs to our inter-
val predicate semantics. The aim of our work is to reason about programs with fine-grained atomicity
and real-time properties, as opposed to programs written in, say, Java that allows specification of coarse-
grained atomicity usingsynchronized blocks.

Background material for the paper is presented in Sections 2and 3, clarifying our notions of state-
based refinement and interval-based reasoning. Our interval-based refinement theory is presented in
Section 4, which includes a notion of forward simulation with respect to intervals and methods for
proof decomposition. Methods for reasoning about fine-grained concurrency and a proof of our running
example is presented in Section 5.

2 State-based data refinement

Consider the abstract program in Figure 1, written in the style of Feijen and van Gasteren [22], which
consists of variablesgrd,b ∈ B, m∈ N, initialisation AInit and processesap andaq. Processap is a
sequential program with labelsap1, ap2, andap3 that tests whethergrd holds (atomically), then executes
m := 1 if grd evaluates totrue and executesm := 2 otherwise. Processaq is similar. The program
executes by initialising as specified byAInit, and then executingap andaq concurrently by interleaving
their atomic statements.

An initialisation may be modelled by a relation, and each label corresponds to an atomic statement,
whose behaviour may also be modelled by a relation. Thus, a program generates a set oftraces, each of
which is a sequence of states (starting with index 0). Program counters for each process are assumed to
be implicitly included in each state to formalise the control flow of a program [14], e.g., the program in
Figure 1 uses two program counterspcap andpcaq, wherepcap= ap1 is assumed to hold whenever control
of processap is atap1. After execution ofap1, the value ofpcap is updated so that eitherpcap = ap2 or
pcap = ap3 holds, depending on the outcome of the evaluation ofgrd.

One may characterise traces using anexecution, which is a sequence of labels starting with initiali-
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sation. For example, a possible execution of the program in Figure 1 is

〈AInit,ap1,aq1,aq2,ap3〉 (1)

Using ‘.’ for function application, an executionex corresponds to a tracetr iff for each i ∈ dom.ex,
(tr.i, tr.(i +1)) ∈ ex.i and either dom.tr = dom.ex= N or size.(dom.ex) < size.(dom.tr). An execution
ex is valid iff dom.ex 6= ∅, ex.0 is an initialisation, andex corresponds to at least one trace, e.g., (1)
above is valid. Not every execution is valid, e.g.,〈AInit,ap1,ap2〉 is invalid because execution ofap1

afterAInit causesgrd to evaluate tofalseandpcap to be updated toap3, and hence, statementap2 cannot
be executed. Note that valid executions may not be complete;an extreme example is〈AInit,AFin〉, where
the execution is finalised immediately after initialisation.

Now consider the more concrete program in Figure 2 that replacesgrd by u< v andb by 0< u. Note
thatu andv are fresh with respect the program in Figure 1. Initially,v≤ u< ∞ holds. Furthermore,cq
(modelling the concrete environment ofcp) setsv to ∞ if u is positive and to−∞ otherwise. One may
be interested in knowing whether the program in Figure 2data refinesthe program in Figure 1, which
defines conditions for the program in Figure 1 to be substituted by the program in Figure 2 [30]. This is
possible if every execution of the program in Figure 2 has a corresponding execution of the program in
Figure 1, e.g., concrete execution〈CInit,cp1,cq1,cq2,cp3〉 has a corresponding abstract execution (1).

In general, representation of data within a concrete program differs from the representation in the
abstract, and hence, one must distinguish between the disjoint sets ofobservableand representation
variables, which respectively denote variables that can and cannot be observed. For example,grd in
Figure 1 andu, v in Figure 2 cannot both be observable because the types of these variables are different
in the two programs. To verify data refinement, the abstract and concrete programs may therefore also
be associated withfinalisations, which are relations between a representation and an observable state.
Different choices for the finalisation allow different parts of the program to become observable and affect
the type of refinement that is captured by data refinement [10,11, 12]. For the programs in Figures 1 and
2, we assume finalisations make variablemobservable. Hence, Figure 1 is data refined by Figure 2 ifap
is able to executeap2 (andap3) whenevercp is able to executecp2 (andcp3, respectively). We define a
finalised executionof a program to be a valid execution concatenated with the finalisation of the program,
e.g.,〈AInit,ap1,aq1,aq2,ap3,AFin〉 is a finalised execution of the program in Figure 1 generated from
the valid execution (1). Valid executions are not necessarily complete, and hence, one may observe the
state in the “middle” of a program’s execution.

To define data refinement, we assume that an initialisation isa relation from an observable state to
a representation state, each label corresponds to a statement that is modelled by a relation between two
representation states, and a finalisation is a relation froma representation state to an observable state.
Assuming ‘o9’ denotes relational composition andid is the identity relation, we define thecompositionof
a sequence of relationsR as

comp.R =̂ ifR= 〈〉 then id elsehead.R o
9 comp.(tail.R)

which composes the relations ofR in order. We also define a functionrel, which replaces each label in
an execution by the relation corresponding to the statementof that label.

We allow finite stuttering in the concrete program, and hence, there may not be a one-to-one cor-
respondence between concrete and abstract executions. Stuttering is reflected in an abstract execution
by allowing a finite number of labels ‘Id’ to be interleaved with each finalised execution of the abstract
program, whereId is assumed to be different from all other labels, and the relation corresponding to label
Id is alwaysid. Data refinement is therefore defined with respect to acorrespondence functionthat maps
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concrete labels to abstract labels. A correspondence function is valid iff it maps concrete initialisation to
abstract initialisation, concrete finalisation to abstract finalisation, each label of a non-stuttering concrete
statement to a corresponding abstract statement, and each label of stuttering concrete statement toId.
For the rest of the paper we assume that the correspondence functions under consideration are valid. A
programC is adata refinementof a programA with respect to correspondence functionf iff for every
finalised executionexcof C, exa=̂ λ i:dom.exc• f .(exc.i) is a finalised execution ofA (with possibly
finite stuttering) andcomp.(rel.exc) ⊆ comp.(rel.exa) holds.

Proving data refinement directly from its formal definition is infeasible. Instead, one proves data
refinement by verifyingsimulationbetween an abstract and concrete system, which requires theuse of
refinement relationto link the internal representations of the abstract and concrete programs. We assume
that a relationr ∈ X ↔ Y is characterised by a functionfr ∈ X → Y→ B where(x,y) ∈ r iff fr.x.y. hold.
As depicted in Figure 3, a refinement relationref is aforward simulationbetween a concrete and abstract
system if:

1. whenever the concrete system can be initialised from an observable stateρ to obtain a concrete
representation stateτ0, it must be possible to initialise the abstract system fromρ to result in
abstract representation stateσ0 such thatref .σ0.τ0 holds,

2. for every non-stuttering concrete statementcs, abstract stateσ and concrete stateτ , if ref .σ .τ
holds andcs relatesτ to τ ′, then there exists an abstract stateσ ′ such that the abstract statement
that corresponds tocsrelatesσ to σ ′ andref .σ ′.τ ′ holds,

3. for every stuttering concrete statement starting from stateτ and ending in stateτ ′, ref .σ .τ ′ holds
wheneverref .σ .τ holds,

4. finalising any abstract stateσ (using the abstract system’s finalisation) and concrete state τ (using
the concrete system’s finalisation) results in the same observable state wheneverref .σ .τ holds.

For models of computation that assume instantaneous guard evaluation [25], establishing a data
refinement between the programs in Figures 1 and 2 with respect to a correspondence function that
mapscpi to api andcqi to aqi for i ∈ {1,2,3} is straightforward. In particular, it is possible to prove
forward simulation usingpcuvbelow as the refinement relation, whereσ andτ are abstract and concrete
states, respectively.

uv.σ .τ =̂ (σ .grd= (τ .u< τ .v)) ∧ (σ .b= (0< τ .u)) ∧ (σ .m= τ .m)

pcuv.σ .τ =̂ uv.σ .τ ∧ ∀i:{1,2,3} • (σ .pcap = api ⇒ τ .pccp = cpi) ∧ (σ .pcaq = aqi ⇒ τ .pccq = cqi)

id

ref

cpi

api

refref

cpj

ref ref

CFin

AFin

CInit

AInit

ref

Figure 3: Data refinement via simulation

In a setting with fine-grained atomicity, the program in Figure 2 may be difficult to implement be-
cause the guard atcp1 (which refers to multiple shared variables) is assumed to beevaluated atomically.
In reality, there may be interference from other processes while an expression is being evaluated [25].
Furthermore, the order in which variables are read within anexpression is often not fixed. To take these
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CInit:v≤ u< ∞
Processcp

cp1.1:
cp1.2:

(
ku := u;
kv := v

)

⊓
cp1.3:
cp1.4:

(
kv := v;
ku := u

)
;

cp1.5: if ku < kv then . . .

Processcq
cq1: if 0< u then
cq2: v := ∞
cq3: elsev :=−∞ fi

Figure 4: Making the atomicity of expression eval-
uation in Figure 2 explicit

Concrete label Abstract label
CInit AInit

cp1.1,cp1.3,cp1.5 Id
cp1.2,cp1.4 ap1

cpi for i ∈ {2,3} api

cqi for i ∈ {1,2,3} aqi

CFin AFin

Figure 5: Correspondence function for data refine-
ment between Figure 4 and Figure 1

circumstances into account, we must consider the program inFigure 4, which splits the guard evaluation
atcp1 in Figure 2 into a number of smaller atomic statements using fresh variablesku andkv that are local
to processcp. Via a non-deterministic choice ‘⊓’, processcp chooses between executionscp1.1 ; cp1.2

andcp1.3 ; cp1.4, which read the (global values)u andv into local variablesku andkv, respectively, in two
atomic steps. Evaluation of guardu< v at cp1 in Figure 2 is then replaced by evaluation ofku < kv.

A proof of data refinement between the programs in Figures 1 and 2 using forward simulation with
respect touv is now more difficult because an (atomic) instantaneous evaluation ofgrd has been split
into several atomic statements. A data refinement with respect to a naive correspondence function that
matchescpi for i ∈ {1.1,1.2,1.3,1.4} with Id, cp1.5 with ap1, andcqi with aqi for i ∈ {1,2} cannot be
verified using forward simulation. Instead, one must use thecorrespondence function in Figure 5. Note
that this correspondence function is not intuitive because, for example, execution ofcp1.4 (which readsu)
is matched with execution ofap1 (which testsgrd), but is necessary because execution ofcp1.4 determines
the outcome of the future evaluation of the guard atcp1.5. The refinement relation used to prove forward
simulation is more complicated thanpcuv (details are elided, but the relation can be constructed using
the correspondence function in Figure 5).

Such difficulties in verifying a relatively trivial modification expose the complexities in stepwise re-
finement of concurrent programs. Further issues arise in thecontext of real-time properties e.g., transient
properties cannot be properly addressed by an inherent interleaving model [17, 18].

This paper presents an interval-based semantics for the systems under consideration, an interval-
based interpretation of data refinement in the framework, and a rule akin to forward simulation for
proving data refinement. We believe that these theories alleviate many of these issues in state-based
reasoning, requiring less creativity on the part of the verifier. For example, the correspondence function
always maps each concrete process to an abstract process. Byreasoning about the traces of a system
over an interval, we are able to capture the effect of a numberof atomic statements and interference
from the environment at a high-level of abstraction. Unlikethe state-based approach described above,
which only captures interleaved concurrency, interval-based approaches also allow one to model truly
concurrent behaviour. By modifying the type of an interval,one can take both discrete and continuous
system behaviours into account.

3 Interval-based reasoning

Our generic theory of refinement is based on interval predicates, generalising frameworks that model
programs as relations between pre/post states. We have applied our interval-based methodology to reason
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Figure 6: Interval predicate visualisation

about both concurrent [15, 16] and real-time programs [18, 21].
An interval in an ordered setΦ ⊆ R is a contiguous subset ofΦ, i.e., the set of all intervals ofΦ is

given by:
IntvΦ =̂ {∆ ⊆ Φ | ∀t, t′:∆ •∀t′′:Φ • t ≤ t′′ ≤ t′ ⇒ t′′ ∈ ∆}

We assume the existence of elements−∞,∞ 6∈ Φ such that−∞ < t < ∞ for eacht ∈ Φ. IntvΦ may be
used to model both discrete (e.g., by pickingΦ = Z) and continuous (by pickingΦ =R) systems.

We define the following predicates, which may be used to identify empty intervals, and intervals with
a finite and infinite upper bound.

empty.∆ =̂ ∆ =∅ finite.∆ =̂ empty.∆ ∨ (∃t:∆ •∀t′:∆ • t′ ≤ t) infinite.∆ =̂ ¬finite.∆

One must often reason about twoadjoining intervals, i.e., intervals that immediately precede/follow
another. For∆1,∆2 ∈ IntvΦ, we define

∆1∝∆2 =̂ (∀t1:∆1, t2:∆2 • t1 < t2) ∧ (∆1∪∆2 ∈ IntvΦ)

Thus,∆1∝∆2 holds iff ∆2 follows ∆1 and the union of∆1 and∆2 forms an interval (i.e.,∆1 and∆2 are
contiguous across their boundary). Note that adjoining intervals are disjoint and that both∆∝∅ and
∅∝∆ hold trivially for any interval∆.

A stateoverV ⊆ Var is of typeStateV =̂ V → Val, whereVar is the type of a variable andVal is the
generic type of a value. Astate predicateis of typeStatePredV =̂ StateV → B. A streamof behaviours
overStateV is given by the functionStreamΦ,V =̂ Φ → StateV , which maps each element ofΦ to a state
overV. To facilitate reasoning about specific parts of a stream, weuseinterval predicates, which have
type IntvPredΦ,V =̂ IntvΦ → StreamΦ,V → B. A visualisation of an interval predicate overZ ⊆ Var is
given in Figure 6. The streamz∈ StreamΦ,Z maps each time to a state overZ and the interval predicate
depicted in the figure maps∆ andz to a boolean.

We assume pointwise lifting of operators on stream and interval predicates in the normal manner,
e.g., if g1 andg2 are interval predicates,∆ is an interval ands is a stream, we have(g1 ∧ g2).∆.s=
(g1.∆.s∧ g2.∆.s). Thechopoperator ‘;’ is a basic operator on two interval predicates [16, 18, 29, 32],
where(g1 ; g2).∆ holds iff either interval∆ may be split into two parts so thatg1 holds in the first andg2

holds in the second, or the upper bound of∆ is ∞ andg1 holds in∆. Thus, for a streams, we define:

(g1 ; g2).∆.s =̂
(
∃∆1,∆2: IntvΦ • (∆ = ∆1∪∆2) ∧ (∆1∝∆2) ∧ g1.∆1.s∧ g2.∆2.s

)
∨

(infinite.∆ ∧ g1.∆.s)

Note that∆1 may be empty, in which case∆2 = ∆, and similarly∆2 may empty, in which case∆1 = ∆,
i.e., both(empty ; g) = g andg= (g; empty) trivially hold, whereempty.∆.s=̂ (∆ =∅) for all streams
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s. Furthermore, in the definition of chop, we allow the second disjunct infinite.∆ ∧ g1.∆ to enableg1 to
model an infinite (divergent or non-terminating) program.

To model looping of a behaviour modelled by interval predicate g, we use an iteration operator ‘gω ’,
which is defined as the greatest fixed point ofλ h• g ; h∨ empty. Interval predicates are assumed to be
ordered using implication ‘⇒’ and the greatest fixed point allowsgω to model both finite (including 0)
and infinite iteration [21].

gω =̂ νz• (g; z) ∨ empty

We say thatg splits iff g⇒ (g ; g) andg joins iff (g ; gω)⇒ g. If g splits, then wheneverg holds in an
interval∆, g also holds in any subinterval of∆. If g joins, theng holds in∆ whenever there is a partition
of ∆ such thatg holds in each interval of the partition. Note that ifg splits, theng⇒ gω [21]. Splits and
joins properties are useful for decomposing proof obligations, for instance, both of the following hold.

(g⇒ g1) ∧ (g⇒ g2) ⇒ (g⇒ g1 ; g2) providedg splits (2)

(g∧ g1) ; (g∧ g2) ⇒ g∧ (g1 ; g2) providedg joins (3)

One must often state that a property only holds for a non-empty interval, and that a property holds for an
immediately preceding interval. To this end, we define:

g =̂ g∧ ¬empty �g.∆.s =̂ ∃∆0: IntvΦ • ∆0∝∆ ∧ g.∆0.s

Note that ifg holds in an empty interval, then�g trivially holds. Also note how interval predicates
allow the behaviour outside the given interval to be stated in a straightforward manner because a stream
encapsulates the entire behaviour of a system. We define the following operators to formalise properties
over an interval using a state predicatec over an interval∆ in streams.

�c.∆.s =̂ ∀t:∆ • c.(s.t) �c.∆.s =̂ ∃t:∆ • c.(s.t)

That is�c.∆.s holds iff c holds for each states.t wheret ∈ ∆ and �c.∆.s holds iff c holds in some state
s.t wheret ∈ ∆. Note that�c trivially holds for an empty interval, but�c does not. For the rest of this
paper, we assume that the underlying type of the interval under consideration is fixed. Hence, to reduce
notational complexity, we omitΦ whenever possible.

Example 1. We present the interval-based semantics of the programs in Figures 1 and 2. Interval-based
methods allow one to model true concurrency by defining the behaviour of a parallel compositionp‖q
over an interval∆ as the conjunction of the behaviours of bothp andq over∆ (see [15, 16, 18] for more
details). Others have also treated parallel composition asconjunction, but in an interleaving framework
with predicates over states as opposed to intervals (e.g., [1, 26]). Sequential composition is formalised
using the chop operator. We assume[grd] denotes an interval predicate that formalises evaluation of
grd. Details of guard evaluation are given in Section 5.1. The interval-based semantics of the programs
in Figures 1 and 2 are respectively formalised by the interval predicates (4), (5), (6) and (7) below.
Assuming thatρ is an observable state, conditions (4) and (5) formalise thebehaviours ofAInit.ρ and
CInit.ρ , respectively. Assuming thatρ has an observable variableM that is represented internally by
m, and thatσ andτ are abstract and concrete states, respectively, the behaviours of bothAFin.σ .ρ and
CFin.σ .ρ are formalised by (8) and (9), respectively. We assume ‘;’ binds more tightly than binary
boolean operators.

�¬grd (4)
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�(v≤ u< ∞) (5)

Processap︷ ︸︸ ︷
([grd] ; �(m= 1) ∨ [¬grd] ; �(m= 2)) ∧

Processaq︷ ︸︸ ︷
([b] ; �grd∨ [¬b]) (6)

Processcp︷ ︸︸ ︷
([u< v] ; �(m= 1) ∨ [u≥ v] ; �(m= 2)) ∧

Processcq︷ ︸︸ ︷
([0< u] ; �(v= ∞) ∨ [0≥ u] ; �(v=−∞))

(7)

σ .m= ρ .M (8)

τ .m= ρ .M (9)

By (4), AInit returns an interval predicate�¬grd, which states that¬grd holds throughout the given
interval, and the interval is non-empty. Condition (5) is similar. Condition (6) models the concurrent
behaviour of processesap andaq. Processap either behaves as[grd] ; �(m= 1) (grd evaluates to true,
then the behaviour ofm := 1 holds) or[¬grd] ; �(m= 2) (¬grd evaluates to true, then the behaviour of
m:= 2 holds, i.e., the interval under consideration is non-empty andm= 2 holds throughout the interval).
Processaq is similar, but also models the assignments togrd.

Note that the points at which the intervals are chopped within (6) and (7) are unsynchronised. For
example, suppose processap behaves as[grd] ; �(m= 1) andaq behaves as[b] ; �grd within interval
∆ of streamy, i.e,. ([grd] ; �(m= 1) ∧ [b] ; �grd).∆.y holds for some interval∆ and abstract streamy.
By pointwise lifting, this is equivalent to([grd] ; �(m= 1)).∆.y∧ ([b] ; �grd).∆.y. The two processes
may now choose to split∆ independently. This includes the possibility of∆ being split at the same point,
which occurs if both guard evaluations are completed at the same time.

4 A general theory of refinement

We aim to verify data refinement between systems whose behaviours are formalised by interval predi-
cates. Hence, we present interval-based data refinement (Section 4.1) and define interval-based refine-
ment relations (Section 4.2), enabling formalisation of refinement relations in an interval-based setting.
Section 4.3 presents our generalised proof method, which isinspired by state-based forward simulation
techniques. Section 4.4 presents a number of decompositiontechniques for forward simulation.

4.1 Data refinement

Existing frameworks for data refinement model concurrency as an interleaving of the atomic system
operations [2, 9, 10, 30]. This allows one to define a system’sexecution using its set of operations. The
traces of a system after initialisation are generated by repeatedly picking an enabled operation from the
set non-deterministically then executing the operation. Such execution models turn out to be inadequate
for reasoning about truly concurrent behaviour, e.g., about transientproperties in the context of real-
time systems [18]. The methodology in this paper aims to allow modelling of truly concurrent system
behaviour. Each operation is associated with exactly one ofthe system processes and execution of
a system (after initialisation) over an interval∆ is modelled by the conjunction of the behaviours of
each operation over∆ (see Example 1). It is possible to obtain interleaved concurrency from our truly
concurrent framework via the inclusion of permissions [6, 16].

Action refinement for true concurrency in a causal setting isstudied in [28], and a modal logic for
reasoning about true concurrency is given in [4]. Frameworks for concurrent refinement in real-time
contexts have also been proposed (e.g., [24, 31]). We are however not aware of a method that allows data
refinement under true concurrency.
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Figure 7: Interval relation visualisation

We let Proc denote the set of all process identifiers. ForP ⊆ Proc and N,Z ⊆ Var, respectively
denoting the sets of observable and representation variables, asystemis defined by a tuple:

C =̂ (CI,(COpp)p:P,CF)N,Z

whereCI:StateN → IntvPredZ models the initialisation,COpp ∈ IntvPredZ for eachp ∈ P model the
system processes, andCF:StateZ → StateN → B denotes system finalisation. The set of observable
states at the start and end of an execution of systemC is given by:

obsN.C =̂

{
(ρ ,ρ ′):StateN ×StateN

∃∆: Intv,z:StreamZ •

(�CI.ρ ∧
∧

p:PCOpp).∆.z∧ ∃t:∆ • CF.(z.t).ρ ′

}

Definition 2. ForP⊆ Proc, an abstract systemA =̂ (AI,(AOPp)p:P,AF)N,Z is data refinedby a concrete
systemC =̂ (CI,(COPp)p:P,CF)N,Z, denotedA⊑ C iff obsN.C⊆ obsN.A.

It is trivial to prove that⊑ is a preorder (i.e., a reflexive, transitive relation).
Verification of Definition 2 directly is infeasible. In state-based formalisms, data refinement is proved

using simulation, which allows executions of the concrete system to be matched to executions of the
abstract [30] (see Figure 3). Previous work [16, 18] defines operation refinement over a single state
space. This cannot be used for example to prove refinement between the programs in Figures 1 and 2. In
this paper, we develop simulation-based techniques for ourinterval-based framework in Section 4.3. The
theory is based on interval relations (Section 4.2), which enable one to relate streams over two potentially
different state spaces.

4.2 Interval relations

Interval predicates enable one to reason about properties that take time, however, only define properties
over a single state space. Proving data refinement via simulation requires one to relate behaviours over
a concrete state space to behaviours over an abstract space.Hence, we combine the ideas behind state
relations and interval predicates and obtaininterval relations, which are relations over an interval and
two streams over potentially different state spaces. The concept of interval relations is novel to this paper.

An interval relationoverY andZ relates streams ofY andZ over intervals and is a mapping of type
IntvRelY,Z =̂ Intv→StreamY →StreamZ →B. Figure 7 depicts a visualisation of an interval relation over
Y,Z ⊆ Var wherez∈ StreamZ andy∈ StreamY. Like interval predicates, we assume pointwise lifting of
operators over state and interval relations in the normal manner. We extend interval predicate operators
to interval relations, for example:
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refref

∆0 ∆
h

g

z

y0

y

Figure 8: Visualisation ofref •
Z • h

Y • g

(R1 ; R2).∆.y.z =̂
(
∃∆1,∆2: Intv• (∆ = ∆1∪∆2) ∧ (∆1∝∆2) ∧ R1.∆1.y.z∧ R2.∆2.y.z

)
∨

(infinite.∆ ∧ R1.∆.y.z)
A state relationoverY,Z⊆Var is defined by its characteristic functionStateRelY,Z =̂ StateY → StateZ →
B. Operators on state predicates may be extended to state relations, e.g., forr ∈ StateRelY,Z we define

�r.∆.y.z =̂ ∀t:∆ • r.(y.t).(z.t)

If R1 ∈ IntvRelX,Y andR2 ∈ IntvRelY,Z then for∆ ∈ Intv, x∈ StreamX, y∈ StreamY, we define the com-
position ofR1 andR2 as

(R1◦R2).∆.x.z =̂ ∃y:StreamY • R1.∆.x.y∧ R2.∆.y.z

4.3 Generalised forward simulation

In this section, we work towards an interval-based notion offorward simulation, which is then shown to
be a sufficient condition for proving data refinement (Definition 2).

We define simulation between abstract and concrete systems with respect to an interval relation over
the sets of representation variables of the two systems. This definition requires that we define equivalence
between two streams over an interval. For streamsy andzand interval∆, we define a function

y
∆
== z =̂ (∆⊳y= ∆⊳z)

where ‘⊳’ denotes domain restriction. Thusy
∆
== z holds iff the states ofy andz corresponding to∆

match, i.e.,∀t:∆ • y.t = z.t. For Y,Z ⊆ Var, assuming thatg ∈ IntvPredY andh ∈ IntvPredZ model the
abstract and concrete systems, respectively, and thatref ∈ IntvRelY,Z denotes the refinement relation, we

define a functionref •
Z • h

Y • g
(see Figure 8), which denotes thath simulates gwith respect toref .

ref •
Z • h

Y • g
=̂

∀z:StreamZ,∆,∆0: Intv,y0:StreamY •

(∆0∝∆) ∧ ref .∆0.y0.z∧ h.∆.z⇒
∃y:StreamY • (y0

∆0== y) ∧ ref .∆.y.z∧ g.∆.y

Thus, if ref •
Z • h

Y • g
holds, then for every concrete streamz, interval∆ and abstract statey, provided that

1. ∆0 is an interval that immediately precedes∆,

2. ref holds in the interval∆0 betweeny0 andz, and

3. the concrete system (modelled byh) executes within∆ in streamz

then there exists an abstract streamy that matchesy0 over∆0 such that

1. the abstract system executes over∆ in y, and



B. Dongol and J.Derrick 25

2. ref holds betweeny andzover∆.

A visualisation ofref •
Z • h

Y • g
is given in Figure 8 and is akin to matching a single non-stuttering con-

crete step to an abstract step in state-based forward simulation [30]. The following lemma establishes

reflexivity and transitivity properties forref •
Z • h

Y • g
.

Lemma 3. Provided that id.σ .τ =̂ σ = τ .

�id •
X • g

X • g
(Reflexivity)

ref1 •
Y • g

X • f
∧ ref2 •

Z • h

Y • g
⇒ (ref1 ◦ ref2) •

Z • h

X • f
(Transitivity)

Simulation is used to define an interval-based notion offorward simulationas follows.

Definition 4 (Forward simulation). SupposeP⊆ Proc, A =̂ (AI,(AOpp)p:P,AF)N,Y is an abstract system,
C =̂ (CI,(COpp)p:P,CF)N,Z is a concrete system, andref ∈ IntvRelY,Z. We sayref is aforward simulation

from A to C iff ref •
Z •

∧
p:P COpp

Y •
∧

p:P AOpp

and both of the following hold:

∀z:StreamZ,∆: Intv,σ ∈ StateN • CI.σ .∆.z ⇒ ∃y:StreamY • AI.σ .∆.y∧ ref .∆.y.z (10)

∀z:StreamZ,y:StreamY,∆: Intv,σ :StateN •∀t:∆ •

ref .∆.y.z∧ CF.(z.t).σ ⇒ AF.(y.t).σ (11)

The following theorem establishes soundness of our forwardsimulation rule with respect to interval-
based data refinement.

Theorem 5(Soundness). If P⊆Proc, A=̂ (AI,(AOpp)p:P,AF)N,Y, and C=̂ (CI,(COpp)p:P,CF)N,Z, then
A⊑ C provided there exists a ref∈ IntvRelY,Z such that ref is a forward simulation from A to C.

Proof. Supposeσ ,σ ′ ∈ StateN, z∈ StreamZ andC has an execution depicted below, whereCI executes
in interval∆0 and

∧
p:PCOpp executes in∆. Note that

∧
p:PCOpp may or may not terminate, and hence,∆

may be infinite. To proveA⊑ C, it suffices to prove that there exists a matching execution of A starting
in σ and ending inσ ′.

∆

CF

CI

σ ′σ

z ∧
p:PCOpp

∆0

By (10), there exists ay0 ∈ StreamY such thatAI.σ .∆0.y0 andref .∆0.y0.zhold recalling that∆0 is the ini-

tial interval of execution. This is depicted in (A) below. Now, because the simulationref •
Z •

∧
p:P COpp

Y •
∧

p:P AOpp

holds, there exists ay that matchesy0 over ∆0 such that both(
∧

p:P AOpp).∆.y and ref .∆.y.z hold, as
depicted in (B) below.

(A) (B)

∆0

CF

CI

σ ′σ ref

AI
y0

z ∧
p:PCOpp

∆

CF

CI

σ ′σ ref

AI
y

z

ref

∧
p:PAOpp

∧
p:PCOpp
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Then, due to the finalisation assumption (11), there exists afinalisation ofA that results inσ ′ as shown
in (D) below.

(D)

AF

CF

CI

σ ′σ ref

AI
y

z

∧
p:PAOpp

∧
p:PCOpp

ref

✷

4.4 Decomposing simulations

A benefit of state-based forward simulation [30] is the ability to decompose proofs and focus on individ-

ual steps of the concrete system. Proof obligationref •
Z • h

Y • g
in the interval-based forward simulation

definition (Definition 4) takes the entire interval of execution of the concrete and abstract systems into

account. Hence, we develop a number of methods for simplifying proofs ofref •
Z • h

Y • g
. Decomposing

ref •
Z • h

Y • g
directly is difficult due to the existential quantification in the consequent. However, a for-

mula of the formp⇒ (∃x• q∧ r) holds if bothp⇒∃x• q and∀x• p∧ q⇒ r hold. Hence, we obtain the
following lemma.

Lemma 6. For any Y,Z ⊆ Var and ref∈ IntvRelY,Z, ref •
Z • h

Y • g
holds if both of the following hold:

∀z:StreamZ,∆,∆0: Intv,y0:StreamY •

∆0∝∆ ∧ ref .∆0.y0.z∧ h.∆.z ⇒ ∃y:StreamY • (y0
∆0== y) ∧ ref .∆.y.z (12)

∀z:StreamZ,∆: Intv,y:StreamY •

ref .∆.y.z∧ h.∆.z ⇒ g.∆.y (13)

By (12), if the refinement predicateref holds for an abstract streamy0 in an immediately preceding
interval∆0 and the concrete system executes in the current interval∆, then there exists an abstract stream
that matchesy0 over∆0 andref holds fory over∆. By (13) for any abstract streamy, concrete streamz
and interval∆, if the concrete system executes in∆ and forward simulation holds betweeny andz for ∆,
then the behaviour of the abstract system holds for∆ in y.

To simplify representation of intervals of the form in (12),we introduce the following notation.

h
Y,Z ref =̂ (12)

The following lemma allows one to decompose proofs of the form given inh
Y,Z ref .

Lemma 7. If Y,Z ⊆ Var, g,g1,g2 ∈ IntvPredZ and ref∈ IntvRelY,Z, then each of the following holds.

g1 
Y,Z ref ∧ g2 
Y,Z ref ⇒ (g1 ; g2) 
Y,Z ref provided ref joins (Sequential composition)

g
Y,Z ref ⇒ gω 
Y,Z ref provided ref joins (Iteration)

(g2 
Y,Z ref) ∧ (g1 ⇒ g2) ⇒ g1 
Y,Z ref (Weaken)

(g
Y,Z ref1) ∨ (g
Y,Z ref2) ⇒ g
Y,Z (ref1 ∨ ref2) (Disjunction)
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Note thatref can neither be weakened nor strengthened in the trivial manner because it appears in
both the antecendent and consequent of the implication. If arefinement relation operates on two disjoint
portions of the stream, it is possible to split the refinementas follows:

Lemma 8 (Disjointness). Suppose p∈ Proc, W,X,Y,Z ⊆ Var such that Y∩Z = ∅, W∪X = Y and
W∩X =∅. If g1,g2 ∈ IntvPredZ, refW ∈ IntvRelW,Z, refX ∈ IntvRelX,Z, and⋆ ∈ {∧,∨}, then

(g1 
W,Z refW) ∧ (g2 
X,Z refX) ⇒ (g1 ∧ g2) 
Y,Z (refW ⋆ refX) (Disjointness)

Disjointness allows one to prove mixed refinement, where thesystem states are split into disjoint subsets
and different refinement relations are used to verify refinement between these substates.

Proof obligation (13) may also be simplified. In particular,for interval predicateg, interval ∆ and
streamsy andz, we define(g↾ 1).∆.y.z =̂ g.∆.y and(g↾2).∆.y.z =̂ g.∆.z, which allows one to shorten
(13) to

ref ∧ (h↾2) ⇒ (g↾1) (14)

Hence, proofs of refinement are reduced to proofs of implication between the concrete and abstract state
spaces. There are numerous rules for decomposing proofs of the form in (14) that exploit rely/guarantee-
style reasoning [20, 16].

5 Fine-grained atomicity

Interval-based reasoning provides the opportunity to incorporate methods for non-deterministically eval-
uating expressions [8, 25], which captures the possible low-level interleavings (e.g., Figure 4) at a higher-
level of abstraction. Methods for non-deterministically evaluating expressions are given in Section 5.1,
and also appear in [8, 25, 19, 18, 20]. Verification of data refinement of our running example that com-
bines non-deterministic evaluation from Section 5.1 and the data refinement rules from Section 4 is given
in Section 5.2.

5.1 Non-deterministically evaluating expressions

Most hardware can only guarantee that at most one global variable can be read in a single atomic step.
Thus, in the presence of possibly interfering processes andfine-grained atomicity, a model that assumes
expressions containing multiple shared variables can be evaluated in a single state may not be imple-
mentable without the introduction of contention inducing locks [1, 3, 27]. As we have done in Figure 4,
one may split expression evaluation into a number of atomic steps to make the underlying atomicity
explicit. However, this approach is undesirable as it causes the complexity of expression evaluation to
increase exponentially with the number of variables in an expression — evaluation of an expression with
n (global) variables would require one to checkn! permutations of the read order.

Interval-based reasoning enables one to incorporate methods for non-deterministically evaluating
state predicates over an evaluation interval [25], which allow the possible permutations in the read order
of variables to be considered at a high level of abstraction.For this paper, we useapparent states
evaluators, which allow one to evaluate an expressionewith respect to the set of states that are apparent
to a process. Each variable ofe is assumed to be read at most once, but at potentially different instants,
and hence, instead of evaluatinge in a single atomic step, apparent states evaluations assumeexpression
evaluation takes time and considers the set of states that occur over the interval of evaluation. An apparent
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state is generated by picking a value for each variable from the set of actual values of the variable over
the interval of evaluation. For∆ ∈ Intv ands∈ StreamV, we define:

apparent.∆.s =̂ {σ :StateV | ∀v:V •∃t:∆ • σ .v= s.t.v}

Example 9. Consider the statementsu := 1 ; v := 1 which we assume are executed over an interval∆
from an initial state that satisfiesu,v = 0,0. The set of states that actually occur over this interval is
hence

{{u 7→ 0,v 7→ 0},{u 7→ 1,v 7→ 0},{u 7→ 1,v 7→ 1}}

Evaluation ofu< v in the set of actual states above always results infalse. Assuming no other (parallel)
modifications tou andv, for some streamsover{u,v}, the set of apparent states corresponding to∆ is:

apparent.∆.s =
{
{u 7→ 0,v 7→ 0},{u 7→ 1,v 7→ 1},{u 7→ 0,v 7→ 1},{u 7→ 1,v 7→ 0}

}

where the additional apparent state{u 7→ 0,v 7→ 1} may be obtained by readingu with value 0 (in the
initial state) andv with value 1 (after both modifications). Unlike the actual states evaluation,u< v may
result infalsewhen evaluating in the apparent states. Note thatv= v still only has one possible value,
true, i.e., apparent states evaluation assumes that the same value ofv is used for both occurrences ofv.

Two useful operators for a sets of apparent states evaluation allow one to formalise thatc definitely
holds (denoted�c) andc possiblyholds (denoted�c), which are defined as follows.

(�c).∆.s =̂ ∀σ :apparent.∆.s• c.σ ( �c).∆.s =̂ ∃σ :apparent.∆.s• c.σ

The following lemma states a relationship betweendefinitelyandalwaysproperties, as well as between
possiblyandsometimeproperties [25]. Note that both�c⇒ �c and �c⇒ �c hold, but the converse
of both properties are not necessarily true.
Example 10. We now instantiate the guard evaluations of the form[c] within (6) and (7). In particular,
a guardc holds if it is possible to evaluate the variables ofc (at potentially different instants) so thatc
evaluates totrue. Therefore, the semantics of the evaluation of a guardc is formalised by �c and we
obtain the following interval predicates for (6) and (7).

( �grd ; �(m= 1) ∨ �¬grd ; �(m= 2)) ∧ ( �b; �grd∨ �¬b) (15)
(

�(u< v) ; �(m= 1) ∨

�(u≥ v) ; �(m= 2)

)
∧

(
�(0< u) ; �(v= ∞) ∨

�(0≥ u) ; �(v=−∞)

)
(16)

Note that interval predicate�(u< v) is equivalent to

∃ku,kv • (( �(ku = u) ; �(kv = v)) ∨ ( �(kv = v) ; �(ku = u))) ; (ku < kv)

Hence, the formalisation in (16) accurately captures the fine-grained behaviour of Figure 2 without hav-
ing to explicitly decompose the guard evaluation atcp1 into individual reads as done in Figure 4.

The theory in [25] allows one to relate different forms of non-deterministic evaluation. For example,
both�c⇒ �c and �c⇒ �c hold. To strengthen the implication to an equivalence, one must introduce
additional assumptions about the stability of the variables of c. Because adjoining intervals are disjoint,
the definition of stability must refer to the value ofc at the end of an immediately preceding interval
[18, 16, 20]. For a state predicatec, interval∆ and streams, we define

prev.c.∆.s =̂ ∃∆′: Intv• ∆′∝∆ ∧ �c.∆′.s

Variablev is stable over a∆ in s(denotedstable.v.∆.s) iff the value ofv does not change from its value
over some interval that immediately precedes∆. A set of variablesV is stablein ∆ (denotedstable.V.∆)
iff each variable inV is stable in∆. Thus, we define:

stable.v.∆.s =̂ ∃k:Val• (prev.(v= k) ∧ �(v= k)).∆.s stable.V.∆ =̂ ∀v:V • stable.v.∆
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Note that every variable is stable in an empty interval and the empty set of variables is stable in any
interval, i.e., bothstable.V.∅ andstable.∅.∆ hold trivially.

We letvars.c denote the free variables of state predicatec. The following lemma states that if all but
one variable ofc is stable over an interval∆, thenc definitely holds in∆ iff c always holds in∆, and that
c possibly holds in∆ iff c holds sometime in∆ [25].

Lemma 11. For a state predicate c and variable v,stable.(vars.c\{v}) ⇒ (�c= �c) ∧ ( �c= �c).

Example 12. For our running example, by Lemma 11, it is possible to simplify (15) and (16) and replace
each occurrence of ‘�’ by ‘ �’ as follows:

( �grd ; �(m= 1) ∨ �¬grd ; �(m= 2)) ∧ ( �b; �grd ∨ �¬b) (Abs-IP)
(

�(u< v) ; �(m= 1) ∨

�(u≥ v) ; �(m= 2)

)
∧

(
�(0< u) ; �(v= ∞) ∨

�(0≥ u) ; �(v=−∞)

)
(Conc-IP)

5.2 Data refinement example

We assume the representation variables of the abstract and concrete programs are given byY ⊆ Var and
Z ⊆ Var, respectively and prove forward simulation using�uv (recalling that relationuv is defined in
Section 2), which requires that we prove

�uv•

Z • (Conc-IP)

Y • (Abs-IP)
(17)

and both of the following:

∀∆: Intv,z:StreamZ,σ :StateN •

CInit.σ .∆.z ⇒ ∃y:StreamY • AInit.σ .∆.y∧ �uv.∆.y.z (18)

∀z:StreamZ,y:StreamY,∆: Intv,σ :StateN •∀t:∆ •

�uv.∆.y.z∧ CFin.(z.t).σ ⇒ AFin.(y.t).σ (19)

The proofs of (18) and (19) are trivial. To prove (17), we use Lemma 6, which requires that we show that
both of the following hold. Recall thatuv is the state relation defined in Section 3.

(Conc-IP) 
Y,Z �uv (20)

�uv∧ (Conc-IP) ↾2⇒ (Abs-IP) ↾1 (21)

The proof of (20) is trivial. Expanding the definitions of (Abs-IP) and (Conc-IP), then applying some
straightforward propositional logic, (21), holds if both of the following hold.

�uv∧

(
�(0< u) ; �(v= ∞) ∨

�(0≥ u) ; �(v=−∞)

)
↾2 ⇒ ( �b; �grd ∨ �¬b) ↾1 (22)

�uv∧

(
�(u< v) ; �(m= 1) ∨

�(u≥ v) ; �(m= 2)

)
↾2 ⇒

(
�grd ; �(m= 1) ∨

�¬grd ; �(m= 2)

)
↾1 (23)

Condition (22) is proved in a straightforward manner as follows and uses the fact that�(u < ∞) holds
throughout the execution of Figure 2.
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�uv∧ ( �(0< u) ; �(v= ∞) ∨ �(0≥ u) ; �(v=−∞)) ↾2

⇒ distribute projection, logic and�(u< ∞)
�uv∧ (( �(0< u) ↾2 ; �(u< v) ↾2) ∨ ( �(0≥ u) ↾2 ; �(u≥ v) ↾2))

⇒ distribute∧, �uvsplits
(�uv∧ �(0< u) ↾2)) ; (�uv∧ �(u< v) ↾2) ∨
(�uv∧ �(0≥ u) ↾2) ; (�uv∧ �(u≥ v) ↾2)

⇒ use�uv
( �b↾1 ; �grd↾1) ∨ ( �¬b) ↾1

= distribute projection
(( �b; �grd) ∨ �¬b) ↾1

The proof of (23) has a similar structure, and hence, its details are elided.
The example verification demonstrates many of the benefits ofusing interval-based reasoning to

prove data refinement between concurrent systems. The proofs themselves are succinct (and conse-
quently more understandable) because the reasoning is performed at a high level of abstraction. Ex-
pression evaluation is assumed to take time and evaluation operators such as ‘�’ and ‘ �’ are used to
capture the inherent non-determinism that results from concurrent executions during the interval of eval-
uation. Furthermore, the translation of the program in Figure 2 to the lower-level program Figure 4 that
makes the non-determinism for evaluating reads explicit isnot necessary. Instead, one is able to provide
a semantics for the program in Figure 2 directly. Finally, unlike a state-based forward simulation proof,
which requires that a verifier explicitly decides which of the concrete steps are non-stuttering, then find a
corresponding abstract step for each non-stuttering step,interval-based reasoning allows one to remove
this analysis step altogether.

6 Conclusions

Interval-based frameworks are effective for reasoning about fine-grained atomicity and true concurrency
in the presence of both discrete and continuous properties.The main contribution of this paper is the
development of generalised methods for proving data refinement using interval-based reasoning. A sim-
ulation rule for proving data refinement is developed and soundness of the rule with respect to the data re-
finement definition is proved. Our simulation rule allows theuse of refinement relations between streams
over two state spaces within an interval, generalising traditional refinement relations, which only relate
two states. Using interval-based reasoning enables one to incorporate methods for non-deterministically
evaluating expressions, which in combination with our simulation rules are used to verify data refinement
of a simple concurrent program.

Over the years, numerous theories for data refinement have been developed. As far as we are aware,
two of these are based on interval-based principles similarto ours. A framework that combines interval
temporal logic and refinement has been defined by Bäumler et al [5], but their execution model explicitly
interleaves a component and its environment. As a result, our high-level expression evaluation operators
cannot be easily incorporated into their framework. Furthermore, refinement is defined in terms of re-
lations between the abstract and concrete states. Broy presents refinement between streams of different
types of timed systems (e.g., discrete vs. continuous systems) [7]; however, these methods do not con-
sider interval-based reasoning. An interesting directionof future work would be to consider a model that
combines our methods with theories for refinement between different abstractions of time.
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Z • h

Y • g
⇒ (ref1 ◦ ref2) •

Z • h

X • f
(Transitivity)
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Proof. The proof of (Reflexivity) is trivial. We prove (Transitivity) as follows, where we assume that
∆0,∆ ∈ Intv such that∆0∝∆, x0 ∈ StreamX andz∈ StreamZ are arbitrarily chosen. We have:

(ref1 ◦ ref2).∆0.x0.z∧ h.∆.z
= definition of◦ and logic

∃y0:StreamY • ref1.∆0.x0.y0 ∧ ref2.∆0.y0.z∧ h.∆.z
Hence, for an arbitrarily choseny0 ∈ StreamY, we prove the following.

ref1.∆0.x0.y0 ∧ ref2.∆0.y0.z∧ h.∆.z
⇒ assumptionref2 •

Z • h

Y • g

ref1.∆0.x0.y0 ∧ ∃y:StreamY • (y0
∆0== y) ∧ ref2.∆.y.z∧ g.∆.y

= logic assuming freeness ofy

∃y:StreamY • (y0
∆0== y) ∧ ref2.∆.y.z∧ ref1.∆0.x0.y0 ∧ g.∆.y

= StreamY contains all possible streams

∃y1:StreamY • (y0
∆0== y1) ∧ (y

∆
== y1) ∧ ref2.∆.y.z∧ ref1.∆0.x0.y0 ∧ g.∆.y

= usey0
∆0== y1 andy

∆
== y1

∃y1:StreamY • ref2.∆.y1.z∧ ref1.∆0.x0.y1 ∧ g.∆.y1

⇒ logic, assumptionref1 •
Y • g

X • f

∃y1:StreamY,x:StreamX • (x0
∆0== x) ∧ ref2.∆.y1.z∧ ref1.∆.x.y1 ∧ f .∆.x

⇒ definition of◦

∃x:StreamX • (x0
∆0== x) ∧ (ref1 ◦ ref2).∆.x.z∧ f .∆.x ✷

Lemma (7)SupposeY,Z ⊆ Var such thatY∩Z =∅, g,g1,g2 ∈ IntvPredZ andref ∈ IntvRelY,Z. Then:

g1 
Y,Z ref ∧ g2 
Y,Z ref ⇒ (g1 ; g2) 
Y,Z ref providedref joins (Sequential composition)

g
Y,Z ref ⇒ gω 
Y,Z ref providedref joins (Iteration)

(g2 
Y,Z ref) ∧ (g1 ⇒ g2) ⇒ g1 
Y,Z ref (Weaken)

(g
Y,Z ref1) ∨ (g
Y,Z ref2) ⇒ g
Y,Z (ref1 ∨ ref2) (Disjunction)

Proof of (Sequential composition).For an arbitrarily chosen∆0,∆ ∈ Intv such that∆0∝∆, y0 ∈ StateY
andz∈ StreamZ, we have the following calculation.

ref .∆0.y0.z∧ (g1 ; g2).∆.z
= definition of ‘;’, logic

∃∆1,∆2: Intv• (∆1∪∆2 = ∆) ∧ (∆1∝∆2) ∧ ref .∆0.y0.z∧ g1.∆1.z∧ g2.∆2.z
⇒ ∆0∝∆ and∆1 ∈ prefix.∆, therefore∆0∝∆1

assumptiong1 
Y,Z ref

∃∆1,∆2: Intv• (∆1∪∆2 = ∆) ∧ (∆1∝∆2) ∧ (∃y1:StreamY • (y0
∆0== y1) ∧ ref .∆1.y1.z) ∧ g2.∆2.z

= logic

∃∆1,∆2: Intv,y1:StreamY • (∆1∪∆2 = ∆) ∧ (∆1∝∆2) ∧ (y0
∆0== y1) ∧ ref .∆1.y1.z∧ g2.∆2.z

= ∆1∝∆2 and assumptiong2 
Y,Z ref
∃∆1,∆2: Intv,y1,y2:StreamY • (∆1∪∆2 = ∆) ∧ (∆1∝∆2) ∧

(y0
∆0== y1) ∧ ref .∆1.y1.z∧ (y1

∆1== y2) ∧ ref .∆2.y2.z

⇒ pick y3 such thaty1
∆0∪∆1== y3 andy2

∆2== y3
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∃∆1,∆2: Intv,y3:StreamY • (∆1∪∆2 = ∆) ∧ (∆1∝∆2) ∧ (y0
∆0== y3) ∧ ref .∆1.y3.z∧ ref .∆2.y3.z

= definition

∃y3:StreamY • (y0
∆0== y3) ∧ (ref ; ref).∆.y3.z

⇒ ref joins

∃y3:StreamY • (y0
∆0== y3) ∧ ref .∆.y3.z ✷

Proof of (Iteration). This followings by unfoldingω and has a similar structure to (Sequential composition).

✷

Proof of (Weaken).For an arbitrarily chosen∆0,∆ ∈ Intv such that∆0∝∆, y0 ∈ StateY andz∈ StreamZ,
we have the following calculation.

ref .∆0.y0.z∧ g1.∆.z
⇒ assumptiong1 ⇒ g2

ref .∆0.y0.z∧ g2.∆.z
⇒ assumptiong2 
Y,Z ref

∃y:StreamY • (y0
∆0== y) ∧ ref .∆.y.z ✷

Proof of (Disjunction).
(ref1 ∨ ref2).∆0.y0.z∧ g.∆.z

= logic
(ref1.∆0.y0.z∧ g.∆.z) ∨ (ref2.∆0.y0.z∧ g.∆.z)

⇒ assumption(g
Y,Z ref1) ∨ (g
Y,Z ref2), logic

∃y1,y2:StreamY • ((y0
∆0== y1) ∧ ref1.∆.y1.z) ∨ ((y0

∆0== y2) ∧ ref2.∆.y2.z)
⇒ logic

∃y:StreamY • (y0
∆0== y) ∧ (ref1 ∨ ref2).∆.y.z ✷

For streamss1 ands2, we defines1 ⋒ s2 =̂ λ t:Φ • s1.t∪ s2.t. If the state spaces corresponding tos1

ands2 are disjoint, then for eacht ∈ Φ, (s1⋒s2).t is a state and hences1⋒s2 is a stream.

Lemma (8)(Disjointness) Supposep ∈ Proc, W,X,Y,Z ⊆ Var such thatY∩Z = ∅, W∪X = Y and
W∩X=∅. Further suppose thatg1,g2 ∈ IntvPredZ, refW ∈ IntvRelW,Z, refX ∈ IntvRelX,Z, and⋆∈ {∧,∨}.
Then

(g1 
W,Z refW) ∧ (g2 
X,Z refX) ⇒ (g1 ∧ g2) 
Y,Z (refW ⋆ refX) (Disjointness)

Proof. BecauseW∪X = Y andW∩X = Y, for anyy0 ∈ StreamY, we have thaty0 = w0⋒ x0 for some
w0 ∈ StreamW, x0 ∈ StreamX. Then for anyz∈ StreamZ, ∆0,∆ ∈ Intv such that∆0 ∝∆, we have the
following calculation:

(refW ⋆ refX).∆0.y0.z∧ (g1 ∧ g2).∆.z
⇒ assumptiony0 = w0⋒x0

(refW.∆0.w0.z⋆ refX.∆0.x0.z) ∧ (g1 ∧ g2).∆.z
⇒ ∧ distributes over⋆, logic

(refW.∆0.w0.z∧ g1.∆.z)⋆ (refX.∆0.x0.z∧ g2.∆.z)
⇒ assumption(g1 
W,Z refW) ∧ (g2 
X,Z refX)

(∃w:StreamW • (w0
∆0== w) ∧ refW.∆.w.z)⋆ (∃x:StreamX • (x0

∆0== x) ∧ refX.∆.x.z)
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= logic, assumptionW∩X =∅

∃w:StreamW,x:StreamX • (w0⋒x0
∆0== w⋒x) ∧ (refW.∆.w.z⋆ refX.∆.x.z)

= logic, assumptiony0 = w0⋒x0

∃w:StreamW,x:StreamX • (y0
∆0== w⋒x) ∧ (refW ⋆ refX).∆.(w⋒x).z

= W∪X = Y andW∩X=∅

∃y:StreamY • (y0
∆0== y) ∧ (refW ⋆ refX).∆.y.z ✷
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