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The majority of modern systems exhibit sophisticated comeu behaviour, where several system
components modify and observe the system state with fineagatomicity. Many systems (e.g.,

multi-core processors, real-time controllers) also eithiinly concurrent behaviour, where multi-

ple events can occur simultaneously. This paper presetasrdfinement defined in terms of an
interval-based framework, which includes high-level @pers that capture non-deterministic ex-
pression evaluation. By modifying the type of an intervaly theory may be specialised to cover
data refinement of both discrete and continuous systems.r¥gemt an interval-based encoding of
forward simulation, then prove that our forward simulatioife is sound with respect to our data
refinement definition. A number of rules for decomposing famvsimulation proofs over both se-

guential and parallel composition are developed.

1 Introduction

Data refinement allows one to develop systems in a stepwis@enaenabling an abstract system to be
replaced with a more concrete implementation by guaramgettiat every observable behaviour of the
concrete system is a possible observable behaviour of 8teaah A benefit of such developments is the
ability to reason at a level of abstraction suitable for therent stage of development, and the ability to
introduce additional detail to a system via correctnessgnving transformations. During development,
a concrete system’s internal representation of data ofiféergifrom the abstract data representation,
requiring the use of eefinement relatiorto link the concrete and abstract states.

Over the years, numerous technigues for verifying dataeafant technigues have been developed
for a number of application domains_|30], including methddis refinement of concurrent [10] and
real-time [23] systems. However, these theories are rotdchditional notions of data refinement,
where refinement relations are between concrete and abstetes. In the presence of fine-grained
atomicity and truly concurrent behaviour (e.g., multi€@omputing, real-time controllers), proofs of
refinement are limited by the information available withisiagle state, and hence, reasoning can often
be more difficult than necessary. Furthermore, the behesioticorresponding concrete and abstract
steps may not always match, and hence, reasoning can saadtenunintuitive, e.g., for the state-based
data refinement in Sectidd 2, a concrete step that loads ablartorresponds to an abstract step that
evaluates a guard.

When reasoning about concurrent and real-time systemdsafien required to refer to a system’s
evolution over time as opposed to its current state at aesipgjht in time. This paper therefore presents
a method for verifying data refinement using a framework #tlatvs one to consider the intervals within
which systems execute [16,/18,/29] 32]. Thus, instead obriag over the pre and post states of each
component, one is able to reason about the component’'sibehaver an interval, which may comprise
several atomic steps. The concurrent execution of two oerposcesses is defined as the conjunction
of the behaviour of each process in the same intenval [1, Béiice, reasoning about a component
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Alnit: —grd Chittv<u< o
Processp Processq Proceszp Proceszq
app: if grdthen | aq: if bthen cpy: if u< vthen | cop: if 0 < uthen
ap: m:=1 ap: grd:=true cp: m:i=1 Cp: V=00
aps: elsem:= 2fi| ags: else skip fi cps: elsem:= 2fi | cop: elsev:= —oo fi
Figure 1: Abstract program with guagid Figure 2: Concrete program with guang< v

naturally takes into account the behaviour of the compdmemtvironment (e.g., other concurrently
executing processes). Using an interval-based framewwkles us to incorporate methods for apparent
states evaluation [16, 18, [25], which allows one to take adoount the low-level non-determinism of
expression evaluation at a high level of abstraction.

The main contribution of this paper is an interval-basednho@for verifying data refinement, simpli-
fying data refinement proofs in the presence of true connayreA forward simulation rule for interval-
based refinement is developed, and several methods of desomgpproof obligations are presented,
including mixed-mode refinement, which enables one to éshatlifferent refinement relations over dis-
joint parts of the state space. We present our theory at timausiic level of interval predicates, i.e.,
without consideration of any particular programming fraroek. Hence, the theory can be applied to
any existing framework such as action systems, Z, etc. bypimgghe syntactic constructs to our inter-
val predicate semantics. The aim of our work is to reason tapymgrams with fine-grained atomicity
and real-time properties, as opposed to programs writtesay Java that allows specification of coarse-
grained atomicity usingynchronized blocks.

Background material for the paper is presented in Secfibansd23, clarifying our notions of state-
based refinement and interval-based reasoning. Our iMeagad refinement theory is presented in
Section[4, which includes a notion of forward simulationhmespect to intervals and methods for
proof decomposition. Methods for reasoning about fineagiéhiconcurrency and a proof of our running
example is presented in Sect{dn 5.

2 State-based data refinement

Consider the abstract program in Figlie 1, written in théesty Feijen and van Gasteren [22], which
consists of variablegrd,b € B, m € N, initialisation Alnit and processeap andag. Processapis a
sequential program with labedgy,, ap,, andaps that tests whetheagrd holds (atomically), then executes
m:= 1 if grd evaluates tdrue and executesn .= 2 otherwise. Procesaq is similar. The program
executes by initialising as specified Bynit, and then executingp andaqg concurrently by interleaving
their atomic statements.

An initialisation may be modelled by a relation, and eaclelalmrresponds to an atomic statement,
whose behaviour may also be modelled by a relation. Thusygram generates a settodices each of
which is a sequence of states (starting with index 0). Prograunters for each process are assumed to
be implicitly included in each state to formalise the cohtimwv of a program([14], e.g., the program in
Figurel1 uses two program count@rs, andpcag, Wherepcap = ap; is assumed to hold whenever control
of processapis atap;. After execution ofap;, the value ofpcyp, is updated so that eith@ica, = app or
PCap = apz holds, depending on the outcome of the evaluatiogrdf

One may characterise traces usingeaacution which is a sequence of labels starting with initiali-
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sation. For example, a possible execution of the progranigaré(] is

(Alnit,ap;, acy, acp, aps) (1)

Using ‘. for function application, an executioex corresponds to a trade iff for eachi € domex
(tr.i,tr.(i+1)) € exi and either dontr = domex= N or size(dom.eX) < size(dom.tr). An execution
ex is valid iff dom.ex# @, ex0 is an initialisation, anex corresponds to at least one trace, eld., (1)
above is valid. Not every execution is valid, e.g\Init,ap;,ap,) is invalid because execution afy
after Alnit causegrd to evaluate tdalseandpcyp to be updated taps, and hence, statemea, cannot
be executed. Note that valid executions may not be comglatextreme example {#Init, AFin), where
the execution is finalised immediately after initialisatio

Now consider the more concrete program in Figure 2 that ceplird by u < vandb by 0< u. Note
thatu andv are fresh with respect the program in Figufe 1. Initiallyy u < o« holds. Furthermore;q
(modelling the concrete environment ) setsv to « if u is positive and to—-o otherwise. One may
be interested in knowing whether the program in Figudata refineghe program in Figurgl1, which
defines conditions for the program in Figlte 1 to be substititty the program in Figutd 2 [B0]. This is
possible if every execution of the program in Figlle 2 hasreesponding execution of the program in
Figurell, e.g., concrete executi@@lnit,cpy,car, Ctp, cps) has a corresponding abstract executidn (1).

In general, representation of data within a concrete progidfers from the representation in the
abstract, and hence, one must distinguish between therndisgts ofobservableand representation
variables, which respectively denote variables that cahcamnot be observed. For exampigd in
Figure[d andy, v in Figurel2 cannot both be observable because the typesse tagiables are different
in the two programs. To verify data refinement, the abstradt@ncrete programs may therefore also
be associated witfinalisations which are relations between a representation and an atiderstate.
Different choices for the finalisation allow different padf the program to become observable and affect
the type of refinement that is captured by data refinemenflll012]. For the programs in Figurels 1 and
[Z, we assume finalisations make variafslebservable. Hence, Figuré 1 is data refined by Figlreap if
is able to executap, (andaps) whenevercpis able to executep, (andcps, respectively). We define a
finalised executioof a program to be a valid execution concatenated with thédaten of the program,
e.g., (Alnit,ap;,aq;,acp, aps, AFin) is a finalised execution of the program in Figlfe 1 generateah f
the valid execution[{1). Valid executions are not necelysadmplete, and hence, one may observe the
state in the “middle” of a program’s execution.

To define data refinement, we assume that an initialisati@anrédation from an observable state to
a representation state, each label corresponds to a stdtdmeis modelled by a relation between two
representation states, and a finalisation is a relation fiaepresentation state to an observable state.
Assuming & denotes relational composition ardlis the identity relation, we define tlwmpositionof
a sequence of relatio®as

compR = if R= () thenid else headR § comp(tail.R)

which composes the relations Bfin order. We also define a functiarl, which replaces each label in
an execution by the relation corresponding to the statewfahat label.

We allow finite stuttering in the concrete program, and hetioere may not be a one-to-one cor-
respondence between concrete and abstract executiortgeriBtguis reflected in an abstract execution
by allowing a finite number of labeldd’ to be interleaved with each finalised execution of the atustr
program, wherdd is assumed to be different from all other labels, and thdiogi@orresponding to label
Id is alwaysid. Data refinement is therefore defined with respectdoreespondence functidhat maps
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concrete labels to abstract labels. A correspondenceifumistvalid iff it maps concrete initialisation to
abstract initialisation, concrete finalisation to abdtfamalisation, each label of a non-stuttering concrete
statement to a corresponding abstract statement, and &aehdf stuttering concrete statementido
For the rest of the paper we assume that the correspondemcttofiis under consideration are valid. A
programC is adata refinemenbf a programA with respect to correspondence functipoiff for every
finalised executiorexcof C, exa= Ai:domexc f.(exci) is a finalised execution ok (with possibly

finite stuttering) andomp(rel.exg C comp(rel.exa holds.
Proving data refinement directly from its formal definitianinfeasible. Instead, one proves data

refinement by verifyingsimulationbetween an abstract and concrete system, which requires¢hef
refinement relationo link the internal representations of the abstract andmeta programs. We assume
that a relatiorr € X «<» Y is characterised by a functidne X — Y — B where(x,y) € r iff fr.x.y. hold.

As depicted in Figurg]3, a refinement relatien is aforward simulationbetween a concrete and abstract
system if:

1. whenever the concrete system can be initialised from aerghble stat@ to obtain a concrete
representation statm), it must be possible to initialise the abstract system fioprno result in
abstract representation statgsuch thatef.gp. 1o holds,

2. for every non-stuttering concrete statemegtabstract stater and concrete state, if ref.o.t1

holds andcsrelatest to 1/, then there exists an abstract statesuch that the abstract statement
that corresponds tesrelateso to o’ andref.o’.1’ holds,

3. for every stuttering concrete statement starting fromtest and ending in state’, ref.o.1’ holds
wheneveref.o.1 holds,

4. finalising any abstract state(using the abstract system'’s finalisation) and concrete st@sing
the concrete system’s finalisation) results in the samerosiske state wheneveef.o.1 holds.

For models of computation that assume instantaneous gwatdation [25], establishing a data
refinement between the programs in Figures 1[dnd 2 with respex correspondence function that
mapscp to ap andcqg to ag for i € {1,2,3} is straightforward. In particular, it is possible to prove
forward simulation usingrcuvbelow as the refinement relation, wherendt are abstract and concrete

states, respectively.

uv.o.T = (o.grd=(t.u<Tt.Vv)A(0.b=(0<T1.U)A(0.Mm=T.M)
pcuvo.T = uv.o.T AVi:{1,2,3}+(0.pCyp=ap = T.pCp=CP) A (0.pCag = aG = T.pCq = CG)

Figure 3: Data refinement via simulation

In a setting with fine-grained atomicity, the program in Fefd may be difficult to implement be-
cause the guard ap; (which refers to multiple shared variables) is assumed evaiated atomically.
In reality, there may be interference from other procesdeitevan expression is being evaluated![25].
Furthermore, the order in which variables are read withiexression is often not fixed. To take these
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Chit:v<u< o Concrete label |Abstract label
Processp Proceszq Clinit Alnit
cpri: (ky:i=u; cq: if 0<uthen CP1.1,CP1.3,CP15 Id
Cpro: <kv =V > Ch: V=0 CpP12,CP1a ap
M cog: elsev:= —oo fi cp forie{2,3} ap
cprs: (kvi=V; \. cg forie{1,2,3} ag
Cpra: (ku =u > ’ CFin AFin
Ccprs: if ky < kythen...

Figure 4: Making the atomicity of expression evakigure 5: Correspondence function for data refine-
uation in Figuré R explicit ment between Figuifd 4 and Figlde 1

circumstances into account, we must consider the progratigirel4, which splits the guard evaluation
atcpy in Figurel2 into a number of smaller atomic statements usighfvariable&, andk, that are local
to procesxp. Via a non-deterministic choice1’, processcp chooses between executiotys 1 ; Cpr.2
andcpy3; cpia, Which read the (global values)andv into local variablek, andk,, respectively, in two
atomic steps. Evaluation of guand< v atcp; in Figure[2 is then replaced by evaluationkgf< k.

A proof of data refinement between the programs in FiguresdZamsing forward simulation with
respect tauv is now more difficult because an (atomic) instantaneousuatiah ofgrd has been split
into several atomic statements. A data refinement with rgpea naive correspondence function that
matchesp for i € {1.1,1.2,1.3,1.4} with Id, cp.s with ap;, andcg with ag for i € {1,2} cannot be
verified using forward simulation. Instead, one must usectiteespondence function in Figure 5. Note
that this correspondence function is not intuitive becafmsaexample, execution afp, 4 (which readsy)
is matched with execution @l (which testgrd), but is necessary because executioomf, determines
the outcome of the future evaluation of the guardmts. The refinement relation used to prove forward
simulation is more complicated thgrcuv (details are elided, but the relation can be constructetgusi
the correspondence function in Figlte 5).

Such difficulties in verifying a relatively trivial modifi¢in expose the complexities in stepwise re-
finement of concurrent programs. Further issues arise iodhtext of real-time properties e.g., transient
properties cannot be properly addressed by an inherenleiateng model([1/7, 18].

This paper presents an interval-based semantics for thensysunder consideration, an interval-
based interpretation of data refinement in the framework, @mule akin to forward simulation for
proving data refinement. We believe that these theoriesiatée many of these issues in state-based
reasoning, requiring less creativity on the part of thefigari For example, the correspondence function
always maps each concrete process to an abstract procesgaddning about the traces of a system
over an interval, we are able to capture the effect of a nurobatomic statements and interference
from the environment at a high-level of abstraction. Unlike state-based approach described above,
which only captures interleaved concurrency, intervaleobapproaches also allow one to model truly
concurrent behaviour. By modifying the type of an intenade can take both discrete and continuous
system behaviours into account.

3 Interval-based reasoning

Our generic theory of refinement is based on interval preéeicegeneralising frameworks that model
programs as relations between pre/post states. We havedppl interval-based methodology to reason
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Figure 6: Interval predicate visualisation

about both concurrent [15, 16] and real-time programs[[1R, 2
An interval in an ordered seb C R is a contiguous subset df, i.e., the set of all intervals ap is
given by:
Intvg = {AC @ |Vt AV Pt <t" <t =t" €A}

We assume the existence of elements, o ¢ ® such that—o <t < o for eacht € ®. Intvy may be
used to model both discrete (e.qg., by pickihg= Z) and continuous (by picking = R) systems.

We define the following predicates, which may be used to ifleampty intervals, and intervals with
a finite and infinite upper bound.

emptyA = A=g finiteA = empty. AV (FtAVt:A-t' <t) infinite A = —finite.A

One must often reason about twdjoining intervals, i.e., intervals that immediately precedetiwll
another. FoA1,A; € Intvg, we define

DNpocly = (ViiQg,to:Dpety <to) A (A1 UL € Intvg)

Thus, A1 oc Ay holds iff A, follows A; and the union ofA; andA, forms an interval (i.e.A; andA; are
contiguous across their boundary). Note that adjoiningridis are disjoint and that botho @ and
@ oc A hold trivially for any intervalA.

A stateoverV C Var is of typeStatey = V — Val, whereVar is the type of a variable andal is the
generic type of a value. Atate predicatés of type StatePred = Statey — B. A streamof behaviours
over Statey is given by the functiorBtreany v = ® — State/, which maps each element @fto a state
overV. To facilitate reasoning about specific parts of a streamysenterval predicateswhich have
type IntvPredy v = Intvp — Streanpy — B. A visualisation of an interval predicate ovErC Var is
given in Figurd 6. The streame Streany z maps each time to a state oveand the interval predicate
depicted in the figure mag@sandzto a boolean.

We assume pointwise lifting of operators on stream andvatgredicates in the normal manner,
e.g., ifg; andg; are interval predicated) is an interval and is a stream, we havig; A g2).A.s=
(01.A.s A g2.A.s). Thechopoperator ‘' is a basic operator on two interval predical,[18,29[ 32],
where(g; ; g2).A holds iff either intervalA may be split into two parts so thgt holds in the first and,
holds in the second, or the upper bound\a$ « andg; holds inA. Thus, for a strears, we define:

(01; G2).As = (01,021 INtVe* (A=D1 UN) A (Ap < D2) A G1.81.5A Go.82.5) V
(infinite. A A 01.A.9)

Note thatA; may be empty, in which cagl® = A, and similarlyA, may empty, in which cas@; = A,
i.e., both(empty ; g) = gandg = (g; empty) trivially hold, whereempty.A.s= (A = &) for all streams
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s. Furthermore, in the definition of chop, we allow the secoigjudctinfinite.A A g1.A to enableg; to
model an infinite (divergent or non-terminating) program.

To model looping of a behaviour modelled by interval pretiica we use an iteration operata®’,
which is defined as the greatest fixed pointAdf-g; h vV empty. Interval predicates are assumed to be
ordered using implication="and the greatest fixed point allovg®’ to model both finite (including 0)
and infinite iteration[[21].

9” = vz:(9; 2) Vempty
We say thag splitsiff g = (g; g) andg joinsiff (g; g*) = g. If g splits, then wheneveg holds in an
interval A, g also holds in any subinterval &f. If g joins, theng holds inA whenever there is a partition
of A such thag holds in each interval of the partition. Note thagiéplits, theng = g“ [21]]. Splits and
joins properties are useful for decomposing proof obl@adj for instance, both of the following hold.

9=0)A(@=q) = (9=0; %) providedg splits 2)
(9A01); (GAG2) = gA(01; B) providedg joins (3)

One must often state that a property only holds for a non-ginggrval, and that a property holds for an
immediately preceding interval. To this end, we define:

g = gA —empty ©g.A.s = g Intvp Do A A g.Lo.S

Note that ifg holds in an empty interval, theg g trivially holds. Also note how interval predicates
allow the behaviour outside the given interval to be stateal $straightforward manner because a stream
encapsulates the entire behaviour of a system. We defineltbeihg operators to formalise properties
over an interval using a state predicatever an interval in streams.

Gc.As = Vt:A-c.(st) &eAs = JtA-c.(st)

That is@c.A.s holds iff ¢ holds for each statet wheret € A and<>c.A.s holds iff c holds in some state
st wheret € A. Note thatrc trivially holds for an empty interval, but>c does not. For the rest of this
paper, we assume that the underlying type of the intervat¢muoonsideration is fixed. Hence, to reduce
notational complexity, we omip whenever possible.

Example 1. We present the interval-based semantics of the programigimegs 1 an@12. Interval-based
methods allow one to model true concurrency by defining thetieur of a parallel compositiop||q
over an intervalA as the conjunction of the behaviours of bptandqg overA (see[15, 16, 18] for more
details). Others have also treated parallel compositiozpaginction, but in an interleaving framework
with predicates over states as opposed to intervals (&,026]). Sequential composition is formalised
using the chop operator. We assunged| denotes an interval predicate that formalises evaluatfon o
grd. Details of guard evaluation are given in Secfiod 5.1. Theriml-based semantics of the programs
in Figures[1 and]2 are respectively formalised by the intepvedicates[(4),[(5),[{6) andl(7) below.
Assuming thafp is an observable state, condition$ (4) dnd (5) formaliseb&f®viours ofAlnit.o and
Clnit.p, respectively. Assuming that has an observable varialé that is represented internally by
m, and thato and 1 are abstract and concrete states, respectively, the loehawf bothAFin.o.p and
CFin.o.p are formalised by((8) and](9), respectively. We assume hdbimore tightly than binary
boolean operators.

E-grd (4)
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B(v< U< o) (5)
Procesap Processq
(lgrd]; @(m=1) V[-grd]; B(m=2)) A ([b]; Bigrd v [-b]) (6)
Processp Processq
(lu<v]; (m=1)Vu>v]; B(m=2)) A ([0<u]; @(Vv=0)V[0>U]; O(V=—»)) 0
om=pM (8)
.m=p.M (9)

By (4), Alnit returns an interval predicate—grd, which states that.grd holds throughout the given
interval, and the interval is non-empty. Conditign (5) ismsar. Condition [6) models the concurrent
behaviour of processegp andag. Processap either behaves dgrd]; c(m= 1) (grd evaluates to true,
then the behaviour ah:= 1 holds) or[—grd]; @(m= 2) (—~grd evaluates to true, then the behaviour of
m:= 2 holds, i.e., the interval under consideration is non-graptim= 2 holds throughout the interval).
Processqis similar, but also models the assignmentgria

Note that the points at which the intervals are chopped wif) and [(¥) are unsynchronised. For
example, suppose procegsbehaves afgrd]; (m= 1) andaqgbehaves afb|; r1grd within interval
A of streamy, i.e,. ([grd]; @(m=1) A [b]; mgrd).A.y holds for some intervah and abstract stream
By pointwise lifting, this is equivalent tgrd]; @(m=1)).A.y A ([b]; mgrd).A.y. The two processes
may now choose to spllt independently. This includes the possibility/obeing split at the same point,
which occurs if both guard evaluations are completed atdhsegime.

4 A general theory of refinement

We aim to verify data refinement between systems whose bmiravare formalised by interval predi-
cates. Hence, we present interval-based data refinemertioifd.1) and define interval-based refine-
ment relations (Sectidn 4.2), enabling formalisation éhement relations in an interval-based setting.
Sectior 4.B presents our generalised proof method, whictsjsred by state-based forward simulation
techniques. Sectidn 4.4 presents a number of decompotgtthniques for forward simulation.

4.1 Data refinement

Existing frameworks for data refinement model concurrengyam interleaving of the atomic system
operations([2, 9, 10, 30]. This allows one to define a systexesution using its set of operations. The
traces of a system after initialisation are generated bgatally picking an enabled operation from the
set non-deterministically then executing the operatiarchSexecution models turn out to be inadequate
for reasoning about truly concurrent behaviour, e.g., alr@msientproperties in the context of real-
time systems [18]. The methodology in this paper aims tonatttodelling of truly concurrent system
behaviour. Each operation is associated with exactly onthefsystem processes and execution of
a system (after initialisation) over an intendlis modelled by the conjunction of the behaviours of
each operation ovek (see Examplell). It is possible to obtain interleaved caeaay from our truly
concurrent framework via the inclusion of permissidns &, 1

Action refinement for true concurrency in a causal settingtuslied in [28], and a modal logic for
reasoning about true concurrency is givenlinh [4]. Framewddk concurrent refinement in real-time
contexts have also been proposed (€.gl,[24, 31]). We areJsswot aware of a method that allows data
refinement under true concurrency.
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Figure 7: Interval relation visualisation

We let Proc denote the set of all process identifiers. o€ Proc andN,Z C Var, respectively
denoting the sets of observable and representation vesiaddystenis defined by a tuple:

cC = (CI, (COQ))p:Pa CF)nz

whereCl: Statg; — IntvPred: models the initialisationCOp, € IntvPred, for eachp € P model the
system processes, am@F:State — Statq, — B denotes system finalisation. The set of observable
states at the start and end of an execution of sy§lesgiven by:
~ . JA: Intv, z Strean *
0bsi.C = {(p’p ):States x Stat& | (561.p A AypCORy) Az 3t A+ CF.(21).p

Definition 2. ForP C Proc, an abstract systed= (Al, (AOR,),:p, AF)n z is data refinedoy a concrete
systemC = (CI, (COPRy)p.p, CF)n z, denotedA C Ciff obgy.C C obsy.A.

It is trivial to prove thatZ is a preorder (i.e., a reflexive, transitive relation).

Verification of Definitior 2 directly is infeasible. In stabased formalisms, data refinement is proved
using simulation which allows executions of the concrete system to be mdttteexecutions of the
abstract[[30] (see Figufg 3). Previous wark][16, 18] defingsration refinement over a single state
space. This cannot be used for example to prove refinememéebetthe programs in Figurek 1 did 2. In
this paper, we develop simulation-based techniques fontenval-based framework in Sectibn4.3. The
theory is based on interval relations (Secfiod 4.2), whitdbée one to relate streams over two potentially
different state spaces.

4.2 Interval relations

Interval predicates enable one to reason about propenésake time, however, only define properties
over a single state space. Proving data refinement via diml@equires one to relate behaviours over
a concrete state space to behaviours over an abstract dpacee, we combine the ideas behind state
relations and interval predicates and obtaterval relations which are relations over an interval and
two streams over potentially different state spaces. Theet of interval relations is novel to this paper.

An interval relationoverY andZ relates streams of andZ over intervals and is a mapping of type
IntvRel 7 = Intv — Streany — Stream — B. Figure[T depicts a visualisation of an interval relatiorrov
Y,Z C Var wherez € Stream andy € Streany. Like interval predicates, we assume pointwise lifting of
operators over state and interval relations in the normalmaa We extend interval predicate operators
to interval relations, for example:
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Y .
Figure 8: Visualisation ofef « }Z:i(

(Ri; Ro).Ayz = (301,000 Intve (A=D1 UD) A (D1 D) ARLDLY.ZA Ro.DoY.Z) V
(infinite. A A R1.AY.Z)
A state relationoverY,Z C Var is defined by its characteristic functi®iateRel ; = Statg — Stater —
B. Operators on state predicates may be extended to staiens)a.g., for ¢ StateRelz we define

ar.Ayz = VtAer.(y.t).(zt)

If R € IntvRek y andRy € IntvRek 7 then forA € Intv, x € Streany, y € Streany, we define the com-
position ofR; andR; as

~

(RioRp).Axz = IJy:Streamy*Ri.AXYARyAYy.z

4.3 Generalised forward simulation

In this section, we work towards an interval-based notiofonfard simulation, which is then shown to
be a sulfficient condition for proving data refinement (DeiomiiZ).

We define simulation between abstract and concrete systéimsaspect to an interval relation over
the sets of representation variables of the two systems. difinition requires that we define equivalence
between two streams over an interval. For stregiausdz and interval, we define a function

~

yéz = (A<y=A<72)

where ‘<’ denotes domain restriction. Thlysé Z holds iff the states of andz corresponding td\
match, i.e.vVt:A-y.t = zt. ForY,Z C Var, assuming thag € IntvPred, andh € IntvPred: model the
abstract and concrete systems, respectively, andghatintvRel, 7 denotes the refinement relation, we

Y L]
define a functiorref }Z:ﬁ( (see Figurg&]8), which denotes thasimulates gvith respect taef.

vz Stream, A, Ag: Intv, yo: Streany ¢
(AgocA) Aref.Do.yo.zAhAzZ=

Jy: Streany * (Yo Lo y) Aref.Ay.zAngAy

Y*°g
Z*h

R

ref.

Thus, ifref }%{ holds, then for every concrete streaninterval A and abstract state provided that
1. Agis an interval that immediately preced&s
2. ref holds in the interval\g betweernyg andz, and
3. the concrete system (modelled ijyexecutes withii\ in streamz

then there exists an abstract streathat matchegg overAq such that

1. the abstract system executes a¥én y, and
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2. ref holds betweely andz overA.

A visualisation ofref }ﬁ| is given in Figurd B and is akin to matching a single non-stirtyy con-

crete step to an abstract step in state-based forward gioru[@80]. The following lemma establishes
. A . Y*g

reflexivity and transitivity properties faef - Iﬁ(

Lemma 3. Provided thatido.1 =0 =T.

. X*g .
Qid- }:|X o (Reflexivity)
X f Y * X f
refy )ng‘ Arefye % = (refiorefy). }ﬁ( (Transitivity)

Simulation is used to define an interval-based notiofonfard simulationas follows.

Definition 4 (Forward simulation) Supposé® C Proc, A= (Al, (AOp,)p.p, AF)N,y is an abstract system,

C=(CI,(COp)pp,CF)n z is a concrete system, aref € IntvRel, z. We sayref is aforward simulation
Y /\p:PAO

, R . .
from Ato Ciff ref- Z+ A COR and both of the following hold:

vz Stream,A:Intv, 0 € Statg*Cl.0.A.z = dJy:Streamy+Al.c.A.y A ref.Aly.z (10)

Vz: Stream, y: Streany, A: Intv, o: State « Vi: A+
ref.Aly.zA CF.(zt).o = AF.(y.t).0 (11)

The following theorem establishes soundness of our forwandlation rule with respect to interval-
based data refinement.

Theorem 5(Soundness)If P C Proc, A= (Al, (AOp,)p:p, AF)N,y, and C= (ClI, (COpy)pp, CF)n z, then
AL C provided there exists a ref IntvRel, z such that ref is a forward simulation from A to C.

Proof. Supposeg, o’ € Statq,, z € Streang andC has an execution depicted below, whe&ieexecutes
inintervalAg and A\ ,,p COp, executes id. Note that/\,, COp, may or may not terminate, and hente,
may be infinite. To prové\ C C, it suffices to prove that there exists a matching executfoh starting

in o and ending ino’.
g a
! Ter
z--- I F--

T Cl /\p:P COFb .
—Aog— A %

By (@0), there exists g € Streany such thatAl.ag.Ag.yo andref.Ag.yp.z hold recalling thaty is the ini-
Y /\p:PAOg)
VAN /\p:PCOpP
holds, there exists @ that matcheg/y over Ag such that both(A,p AOp,).A.y andref.A.y.z hold, as
depicted in (B) below.

tial interval of execution. This is depicted in (A) below. Mdecause the simulatiaef

(A) (B)
NopAO
Yo- - - AL y--- Al p:PALD o
o® ref ot o@ ref ref o'
TCF TCF
zZ--- b-- zZ--- -
. Gl /\p:PCORJ Cl /\p:PCOpp

FAo% F A |
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Then, due to the finalisation assumptiénl(11), there exifitsatisation ofA that results ino’ as shown
in (D) below.

(D)

Y- Al /\p:PAOg} o
AF
o ref ref o’
CF
Z —_— - —_
Cl App COR

4.4 Decomposing simulations

A benefit of state-based forward simulation|[30] is the &ptlb decompose proofs and focus on individ-

1Y o). . . .
ual steps of the concrete system. Proof obligatiefn AL the interval-based forward simulation
definition (Definition[4) takes the entire interval of exaontof the concrete and abstract systems into

. o Y*g .
account. Hence, we develop a number of methods for simptjfpiroofs ofref « Iﬁ( . Decomposing

Y L]
ref. IZ:i( directly is difficult due to the existential quantification the consequent. However, a for-
mula of the formp = (3x=g A r) holds if bothp = 3x-q andVx+p A g=-r hold. Hence, we obtain the
following lemma.

Y L]
Lemma 6. For any Y,Z C Var and ref¢ IntvRel, z, ref. )Z;ﬁ\ holds if both of the following hold:

Vz Stream, A, Ag: Intv, yp: Streany « A
DNgocA N ref.Ag.yo.ZAhAZ = 3Jy:Streary« (Yo == y) Aref.Ay.z (12)

Vz: Stream, A: Intv, y: Streany -
refAyzAhAz = gAy (13)

By (12), if the refinement predicatef holds for an abstract streayp in an immediately preceding
interval Ag and the concrete system executes in the current intAnghen there exists an abstract stream
that matcheyg over/ andref holds fory overA. By (13) for any abstract streay) concrete strearn
and intervald, if the concrete system executeimnd forward simulation holds betwegmndz for A,
then the behaviour of the abstract system hold\fory.

To simplify representation of intervals of the form in[1@j introduce the following notation.

h||—Y7z|’ef = (m)

The following lemma allows one to decompose proofs of thenfgiven inh |-y 7 ref.
Lemma 7. If Y,Z C Var, 901,09 € IntvPred: and ref € IntvRel z, then each of the following holds.

OilFyzref AgolFyzref = (g1; O2) IFy z ref provided ref joins (Sequential composition)

glkyzref = g%lkyz ref provided ref joins (Iteration)
(G2 lFyzref) A(g1=02) = 0O1lbyzref (Weaken)
(glFyzrefy) vV (glkyzref) = glkyz (refy v refy) (Disjunction)
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Note thatref can neither be weakened nor strengthened in the trivial eramecause it appears in
both the antecendent and consequent of the implicationeffiaement relation operates on two disjoint
portions of the stream, it is possible to split the refinenanfollows:

Lemma 8 (Disjointness) Suppose [ Proc, W, X,Y,Z C Var such that ©WZ =@, WUX =Y and
WNX=2@. If 91,0 € IntvPred;, refy € IntvRely z, refx € IntvRek z, and* € {A,V}, then

(gl H_W.Z rEfw) A\ (gg H—xz rEfx) = (91 A gz) ”_Y,Z (rEfw*I'Efx) (Disjointness)

Disjointness allows one to prove mixed refinement, whereyséem states are split into disjoint subsets
and different refinement relations are used to verify refimgnbetween these substates.

Proof obligation[(IB) may also be simplified. In particulfar; interval predicatey, interval A and
streamsy andz, we define(g | 1).A.y.z=g.Ayand(g|2).A.y.z= g.A.z, which allows one to shorten

13)to
refA(h]2) = (gl1) (14)

Hence, proofs of refinement are reduced to proofs of imptindietween the concrete and abstract state
spaces. There are numerous rules for decomposing prodfe @drim in [14) that exploit rely/guarantee-
style reasoning [20, 16].

5 Fine-grained atomicity

Interval-based reasoning provides the opportunity toripa@ate methods for non-deterministically eval-
uating expressions [8, 25], which captures the possibleléoel interleavings (e.g., Figuré 4) at a higher-
level of abstraction. Methods for non-deterministicallialeiating expressions are given in Secfiod 5.1,
and also appear inl[8, 25,119,/18] 20]. Verification of datanesfient of our running example that com-
bines non-deterministic evaluation from Secfiod 5.1 aedidta refinement rules from Sectidn 4 is given
in Sectior 5.P.

5.1 Non-deterministically evaluating expressions

Most hardware can only guarantee that at most one globahlarcan be read in a single atomic step.
Thus, in the presence of possibly interfering processedinadjrained atomicity, a model that assumes
expressions containing multiple shared variables can bri&ed in a single state may not be imple-
mentable without the introduction of contention inducingKs [1,3[ 27]. As we have done in Figlre 4,
one may split expression evaluation into a number of atot@pssto make the underlying atomicity
explicit. However, this approach is undesirable as it caulse complexity of expression evaluation to
increase exponentially with the number of variables in garession — evaluation of an expression with
n (global) variables would require one to chetkpermutations of the read order.

Interval-based reasoning enables one to incorporate metfos non-deterministically evaluating
state predicates over an evaluation interval [25], whittwathe possible permutations in the read order
of variables to be considered at a high level of abstractiBior this paper, we usapparent states
evaluators which allow one to evaluate an expressenith respect to the set of states that are apparent
to a process. Each variable ®fs assumed to be read at most once, but at potentially diffenstants,
and hence, instead of evaluatiagn a single atomic step, apparent states evaluations assxpnession
evaluation takes time and considers the set of states tbat oger the interval of evaluation. An apparent
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state is generated by picking a value for each variable flterset of actual values of the variable over
the interval of evaluation. Fdk € Intv ands € Strearny, we define:

~

apparentA.s = {o:Statg |Vv:V+3t:A-o.v=st.v}
Example 9. Consider the statements.= 1; v:= 1 which we assume are executed over an intefwval
from an initial state that satisfiagv = 0,0. The set of states that actually occur over this interval is
hence

{{u—0,v— 0},{u— 1L v~ 0},{u— L v—1}}

Evaluation ofu < v in the set of actual states above always resultalse Assuming no other (parallel)
modifications tau andv, for some strears over{u, v}, the set of apparent states correspondingy i
apparentA.s = {{u—0,v—0},{u— L v 1}, {u—0,v— 1}, {u— 1,v— 0} }
where the additional apparent stdie— 0,v+— 1} may be obtained by readingwith value 0 (in the
initial state) ands with value 1 (after both modifications). Unlike the actuatss evaluation) < v may
result infalsewhen evaluating in the apparent states. Note ¥hatv still only has one possible value,
true, i.e., apparent states evaluation assumes that the saueeofalis used for both occurrences of
Two useful operators for a sets of apparent states evatualiow one to formalise that definitely
holds (denotedzc) andc possiblyholds (denoted$c), which are defined as follows.

(®c).A.s = Vo:apparentA.s-c.o (®c).A.s = Jo:apparentA.s.c.o

The following lemma states a relationship betweefinitelyandalwaysproperties, as well as between
possiblyandsometimeproperties([25]. Note that botlic = @c and ¢ = &c hold, but the converse
of both properties are not necessarily true.

Example 10. We now instantiate the guard evaluations of the foawithin (€) and (7). In particular,
a guardc holds if it is possible to evaluate the variablescdft potentially different instants) so that
evaluates tdrue. Therefore, the semantics of the evaluation of a guasiformalised by c and we
obtain the following interval predicates for (6) andl (7).

(®grd; B(M=1) v &®-grd; I(Mm=2)) A (&b; BgrdVv &-b) (15)

(@(u<v);wv> A <®(0<”);MV>

®U>v); B(m=2) &(0>u); BV=—w) (16)

Note that interval predicaté>(u < v) is equivalent to

T,k (O (ku=1); (kv =V)) V(& (kv =V); O(ku=1))); (ku <ky)
Hence, the formalisation in_(1.6) accurately captures theedirained behaviour of Figuké 2 without hav-
ing to explicitly decompose the guard evaluatiortinto individual reads as done in Figtre 4.

The theory in[[25] allows one to relate different forms of reterministic evaluation. For example,
bothmc = mcand&c= &chold. To strengthen the implication to an equivalence, ouostrimtroduce
additional assumptions about the stability of the varigloc. Because adjoining intervals are disjoint,
the definition of stability must refer to the value ofat the end of an immediately preceding interval
[18,[16,/20]. For a state predicatginterval A and streans, we define

prevc.A.s = FA:IntveAocAAECA .S

Variablevis stable over & in s(denotedtable.v.A.s) iff the value ofv does not change from its value
over some interval that immediately precede® set of variabled/ is stablein A (denotedstable.V.A)
iff each variable inV is stable inA. Thus, we define:

stable.v.A.s = Jk:Vals(prev.(v=Kk) AE(v=Kk)).As stableV.A = Vv:Vestable.v.A
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Note that every variable is stable in an empty interval amddimpty set of variables is stable in any
interval, i.e., bothstable.V.2 andstable.@.A hold trivially.

We letvarsc denote the free variables of state predicat€he following lemma states that if all but
one variable ot is stable over an intervdl, thenc definitely holds imA iff ¢ always holds imd, and that
c possibly holds i\ iff ¢ holds sometime i [25].

Lemma 11. For a state predicate ¢ and variable stable.(varsc\{v}) = (Bc=[c) A (&c= &c).

Example 12. For our running example, by Lemrhal11, it is possible to sipli5) and [16) and replace
each occurrence of®’ by * &' as follows:

(ogrd; @(m=1) v &-grd; I(m=2)) A (&b; Bgrd v &-b) (Abs-IP)
Su<v); B(m=1) v &O0<u); B(V=10) V
(Gusv:m=z ) * (Sos0iBu=—m) (Cone-P)

5.2 Data refinement example

We assume the representation variables of the abstractoaedete programs are given ByC Var and
Z C Var, respectively and prove forward simulation usiagv (recalling that relatioruv is defined in
Sectior[ 2), which requires that we prove

Y ¢ (Abs-IP)
B el (17)
and both of the following:

VA:Intv, z Stream , 0 State, *
Chnit.o.A.z = 3Jy:Streany+Alnit.o.A.y A Huv.Ay.z (18)

Vz Stream, y: Streany, A: Intv, g: Statg, « Vt: A-
uv.Ay.zACFin(zt).o = AFin.(y.t).o (19)

The proofs of[(IB) and (19) are trivial. To prove{17), we uselmd 6, which requires that we show that
both of the following hold. Recall thatvis the state relation defined in Sectidn 3.

(Conc-IP Iy z muv (20)
EuvA (Conc-IP) [ 2= (Abs-IP) [ 1 (21)

The proof of [20) is trivial. Expanding the definitions of (&4P) and (Conc-IP), then applying some
straightforward propositional logid, (21), holds if bothtbe following hold.

EUV A (ggg;ﬂi%ﬂb 12 = (&b; @grd v G-b) |1 22)
(u<v); I(m=1)Vv &grd; @(m=1) v
oo (Guswisim=a )12 = (G e sin=2 ) )

Condition [22) is proved in a straightforward manner asofei and uses the fact thatu < «) holds
throughout the execution of Figuré 2.
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= distribute projection, logic andi(u < »)
PUVA (S0 <) 12, BU<V) [2) V (G(02u)[2; B(u=V) 2))
= distributeA, Huv splits
(BUVA &(0<u) [2); (MuvABu<v)[2)V
(MUVA &(0>u) [2); (MuvAE(Uu>V) [2)
= usemuv
(&bl1; @grd [1) v (&-b) [ 1
= distribute projection
(©b; Bgrd) v &-b) [ 1

The proof of [28) has a similar structure, and hence, itsildedee elided.

The example verification demonstrates many of the benefitssioly interval-based reasoning to
prove data refinement between concurrent systems. Thesptbefmselves are succinct (and conse-
guently more understandable) because the reasoning wrped at a high level of abstraction. Ex-
pression evaluation is assumed to take time and evaluaierators such asty’ and ‘@’ are used to
capture the inherent non-determinism that results froncweant executions during the interval of eval-
uation. Furthermore, the translation of the program in Féfiito the lower-level program Figuré 4 that
makes the non-determinism for evaluating reads explicibimecessary. Instead, one is able to provide
a semantics for the program in Figlide 2 directly. Finallyjkena state-based forward simulation proof,
which requires that a verifier explicitly decides which o toncrete steps are non-stuttering, then find a
corresponding abstract step for each non-stuttering stegyal-based reasoning allows one to remove
this analysis step altogether.

BWA (&0 <u); B(V=20)V&(O0>u); O(V=—2))[2
0

6 Conclusions

Interval-based frameworks are effective for reasoningiaboe-grained atomicity and true concurrency
in the presence of both discrete and continuous properfibe. main contribution of this paper is the
development of generalised methods for proving data reeménnsing interval-based reasoning. A sim-
ulation rule for proving data refinement is developed andhdaass of the rule with respect to the data re-
finement definition is proved. Our simulation rule allows tise of refinement relations between streams
over two state spaces within an interval, generalisingiticachl refinement relations, which only relate
two states. Using interval-based reasoning enables omedoporate methods for non-deterministically
evaluating expressions, which in combination with our datian rules are used to verify data refinement
of a simple concurrent program.

Over the years, numerous theories for data refinement havedsveloped. As far as we are aware,
two of these are based on interval-based principles sittmlaurs. A framework that combines interval
temporal logic and refinement has been defined by Baumléf&t but their execution model explicitly
interleaves a component and its environment. As a resulhigh-level expression evaluation operators
cannot be easily incorporated into their framework. Furtt@e, refinement is defined in terms of re-
lations between the abstract and concrete states. Brogmiseefinement between streams of different
types of timed systems (e.g., discrete vs. continuous eyg3tEl]; however, these methods do not con-
sider interval-based reasoning. An interesting directibiuture work would be to consider a model that
combines our methods with theories for refinement betweiéerelint abstractions of time.
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Proof. The proof of [[Reflexivity) is trivial. We provg (Transitiyi} as follows, where we assume that

Do, A € Intv such thaithg o A, Xg € Streany andz € Streang are arbitrarily chosen. We have:

(refyoref,).No.X0.2 A h.AZ
= definition ofo and logic
Jyo: Streany - ref;.Ag.Xo.Yo A ref,.00.¥0.2 A h.A.z

Hence, for an arbitrarily chosen € Streany, we prove the following.
refy.0o.Xo.Yo A refr.00.yo.z A h.A.z
Y L]
= assumptiorref,+ IZ:i(

ref;.Ag.X0.Yo A Jy: Streamy « (Yo Lo y) Aref.Ay.zA gAYy
= logic assuming freeness pf

Jy: Streary * (Yo Lo y) Arefo.Aly.z A refi.Do.Xo.Yo A QALY
=  Streamy contains all possible streams

Jy;: Streany * (Yo Lo Y1) A (Y A y1) Arefo.Ay.z Arefi.DNo.Xo.Yo A QALY

—  useyo=y;andy-=y,
dys: Streany s refo. Ayq.Z A refy .. Xo.y1 A §.A V1
X o f

= logic, assumptionef, - £

Jy;: Streamy, x: Streany * (Xo Lo X) A refp.Ayr.z A refi.Axy; A F.AX
= definition ofo

3x: Strean * (Xo = X) A (refporefp).Ax.zAf.AX 0
Lemma (7) SupposeY,Z C Var such thatY N Z = &, 9,01, 02 € IntvPred; andref € IntvRel 7. Then:

OilFyzref Agalyzref = (01; 02) IFyzref  providedref joins (Sequential composition)

glryzref = g?lkyzref providedref joins (Iteration)
(92 ”_Y,Z ref) VAN (gl = gz) = 01 lFyzref (Weaken)
(glFyzref) v (glkyzref) = glkyz (refy Vrefy) (Disjunction)

Proof of [Sequential compositipnfzor an arbitrarily chosefg, A € Intv such thatdg A, yp € State
andz € Stream, we have the following calculation.

ref.No.Yo.zA (01; O2).A.2
= definition of *;", logic

dA1,A7: Intve (Al Uy = A) VAN (Al OCAz) Aref.Do.Yo.z A Q1.A1.ZN Qo002
=  QAgocA andA; € prefixA, thereforedg oc A

assumptioryy |-y z ref

A1, Ap: Intve (A UAy = A) A (ApocAp) A (Jya: Streany « (Yo Lo y1) A ref.Aq1.y1.2) A Gp.0p.2
= logic

A1, Ap: Intv,y;: Streamy « (A UAy = A) A (A ocA2) A (Yo Lo y1) Aref.A1.y1.z A Q.02
= Aj oAy and assumption, IFy 7 ref

A1, Ap:Intv, g, Yo: Streany « (A UAy = A) A (Ap ocAg) A

(Yo Lo y1) Aref.D1.y1.ZA (Y1 L y2) Aref.Dpy.z

= pickys such tha; "2y andy, 22 ys



34 Data refinement for true concurrency

dA1,Ay: Intv, y3: Streany « (Al Uy = A) VAN (Al x Az) VAN (yo i y3) Aref.Ar.ys.z Aref Dp.ys.2
= definition

Jys: Strearny * (Yo Lo y3) A (ref; ref).Ays.z
= ref joins

Jys: Strearny * (Yo Lo y3) Aref.Ays.z o

Proof of (lterafion). This followings by unfolding” and has a similar structure fo (Sequential composition).

O

Proof of [Weaken)For an arbitrarily chosefy, A € Intv such thatdg oc A, yo € State andz € Stream,
we have the following calculation.

ref.Ao.Yo.Z N g1.A.2

= assumptiorg; = g»
ref.Ao.Yo.Z A Q2.0.2

= assumptiorgy Iy z ref

Jy: Streamy+ (Yo =Y) Aref.Ay.z o

Proof of [Disjunction).
(refy v refy).0o.y0.2 N Q.A.Z

= logic
(ref.8o.y0.z A 9.A.2) V (ref.00.Yo.2 A 9.A.2)
= assumptior(g lFy z ref) v (gl-y z ref,), logic
Jy1,Y2: Streany * ((Yo Lo y1) A refi.Ayi1.2) V (Yo Lo y2) A refa.Ay,.2)
= logic
Jy: Streary * (Yo Lo y) A (refy v refp).Ay.z O

Lo

For streams; ands,, we defines, Us, = At:d-s,.tUs,.t. If the state spaces correspondingsio
ands, are disjoint, then for eache @, (53U s,).tis a state and hensg U s; is a stream.
Lemma (8)(Disjointness) Supposp € Proc, W, X,Y,Z C Var such thatYNnZ = g, WuUX =Y and
WnNX=@. Further suppose thgt, g, € IntvPred;, refyy € IntvRely z, refx € IntvRek z, andx € {A,V}.
Then

(01 IFw,z refw) A (92 IFxz refx) = (91 A 92) IFy z (ref xrefx) (Disjointness)

Proof. BecauseaNU X =Y andWnN X =Y, for anyyp € Streany, we have thaty = wp U %o for some
Wp € Streamyy, X € Streanx. Then for anyz € Stream, Ag,A € Intv such thatAg oc A, we have the

following calculation:

(refy xrefx).0o.yo.zA (01 A G2).A.2
= assumptionyg = wo U X

(refw.Do.Wo.zx refx.Ao.X0.2) A (01 A G2).A.Z
=  Adistributes ovek, logic

(refw.Do.Wo.Z A 91.4.2) % (refx.0o.X0.Z A 02.4.2)
= assumptior(gs IFwz refw) A (g2 I-x z refx)

(3w: Streangy * (Wo = w) A refiy.A.w.z) x (3x: Streanx * (Xo Lo X) A refy.A.x.z)
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= logic, assumptioWnNX = &

Jw: Streangy, X: Streany « (Wo U Xo 2 wu X) A (refy.A.w.zxrefx.A.x.2)
= logic, assumptioly; = wo U Xg

Jw: Streamy, x: Streany * (Yo £ wu X) A (refy xrefy).A. (WU X).z
= WuX=YandWNnX=g

Jy: Streamy * (Yo = y) A (refwxrefy).Ay.z
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