Building a refinement checker for Z

John Derrick, Siobhan North and Anthony J.H. Simons
Department of Computing, University of Sheffield, Sheffj&dd 4DP, UK.

J.Derrick@dcs.shef.ac.uk

In previous work we have described how refinements can bekellagsing a temporal logic based
model-checker, and how we have built a model-checker for grbyiding a translation of Z into the
SAL input language. In this paper we draw these two strandgook together and discuss how we
have implemented refinement checking in our Z2SAL toolset.

The net effect of this work is that the SAL toolset can be usechieck refinements between Z
specifications supplied as input files written in thB=Kmark-up. Two examples are used to illustrate
the approach and compare it with a manual translation antkraegnt check.
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1 Introduction

In this paper we discuss the development of tool supportdfnement checking in Z. In doing so we
draw on two strands of work - one on providing a translatiorZ dfito the input language of the SAL
tool-suite, and the other on using model checking to vesfinements in state-based languages.

The SAL [18] tool-suite is used in both strands, and is desigio support the analysis and veri-
fication of systems specified as state-transition systetssairh is to allow different verification tools
to be combined, all working on an input language designed fasnaat into which programming and
specification languages can be translated. The input Igegoi@vides a range of features to support this
aim, such as guarded commands, modules, definitions ettgam in fact, be used as a specification
language in its own right. The tool-suite currently com@sia simulator and four model checkers [4]
including those for LTL and CTL.

Our work on the first strand has resulted in a translation wvduth converts Z specifications to a
SAL module, which groups together a number of definitionduidiog types, constants and modules for
describing a state transition system. The declarationsstate schema in Z are translated into local
variables in a SAL module, and any state predicates becopreyate invariants over the module and
its transitions.

A SAL specification defines its behaviour by specifying traoss, thus it is natural to translate each
Z operation into one branch of a guarded choice in the tiansitof the SAL module. The predicate
in the operation schema becomes a guard of the particulacech@he guard is followed by a list of
assignments, one for each output and primed declaratidreiogeration schema. This methodology has
been implemented in a tool-set, as describedlinl[9, 8].

Our work on the second strand has derived a methodology fdywg a refinement using a model-
checker by combining two specifications in a special way aidying particular CTL properties for this
combination. Specifically [21, 22, 10] described how refieats in Z and other state-based languages
could be verified by encoding downward and upward simulatias CTL theorems - the simulation
conditions being the standard way to verify refinementsatesbased languages such as Z, B etc.

The contribution we describe in this paper is to implemeis tiethodology in our Z to SAL trans-
lation toolkit. This extension to the tool enables two Z speations to be input inATlpXformat, and for
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a refinement check to be performed. Internally this is adddvy translating each specification from
IATEXto a single SAL specification upon which appropriate CTLaotteens can be verified using the SAL
CTL witness model-checker sal-wmc.

The purpose of this paper is to describe how this is donegusin examples as way of illustration.
The structure of the paper is thus as follows. In Sedtion 2 Section[B we provide background on
refinement and the Z to SAL translation respectively. HowcHjmations can be combined to enable
a model checker to verify a refinement is described in Se@ioand this section also describes our
implementation of this methodology. To illustrate the m®g we present a slightly more complicated
example in Sectiohl5 and we conclude in Sedfibn 6.

2 Refinement

Data refinement [5,]6] is a formal notion of development, Ham®und the idea that a concrete specifi-
cation can be substituted for an abstract one as long ashitvioeir is consistent with that defined in the
abstract specification.

Each language, method or notation has its own variants. lrefihement is defined so that the
observable behaviour of a specification is preserved. Téhawour is in terms of the operations that are
performed, and their input and output values. Values of e sariables are regarded as being internal,
and thus refinement can be used to change the representhtiom siate of a system. Hence the term
data refinement

In a state-based setting such as provided by Z, data refirieraem verified by defining a relation
(called aretrieve relation between the two specifications and verifying a sesiafulation conditions
The retrieve relation shows how a state in one specificatioagresented in the other. For refinement to
be complete, a relation, rather than simply a function, ¢gsired [6].

In general, there are two forms the simulation conditioke tdepending on the interpretation given
to an operation, specifically that given to the operationiarg or precondition_|[6]. The two interpreta-
tions are often called thelockingandnon-blockingsemantics. We consider the latter, i.e., the standard,
approach in this paper.

For any interpretation, there are two simulation rules &imement which are together complete,
i.e., all possible refinements can be proved with a comhinadf the rules. The first rule, referred to as
downward(or forward) simulation[6, [5], requires that

initialisation the initial states of the concrete specification are relaaeabstract initial states

applicability the concrete operations are enabled (at minimum) in stalated to abstract states where
the corresponding abstract operations are enabled, and

correctness the effect of each concrete operation is consistent witliéfjairements of the correspond-
ing abstract operation.

We do not consider the alternative kind of simulation knowraaupwardsimulation in this paper,
although there is nothing to stop the the appropriate metloggt being implemented in our tool suite.

Definition 1 A Z specification with state schema CState, initial stateeseh Clnit and operations
COp;...COp, is a downward simulation of a Z specification with state schekState, initial state
schema Alnit and operations AQp. AOp,, if there is a retrieve relation R such that the following dhol
foralli:1.n.
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1. VCStatee Clnit = (3AStates Alnit A R)
2. Y AState CStates RA pre AOp = pre COp
3. VAState CState CStaté e RA preAOp A COp = (FAStatée R A AOR)

The use of a retrieve relation allows the state spaces oflibieazt and concrete specifications to
be different - the retrieve relation documents their relahip. The first condition ensures appropriate
initial states are related, and the second that the conopeteations are defined whenever abstract ones
are (modulo the retrieve relation). The third conditionsigrs that the concrete operations have an effect
that is consistent with the abstract, whilst also allowing+teterminism to be reduced.

As an example refinement, consider the following simple ifpation. It defines two operations that
add and remove an input from a saif some given typ€ .

[T] | max: N
A=[s:PT |#s< may Alnit = [N | s = 2]
_AEnter _AlLeave
AA AA
p?:T p?:T
#S < max p?es
p?¢s s =s\{p?}
s =su{p?}

A simple data refinement replaces thesby an injective sequendeas follows (assuming the same
T andmax):

C=[:iseq T|# < may Clnit=[C" | I'=()]
_CEnter. _ClLeave
AC AC
p?:T p?:T
#l < max p? € ranl
p? ¢ ranl I=11(T\{p?})
I"=1"(p?

It is easy to see that the second specification is a downwaralaiion of the first, using as retrieve
relation the following:

==[A; C|s=ranl]

Our task is to build a tool that can automatically check tliigllof refinement.
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3 Z2SAL

The original idea of translating Z into SAL specificationsswue to Smith and Wildman [20], however,
our implementation has increasingly diverged from theipabidea as optimization issues have been
tackled. In[9] 8] we have described the basics of our implaaten, which provides a bespoke parser
and generator, written in Java, to translate from #figd_encoding of Z into the SAL input language.

A Z specification written in the state-plus-operations estigl translated into a SAL finite state au-
tomaton, following a template-driven strategy with a numbkassociated heuristics. The Z-style of
specification is preserved in this strategy, including pastlitions that mix primed and unprimed vari-
ables arbitrarily, possibly asserting posterior statesan-constructive ways. We also preserve the Z
mathematical toolkit's approach to the modelling of relat, functions and sequences as sets of tuples,
permitting interchangeable views of functions, sequercesrelations as sets.

A specification in the SAL input language consists of a ctilbecof separate input files, known
ascontexts in which all the declarations are placed. At least cpatextmust contain the definition
of a module an automaton to be simulated or checked. In our translai@iegy, we use a master
contextfor the main Z specification and refer to otlemntextfiles, which define the behaviour of data
types from the mathematical toolkit. The mastentextconsists of a prelude, declaring types and
constants, followed by the main declaration of a SAbdule defining the finite state automata, which
implements the behaviour of the Z state and operation scheiftae states of the SAL translation are
created by aggregating the variables from the Z state schemdathe transitions are created by turning
the operation schemas inguarded commangsriggered by preconditions on input and local (state)
variables, and asserting postconditions on local and owgriables.

The implementation of this basic strategy is presented [intj{8re we recap on its salient points
on two examples. Consider the first specification above. Ugrslation the specification becomes a
context, here called.

Thebuilt-in types of Z are translated into finite subranges in SAL, adogrtb a scheme described
in [8]. For exampleN is translated to:

NAT : TYPE = [0..4];

The basic typesof Z are converted into finite, enumerated sets in SAL, ctingisof three sym-
bolic ground elements by default (but sometimes with anaghattomelement to deal with partiality of
functions etc.). For example, the given typés translated to:

T : TYPE = {T__1, T__2, T__3};

Where the Z specification expresses predicates involviagcéindinality of sets, the translator gen-
erates a bespoke counting-context for sets containing tipetonaximum number of symbolic ground
elements generated for the set, as described in [8]. Foexaisple, acount3 context is generated; the
instantiation for counting up to three elements of t{fge named:

T__counter : CONTEXT = count3 {T; T__1, T__2, T__3};

The bounding constamhaxis an uninterpreted constant in Z, which we translate in Séla éocal
variable, which can in principle take any value in th&T type’s range. This leads to some simulation
states where the limits of the system’s behaviour are reaghiekly (e.g. ifmax= 0), but other states in
which all three elements may be added to thesset

State and initialisation schemas.The state variables from the Z state schema are translaied in
thelocal variables of the SAlmodule which together constitute the aggregate states of theraitm.
The state predicate is treated as follows: we define a camnelspg DEFINITION clause to represent the
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schema invariant. This is achieved by introducing an driral boolean variable, callethvariant__,
and declaring a formula for this in thiefinitionsub-clause.

The Z initialization schema is translated in a hon-congivacstyle into a guarded command in the
INITIALIZATION clause of the SAL module, with the invariant as part of therdu@hus, for the above
example, we get the following translation.

State : MODULE =
BEGIN

LOCAL max : NAT

LOCAL s : set {T;} ! Set

INPUT p? : T
LOCAL invariant__ : BOOLEAN
DEFINITION
invariant__ = (T__counter ! size?(s) <= max)

INITIALIZATION [
s = set {T;} ! empty AND
invariant__
-—>

The challenge of the translation strategy is to deal efftbiemith the large vocabulary of mathemati-
cal data types such as sets, products, relations, funcsengsiences and bags. The translation tool has to
represent these efficiently in SAL, whilst preserving thpressiveness and flexibility of the Z language.

The basic approach is to define one or more context files fdn data type in the toolkit. For
example, the set mathematical data type in Z is translatedailsAL context, which models the set as
a boolean-valued membership predicate on elements (fiokpBryant’'s optimal encoding of sets for
translation into BDDs/[Z,/3]). All other set operations desed on this encoding:

set {T : TYPE; } : CONTEXT = BEGIN
Set : TYPE = [T -> BOOLEAN];
empty : Set = LAMBDA (elem : T) : FALSE;

contains? (set : Set, elem : T) : BOOLEAN =
set(elem) ;

union(setA : Set, setB : Set) : Set =
LAMBDA (elem : T) : setA(elem) OR setB(elem);

END

Similar contexts are defined for the function, relation arduence data types. Whereas Z sets
and relations are modelled as boolean maps, Z functionseaqeaces are modelled using SAL'’s total
functions. We adopt a totalising strategy, introducingtdrot elements for types that participate in the
domain or range of functions, or range of sequences.

Translating the Z operation schemas.Each operation schema in Z contributes in two ways to the
SAL translation. Firstly, an operation schema may optigr@eclare input, or output variables (or both),
which are extracted and declared in the prelude oftbduleclause, as SAlinput andoutputvariables.

Secondly, the predicate of each operation schema is ceavieiio aguarded commangh the transition
sub-clause, the last sub-clause intheduleclause.
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The input and output variables are understood to exist indited scope of each operation schema,
which has consequences in the translation. The SAL tramslatentually substitutes the suffix™ _’
for ‘1" in the output variables, since the latter is reserved.

The computation performed by each operation schema is &sguieas guarded commanch the
transition sub-clause. The name of the schema is used for the trankitieh which aids readability.
Theguarded commantas the general syntactic forrmhabel : guard --> assignments.

The guards for each transition include the primiedrariant__’ as one of the conjuncts, which
asserts the state predicate in the posterior state of earsition. This, combined with the assertion of
the unprimedinvariant__ in the initial state, ensures that the state predicate holdersally.

Finally, a catch-alELSE branch is added to the guarded commands, to ensure thaatisétitn rela-
tion is total (for soundness of the model checking). In pcactthis allows model-checking to complete,
even if the simulation blocks at a given point. Admitting #1eSE-transition allows simulations to pass
through states in which thienvariant__ fails to hold. Normally, this does not matter, since we can
also ensure thatOCAL state variables are not modified, wheneverghgE-transition is taken.

However, a new soundness problem emerged when admittitigmvalues, as part of a totalising
strategy for partial types. Our previous practice was terghatINPUT variables never tookottom
values, as part of the invariant. However, a loophole wasosisred that allowed the system to pass
through states in which the invariant did not hold (due testihg bottom values for inputs) and then
recover in the following cycle, in which the invariant heldog@ more, but undefined values had been
accepted as inputs from the previous cycle. Ideally, we dibalve liked to rule out invalid inputs in the
ELSE-transition, but the SAL tools do not permit this.

Instead, we now assert both the primadrariant__’ and unprimedinvariant__ in the guard to
each transition, so closing the loophole. In practice, atans can still pass through states where the
invariant fails to hold, but they are then forced to passughELSE-transitions repeatedly, until some
valid input is selected. The new translation is once agaim@dpbut simulations may have more latent
cycles. Thus for the transition component of our example awetihe following:

TRANSITION [
AEnter :
T__counter ! size?(s) < max AND
NOT set {T;} ! contains?(s, p?7) AND
s’ = set {T;} ! insert(s, p?) AND
invariant__ AND
invariant__’
-—>
s’ IN {x : set {T;} ! Set | TRUE}
[
Al.eave :
set {T;} ! contains?(s, p?) AND
s’ = set {T;} ! remove(s, p?) AND
invariant__ AND
invariant__’
-—>
s’ IN {x : set {T;} ! Set | TRUE}
(]
ELSE --=> s’ = s
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A similar translation is produced fd@2, this time producing a SAL input file using contexts defined
to model Z sequences; see Appendix A.

4 Model-checking a refinement

A series of approaches to model-checking a refinement isidedan [21/22| 10] by Smith and Derrick
with varying degrees of sophistication. They all work byitaktwo specificationsA andC say, and
building a combined systedl which encodes the behaviour of both in such a way that it isiptes
to write CTL properties to check the various aspects thanaegled for simulation conditions to hold.
There are variations to this approach as follows.

1. Three different combinations are formédi,t, Mapp, Mcorr, One for each of the three downward
simulation conditions (and a similar methodology for upgvaimulations);

2. One combination is formed, encoding all three properties to be checked in one system.

These two approaches need the candidate retrieve relatioa passed to the tool, thus a final ap-
proach is

e Additionally have the model-checker search to find if suchteave relation exists.

For efficiency reasons (and here to aid readability) we des@ur implementation of the first ap-
proach, again restricting ourselves for brevity to dowrdvsimulations. Thus in the approach we de-
scribe, which is an abbreviated discussion_of [22], heredlaystems are formed and if all three checks
are satisfied then the concrete system is indeed a downwartdiasion of the abstract system with the
chosen retrieve relation.

To illustrate the approach, we use the example specifiedealmoting that although for readability
we describe it as a combination of Z schemas, in our impleatient the combination acts at the level
of combining SAL modules. We will combine the two specifioas into one system so that we can
encode the simulation conditions on the combined systeus, tthe combined specification includes all
the abstract and concrete variables. The methodology &ssthme state variables of the abstract and
concrete systems are disjoint (as in fact they are in our pi@mbut if not, then renaming is applied first
to achieve it.

Initialisation. The simulation condition on initial states requires thatdach concrete initial state,
we are able to find an abstract initial state related by threevet relationR. To encode this condition we
initialise Mjni; so that the concrete part of the state is initialised. Hencaur example, the combined
system’s state and initialisation are as follows:

—Minit —INnitjnit
s:PT M/
l:iseq T =)
#s < max
# < max

To check whether an abstract initial state exists that &tedlto any particuar concrete initial state,
we use just one operation (normally callmitA;,ir) which changes the abstract part of the state to an
initial value and leaves the concrete part unchanged. Iexample this operation is then:
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[AMinit ‘ S=gAl'= |]

For any non-trivial specificatiomitA;,;; is total, thus we do not need the "catch-all” ELSE branch in
the SAL model-checker which is needed for non-total systasndescribed above. Then, with a system
with one operation the required initialisation conditionids if the operation can be performed such that
the resulting abstract and concrete parts of the state lateddoyR. That is, we require that there exists
a next state such that=ranl, i.e.:

EX (s=ranl)

Applicability. Applicability conditions in refinements check the congisieof the operations’ pre-
conditions. To encode this as a temporal formula we intreduwariableevto the combined state to
denote the name of the last operation that occurred, and, [@2], we use a differerfont for the val-
ues of typeev. Since we will need an additional operation to ensure tgtelie combined state for an
applicability check in our example will be the following:

— Mapp
s:PT
l:iseq T
ev: {AEnter, CEnter, ALeave, CLeave, Choose}

#s < max
# < max

The applicability condition requires that if abstract arwherete states are related by the retrieve
relation, then the concrete operation must be applicablenever the abstract one was. For the sake
of (;Eiciency we initialise to states which are already eby the retrieve relation, that is, here of the
for

Operations are then specified, one for each abstract oretensperation, each shadowing the be-
haviour of the original operation, and only specifying tlzdues of that operation (e§Entegy, defines
values for variables that originate from the abstract spation). In addition, we introduce @hoose
operation.

—AENtegpp —ALeavegpp
p?:T p?:T
#s < max p?es
p?¢'s s =s\{p?}
s =su{p?} eV = Aleave
eV = AEnter

1The value ofevcan be left underspecified.
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—CEntegpp —Cleavgp
AMapp AMapp
p?:T p?:T
#l < max p? € ranl
p? ¢ ranl I"=1T(T\{p?})
=17 (p?) eV = ClLeave
eV = CEnter

The applicability check can now be written in CTL as follows.
(EX (ev= AEnter) = EX (ev= CEnter)) A (EX (ev= Aleave) = EX (ev= ClLeave))

Correctness. A similar methodology is applied to check the correctnessditmn, and here we
use the same combined state and initialisation as used pdicalpility, as well as the same totalisation
Choose

IVlcorr = IVlapp
Choosgorr = Choosgyy

The downward simulation correctness condition requiras dny after-state of a concrete operation
is related by the retrieve relation to an after-state of tstract operation. To encode this correctly one
needs to ensure that each operation in the combined stasendbalter variables from the portion of
state it is not representing. Thus we have operations ofatma: f

This allows us to perform the operatio@Op.or and AOp.orr IN Sequence so that the abstract part
of the final state reached is identical to that which couldeHasen reached by performing oD p.orr,
and the concrete part is identical to that which could haemleached by performing on§Op.or. The
correctness condition is then:

EX (ev= AEnter) = AX (ev= CEnter = EX (ev= AEnter A R))
A\
EX (ev= Aleave) = AX (ev= ClLeave = EX (ev= Aleave A R))

Implementation in SAL. The above is described in terms of combinations of Z spetiifics, al-
though, of course, it is implemented in terms of combinind-$Aodules in our tool-suite.

The process of combining the tw8TEX Z specifications plus retrieve relation into a single SAL
specification in order to check the downward simulation d@mmas was achieved using an extension to
our Zto SAL parser. When translating a single Z specificaitc®BAL our compiler first parses the Z, then
transforms it into an internal SAL representation and findie SAL file is generated. In extending the
tool-set to combine two specifications in the manner desdrédbove the major modification was to the



46 Building a refinement checker for Z

middle phase, the transformation from Z to SAL. Nevertrelbe process of parsing two specifications
sequentially required some modification for a number ofassu

For example, declarations in the abstract and concrete sthemas need to be checked to ensure
that they contain distinct identifiers, but where types aodstants occur in both specifications they
have to be identical to cope with SAL's strict type checkindeither of these problems caused much
difficulty since, e.g., there already was a mechanism torertbat a variable name used in two different
Z operations did not lead to a conflict in the SAL translatiénbkere all variables had the same scope).
In our simple, single specification, translation this isiaegéd by prefixing the variable name by the
name of its transition wherever an ambiguous name is detecte the same mechanism was used when
producing a single combined specification. The only modificawas that variables from axiomatic
definitions were prefixed by the specification name rather tha transition name.

Treating types declared in two different specificationshesdame was slightly more complicated
as types from the abstract specification occurring in thecmda had to be identified. In our single
translation types are canonical, for reasons explaine] ir{d this had to be maintained in the combined
translation without the parser rejecting a concrete spatifin which contains an apparently second
declaration of a type which has been declared in the absipacification. This problem also occurred
with identical constants in both specifications.

Having parsed the two specifications, the retrieve relaioaad in and parsed as a single Z operation
with everything from both the abstract and concrete spetifins in scope.

The process of transforming a single Z specification into $Ahsists of fixing the finite ranges of
all the types, eliminating redundant predicates, giviriahvalues to all the constants and identifying
any named types that would have to be generated in SAL. Iisfoeming two specifications into one
SAL specification the finite ranges were fixed to the widestireg by either specification but apart
from that the process is essentially simple. The two setsitéli declarations were combined and the
two lists of operation schemas in Z became a single list ofsitins in SAL. The resulting structure is
that of our internal representation of any SAL specificaton a SAL text file could be generated from
it in the standard way.

The result produced by our tool-kit of the two SAL modulestfug correctness condition is given in
Appendix B. It is then a trivial matter to check the requirbddrem on it.

5 A further example

A further example, which provides a comparative analystk thie manual approach to refinement check-
ing, is given by the following (now standard) example.

The Marlowe box office allows customers to book tickets inaabe using théook operation —
mpoolis the set of tickets, and if a ticket is availablafool=# @) then one is allocated then and there.
When the customer arrives, operatiéarrive presents this tickefTicketis the set of all tickets, and a free
type adds a possibly null ticket, atkt models which tickets have been allocated.

[Tickei MTicket::= null | ticket((Ticket)

Marlowe _ Minit
|7mpooI: PTicket Marlowe

tkt: MTicket tkt = null
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—MBook _MArrive
AMarlowe AMarlowe
tkt — null t! : Ticket
mpool+# & tkt # null
tkt’ # null tkt' = null
ticket 1 (tkt') € mpool t! = ticket *(tkt)
mpool = mpool\ {ticket *(tkt')} mpool = mpool

In an alternative description - the Kurbel - customers biibk tickets in advance. However, now if
there is an available ticket then this is simply recordedhgydperatiorBookprovided the customer has
not already booked. Only when the customer actually ari@e¢e box office, is the ticket allocated by
Arrive. kpoolis the pool of tickets antkd denotes whether a ticket has been booked.

Booked:= yes| no [Ticket
Kurbel _Kinit
kpool: P Ticket Kurbel
bkd: Booked bkd— o
_KBook _KArrive
AKurbel AKurbel
— I Ti
bkd— o t!: Ticket
kpool+# @ bkd=yes
bkd = yes kpool+# @
kpool = kpool bkd = no
t! € kpool
kpool = kpool\ {t!}

The Marlowe specification is a downward simulation of theld&iand in fact Kurbel is an upward
simulation of Marlowe). The retrieve relation linking thed that one is tempted to write down is the
following:

B
Marlowe
Kurbel

bkd= no = tkt = null A kpool= mpool
bkd= yes=- tkt # null A kpool= (mpooluU {ticket *(tkt)})

In [22] a hand translation of these specifications into SAlswarformed, followed by a merging into
a single SAL specification - also performed by hand. A natqradstion to ask therefore is to what
extent our automatic translation and combination is coaigarwith the manual process. The above
candidate retrieve relation was used in the manual proodssh revealed a failure to pass the necessary
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refinement conditions - both specification and retrievetimaneeding adjustment before the Marlowe
was shown to be a valid downward simulation of the Kurbel.

It is interesting to note that the results of the automatogtation were broadly comparable to the
manual one, and in fact due to our optimizations show sligtitiction in state space size (see table be-
low). The automatic combination essentially identicallte thanual. The latter is to be expected - the
combination is essentially simple once the specificati@awetbeen converted into SAL.

Step| Manual | Auto
0 1344 | 840

1 3360 | 6072
2 8544 | 6072
3 8544 | 6072
4 8544 | 6072

6 Conclusion

This work contributes on one hand to the strand of work oniging tool support for Z, and on the other
hand to automatic refinement checking.

Recent work on providing tool support for Z includes the CZbhmunity Z Tools) project [16],
our own work [9], as well as related work such as PrioZ [19],chfadapts the ProB [15] tool for the Z
notation.

Work on automatic refinement checking includes that of Boltdio has used Alloy to verify data
refinements in Z[11]. There have also been a number of encadiagbsets of Z-based languages in the
CSP model checker FDR[111,]17,]14], which checks that refimém@ds between two specifications by
comparing the failures/divergences semantics of the Bp&oons; and simulation-based refinement can
be encoded as a failures/divergences check [7, 13, 12].

Clearly there is much to be done in terms of further work heot least some performance charac-
terisations of when such an approach produces feasibesgiates.

Acknowledgements: This work was done as part of collaborative work with Graemet!$ and Luke
Wildman of the University of Queensland. Tim Miller also gavaluable advice on the current CZT
tools.
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Here is the SAL translation of the concrete specificatiomft®ectiorl 2

c : CONTEXT = BEGIN
NAT : TYPE = [0..4];
T : TYPE = {T__1, T__2, T__3, T__B};
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State : MODULE =

BEGIN

LOCAL max : NAT

LOCAL 1 : sequence {T; T__B, 3} ! Sequence

INPUT p? : T
LOCAL invariant__ : BOOLEAN
DEFINITION
invariant__ = (sequence {T; T__B, 3} ! injective?(1) AND

sequence {T; T__B, 3} ! valid?(1) AND
p? /= T__B AND
sequence {T; T__B, 3} ! size?(l) <= max)
INITIALIZATION [
1 = sequence {T; T__B, 3} ! empty AND invariant__
-—>
]
TRANSITION [
CEnter :
sequence {T; T__B, 3} ! size?(1l) < max AND
NOT set {T;} ! contains?(sequence {T; T__B, 3} ! range(l), p?) AND
1’ = sequence {T; T__B, 3} ! append(1l, p?7) AND
invariant__ AND
invariant__°’
-——>
1’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE}
[
CLeave :
set {T;} ! contains?(sequence {T; T__B, 3} ! range(l), p?) AND
1’ = sequence {T; T__B, 3} ! remove(l,p?) AND
invariant__ AND
invariant__’
-—>
1> IN {x : sequence {T; T__B, 3} ! Sequence | TRUE}
(1
ELSE --> 1’ =1
]
END;
END

Appendix B

The result of automatically combining the two SAL modulesirZ specifications given in Sectibh 2:
r2corr : CONTEXT = BEGIN

NAT : TYPE = [0..5];

T : TYPE = {T__1, T__2, T__3, T__B};

EVENT__ : TYPE = {AEnter, AlLeave, CEnter, CLeave, Choose__};
T__counter : CONTEXT = count4 {T; T__1, T__2, T__3, T__B};

State : MODULE =
BEGIN
LOCAL max : NAT
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LOCAL max : NAT
LOCAL s : set {T;} ! Set
INPUT p? : T
LOCAL 1 : sequence {T; T__B, 3} ! Sequence
LOCAL ev__ : EVENT__
LOCAL invariant__ : BOOLEAN
DEFINITION
invariant__ =
(T__counter ! size?(s) <= max AND
sequence {T; T__B, 3} ! injective?(1l) AND
p? /= T__B AND
sequence {T; T__B, 3} ! valid?(1) AND
sequence {T; T__B, 3} ! size?(1l) <= max)
INITIALIZATION [
(s = sequence {T; T__B, 3} ! range(l))
-—=>
]
TRANSITION [
AEnter :
T__counter ! size?(s) < max AND
NOT set {T;} ! contains?(s, p?) AND
s’ = set {T;} ! insert(s, p?) AND

ev__’ = AEnter AND
invariant__ AND
invariant__°’

-—>

s’ IN {x : set {T;} ! Set | TRUE};
1’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE};

ev__’ IN {x : EVENT__ | TRUE}

[

AlLeave :
set {T;} ! contains?(s, p?) AND
s’ = set {T;} ! remove(s, p?) AND
ev__’ = ALeave AND
invariant__ AND
invariant__’

-—>

s’ IN {x : set {T;} ! Set | TRUE};
1’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE};
ev__’ IN {x : EVENT__ | TRUE}

[

CEnter :

sequence {T; T__B, 3} ! size?(1l) < max AND

NOT set {T;} ! contains?(sequence {T; T__B, 3} ! range(1l), p?) AND

1’ = sequence {T; T__B, 3} ! append(l, p?7) AND

ev__’ = CEnter AND
invariant__ AND
invariant__°’

-—>

s’ IN {x : set {T;} ! Set | TRUE};
1’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE};
ev__’ IN {x : EVENT__ | TRUE}
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(]

CLeave :
set {T;} ! contains?(sequence {T; T__B, 3} ! range(l), p7) AND
1’ = sequence {T; T__B, 3} ! remove(l,p?) AND
ev__’ = CLeave AND
invariant__ AND
invariant__°’

-—>

s’ IN {x : set {T;} ! Set | TRUE};
1’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE};
ev__’ IN {x : EVENT__ | TRUE}

(1

Choose__ :
ev__’ = Choose__ AND
invariant__ AND
invariant__°’

-—>
s’ IN {x : set {T;} ! Set | TRUE};
1’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE};
ev__’ IN {x : EVENT__ | TRUE}
]
END;

END
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