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In previous work we have described how refinements can be checked using a temporal logic based
model-checker, and how we have built a model-checker for Z byproviding a translation of Z into the
SAL input language. In this paper we draw these two strands ofwork together and discuss how we
have implemented refinement checking in our Z2SAL toolset.

The net effect of this work is that the SAL toolset can be used to check refinements between Z
specifications supplied as input files written in the LATEXmark-up. Two examples are used to illustrate
the approach and compare it with a manual translation and refinement check.
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1 Introduction

In this paper we discuss the development of tool support for refinement checking in Z. In doing so we
draw on two strands of work - one on providing a translation ofZ into the input language of the SAL
tool-suite, and the other on using model checking to verify refinements in state-based languages.

The SAL [18] tool-suite is used in both strands, and is designed to support the analysis and veri-
fication of systems specified as state-transition systems. Its aim is to allow different verification tools
to be combined, all working on an input language designed as aformat into which programming and
specification languages can be translated. The input language provides a range of features to support this
aim, such as guarded commands, modules, definitions etc., and can, in fact, be used as a specification
language in its own right. The tool-suite currently comprises a simulator and four model checkers [4]
including those for LTL and CTL.

Our work on the first strand has resulted in a translation toolwhich converts Z specifications to a
SAL module, which groups together a number of definitions including types, constants and modules for
describing a state transition system. The declarations in astate schema in Z are translated into local
variables in a SAL module, and any state predicates become appropriate invariants over the module and
its transitions.

A SAL specification defines its behaviour by specifying transitions, thus it is natural to translate each
Z operation into one branch of a guarded choice in the transitions of the SAL module. The predicate
in the operation schema becomes a guard of the particular choice. The guard is followed by a list of
assignments, one for each output and primed declaration in the operation schema. This methodology has
been implemented in a tool-set, as described in [9, 8].

Our work on the second strand has derived a methodology for verifying a refinement using a model-
checker by combining two specifications in a special way and verifying particular CTL properties for this
combination. Specifically, [21, 22, 10] described how refinements in Z and other state-based languages
could be verified by encoding downward and upward simulations as CTL theorems - the simulation
conditions being the standard way to verify refinements in state-based languages such as Z, B etc.

The contribution we describe in this paper is to implement this methodology in our Z to SAL trans-
lation toolkit. This extension to the tool enables two Z specifications to be input in LATEXformat, and for
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a refinement check to be performed. Internally this is achieved by translating each specification from
LATEXto a single SAL specification upon which appropriate CTL theorems can be verified using the SAL
CTL witness model-checker sal-wmc.

The purpose of this paper is to describe how this is done, using two examples as way of illustration.
The structure of the paper is thus as follows. In Section 2 andSection 3 we provide background on
refinement and the Z to SAL translation respectively. How specifications can be combined to enable
a model checker to verify a refinement is described in Section4, and this section also describes our
implementation of this methodology. To illustrate the process we present a slightly more complicated
example in Section 5 and we conclude in Section 6.

2 Refinement

Data refinement [5, 6] is a formal notion of development, based around the idea that a concrete specifi-
cation can be substituted for an abstract one as long as its behaviour is consistent with that defined in the
abstract specification.

Each language, method or notation has its own variants. In Z,refinement is defined so that the
observable behaviour of a specification is preserved. This behaviour is in terms of the operations that are
performed, and their input and output values. Values of the state variables are regarded as being internal,
and thus refinement can be used to change the representation of the state of a system. Hence the term
data refinement.

In a state-based setting such as provided by Z, data refinements are verified by defining a relation
(called aretrieve relation) between the two specifications and verifying a set ofsimulation conditions.
The retrieve relation shows how a state in one specification is represented in the other. For refinement to
be complete, a relation, rather than simply a function, is required [6].

In general, there are two forms the simulation conditions take, depending on the interpretation given
to an operation, specifically that given to the operation’s guard or precondition [6]. The two interpreta-
tions are often called theblockingandnon-blockingsemantics. We consider the latter, i.e., the standard,
approach in this paper.

For any interpretation, there are two simulation rules for refinement which are together complete,
i.e., all possible refinements can be proved with a combination of the rules. The first rule, referred to as
downward(or forward) simulation[6, 5], requires that

initialisation the initial states of the concrete specification are relatedto abstract initial states

applicability the concrete operations are enabled (at minimum) in states related to abstract states where
the corresponding abstract operations are enabled, and

correctness the effect of each concrete operation is consistent with therequirements of the correspond-
ing abstract operation.

We do not consider the alternative kind of simulation known as anupwardsimulation in this paper,
although there is nothing to stop the the appropriate methodology being implemented in our tool suite.

Definition 1 A Z specification with state schema CState, initial state schema CInit and operations
COp1 . . .COpn is a downward simulation of a Z specification with state schema AState, initial state
schema AInit and operations AOp1 . . .AOpn, if there is a retrieve relation R such that the following hold
for all i : 1..n.
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1. ∀CState• CInit ⇒ (∃AState• AInit∧R)
2. ∀AState; CState• R∧preAOpi ⇒ preCOpi
3. ∀AState; CState; CState′ • R∧preAOpi ∧COpi ⇒ (∃AState′ • R′∧AOpi)

The use of a retrieve relation allows the state spaces of the abstract and concrete specifications to
be different - the retrieve relation documents their relationship. The first condition ensures appropriate
initial states are related, and the second that the concreteoperations are defined whenever abstract ones
are (modulo the retrieve relation). The third conditions ensures that the concrete operations have an effect
that is consistent with the abstract, whilst also allowing non-determinism to be reduced.

As an example refinement, consider the following simple specification. It defines two operations that
add and remove an input from a setsof some given typeT.

[T] max: N

A= [s : PT
∣∣ #s≤ max] AInit = [A′

∣∣ s′ =∅]

AEnter
∆A
p? :T

#s< max
p? 6∈ s
s′ = s∪{p?}

ALeave
∆A
p? :T

p?∈ s
s′ = s\{p?}

A simple data refinement replaces the setsby an injective sequencel as follows (assuming the same
T andmax):

C= [l : iseq T
∣∣ #l ≤ max] CInit = [C′

∣∣ l′ = 〈〉]

CEnter
∆C
p? :T

#l < max
p? 6∈ ranl

l′ = l a 〈p?〉

CLeave
∆C
p? :T

p?∈ ranl
l′ = l ↾ (T \{p?})

It is easy to see that the second specification is a downward simulation of the first, using as retrieve
relation the following:

R== [A; C
∣∣ s= ranl]

Our task is to build a tool that can automatically check this kind of refinement.
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3 Z2SAL

The original idea of translating Z into SAL specifications was due to Smith and Wildman [20], however,
our implementation has increasingly diverged from the original idea as optimization issues have been
tackled. In [9, 8] we have described the basics of our implementation, which provides a bespoke parser
and generator, written in Java, to translate from the LATEX encoding of Z into the SAL input language.

A Z specification written in the state-plus-operations style is translated into a SAL finite state au-
tomaton, following a template-driven strategy with a number of associated heuristics. The Z-style of
specification is preserved in this strategy, including postconditions that mix primed and unprimed vari-
ables arbitrarily, possibly asserting posterior states innon-constructive ways. We also preserve the Z
mathematical toolkit’s approach to the modelling of relations, functions and sequences as sets of tuples,
permitting interchangeable views of functions, sequencesand relations as sets.

A specification in the SAL input language consists of a collection of separate input files, known
ascontexts, in which all the declarations are placed. At least onecontextmust contain the definition
of a module, an automaton to be simulated or checked. In our translationstrategy, we use a master
contextfor the main Z specification and refer to othercontextfiles, which define the behaviour of data
types from the mathematical toolkit. The mastercontextconsists of a prelude, declaring types and
constants, followed by the main declaration of a SALmodule, defining the finite state automata, which
implements the behaviour of the Z state and operation schemas. The states of the SAL translation are
created by aggregating the variables from the Z state schema, and the transitions are created by turning
the operation schemas intoguarded commands, triggered by preconditions on input and local (state)
variables, and asserting postconditions on local and output variables.

The implementation of this basic strategy is presented in [8], here we recap on its salient points
on two examples. Consider the first specification above. Upontranslation the specification becomes a
context, here calleda.

Thebuilt-in types of Z are translated into finite subranges in SAL, according to a scheme described
in [8]. For example,N is translated to:

NAT : TYPE = [0..4];

The basic typesof Z are converted into finite, enumerated sets in SAL, consisting of three sym-
bolic ground elements by default (but sometimes with an extra bottomelement to deal with partiality of
functions etc.). For example, the given typeT is translated to:

T : TYPE = {T__1, T__2, T__3};

Where the Z specification expresses predicates involving the cardinality of sets, the translator gen-
erates a bespoke counting-context for sets containing up tothe maximum number of symbolic ground
elements generated for the set, as described in [8]. For thisexample, acount3 context is generated; the
instantiation for counting up to three elements of typeT is named:

T__counter : CONTEXT = count3 {T; T__1, T__2, T__3};

The bounding constantmaxis an uninterpreted constant in Z, which we translate in SAL as a local
variable, which can in principle take any value in theNAT type’s range. This leads to some simulation
states where the limits of the system’s behaviour are reached quickly (e.g. ifmax= 0), but other states in
which all three elements may be added to the sets.

State and initialisation schemas.The state variables from the Z state schema are translated into
the local variables of the SALmodule, which together constitute the aggregate states of the automaton.
The state predicate is treated as follows: we define a correspondingDEFINITION clause to represent the
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schema invariant. This is achieved by introducing an extralocal boolean variable, calledinvariant__,
and declaring a formula for this in thedefinitionsub-clause.

The Z initialization schema is translated in a non-constructive style into a guarded command in the
INITIALIZATION clause of the SAL module, with the invariant as part of the guard. Thus, for the above
example, we get the following translation.

State : MODULE =

BEGIN

LOCAL max : NAT

LOCAL s : set {T;} ! Set

INPUT p? : T

LOCAL invariant__ : BOOLEAN

DEFINITION

invariant__ = (T__counter ! size?(s) <= max)

INITIALIZATION [

s = set {T;} ! empty AND

invariant__

-->

]

The challenge of the translation strategy is to deal efficiently with the large vocabulary of mathemati-
cal data types such as sets, products, relations, functions, sequences and bags. The translation tool has to
represent these efficiently in SAL, whilst preserving the expressiveness and flexibility of the Z language.

The basic approach is to define one or more context files for each data type in the toolkit. For
example, the set mathematical data type in Z is translated into a SAL context, which models the set as
a boolean-valued membership predicate on elements (following Bryant’s optimal encoding of sets for
translation into BDDs, [2, 3]). All other set operations arebased on this encoding:

set {T : TYPE; } : CONTEXT = BEGIN

Set : TYPE = [T -> BOOLEAN];

empty : Set = LAMBDA (elem : T) : FALSE;

...

contains? (set : Set, elem : T) : BOOLEAN =

set(elem);

...

union(setA : Set, setB : Set) : Set =

LAMBDA (elem : T) : setA(elem) OR setB(elem);

...

END

Similar contexts are defined for the function, relation and sequence data types. Whereas Z sets
and relations are modelled as boolean maps, Z functions and sequences are modelled using SAL’s total
functions. We adopt a totalising strategy, introducing bottom elements for types that participate in the
domain or range of functions, or range of sequences.

Translating the Z operation schemas.Each operation schema in Z contributes in two ways to the
SAL translation. Firstly, an operation schema may optionally declare input, or output variables (or both),
which are extracted and declared in the prelude of themoduleclause, as SALinput andoutputvariables.
Secondly, the predicate of each operation schema is converted into aguarded commandin thetransition
sub-clause, the last sub-clause in themoduleclause.
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The input and output variables are understood to exist in thelocal scope of each operation schema,
which has consequences in the translation. The SAL translation eventually substitutes the suffix ‘_’‘ _’
for ‘!’ in the output variables, since the latter is reserved.

The computation performed by each operation schema is expressed as aguarded commandin the
transition sub-clause. The name of the schema is used for the transitionlabel, which aids readability.
Theguarded commandhas the general syntactic form:label : guard --> assignments.

The guards for each transition include the primedinvariant__’ as one of the conjuncts, which
asserts the state predicate in the posterior state of every transition. This, combined with the assertion of
the unprimedinvariant__ in the initial state, ensures that the state predicate holdsuniversally.

Finally, a catch-allELSE branch is added to the guarded commands, to ensure that the transition rela-
tion is total (for soundness of the model checking). In practice, this allows model-checking to complete,
even if the simulation blocks at a given point. Admitting theELSE-transition allows simulations to pass
through states in which theinvariant__’ fails to hold. Normally, this does not matter, since we can
also ensure thatLOCAL state variables are not modified, whenever theELSE-transition is taken.

However, a new soundness problem emerged when admittingbottomvalues, as part of a totalising
strategy for partial types. Our previous practice was to assert thatINPUT variables never tookbottom
values, as part of the invariant. However, a loophole was discovered that allowed the system to pass
through states in which the invariant did not hold (due to selecting bottom values for inputs) and then
recover in the following cycle, in which the invariant held once more, but undefined values had been
accepted as inputs from the previous cycle. Ideally, we would have liked to rule out invalid inputs in the
ELSE-transition, but the SAL tools do not permit this.

Instead, we now assert both the primedinvariant__’ and unprimedinvariant__ in the guard to
each transition, so closing the loophole. In practice, simulations can still pass through states where the
invariant fails to hold, but they are then forced to pass throughELSE-transitions repeatedly, until some
valid input is selected. The new translation is once again sound, but simulations may have more latent
cycles. Thus for the transition component of our example we have the following:

TRANSITION [

AEnter :

T__counter ! size?(s) < max AND

NOT set {T;} ! contains?(s, p?) AND

s’ = set {T;} ! insert(s, p?) AND

invariant__ AND

invariant__’

-->

s’ IN {x : set {T;} ! Set | TRUE}

[]

ALeave :

set {T;} ! contains?(s, p?) AND

s’ = set {T;} ! remove(s, p?) AND

invariant__ AND

invariant__’

-->

s’ IN {x : set {T;} ! Set | TRUE}

[]

ELSE --> s’ = s
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]

A similar translation is produced forC, this time producing a SAL input file using contexts defined
to model Z sequences; see Appendix A.

4 Model-checking a refinement

A series of approaches to model-checking a refinement is described in [21, 22, 10] by Smith and Derrick
with varying degrees of sophistication. They all work by taking two specifications,A andC say, and
building a combined systemM which encodes the behaviour of both in such a way that it is possible
to write CTL properties to check the various aspects that areneeded for simulation conditions to hold.
There are variations to this approach as follows.

1. Three different combinations are formed,Minit , Mapp, Mcorr, one for each of the three downward
simulation conditions (and a similar methodology for upward simulations);

2. One combination is formed,M, encoding all three properties to be checked in one system.

These two approaches need the candidate retrieve relation to be passed to the tool, thus a final ap-
proach is

• Additionally have the model-checker search to find if such a retrieve relation exists.

For efficiency reasons (and here to aid readability) we describe our implementation of the first ap-
proach, again restricting ourselves for brevity to downward simulations. Thus in the approach we de-
scribe, which is an abbreviated discussion of [22], here three systems are formed and if all three checks
are satisfied then the concrete system is indeed a downward simulation of the abstract system with the
chosen retrieve relation.

To illustrate the approach, we use the example specified above, noting that although for readability
we describe it as a combination of Z schemas, in our implementation the combination acts at the level
of combining SAL modules. We will combine the two specifications into one system so that we can
encode the simulation conditions on the combined system, thus the combined specification includes all
the abstract and concrete variables. The methodology assumes the state variables of the abstract and
concrete systems are disjoint (as in fact they are in our example), but if not, then renaming is applied first
to achieve it.

Initialisation. The simulation condition on initial states requires that for each concrete initial state,
we are able to find an abstract initial state related by the retrieve relationR. To encode this condition we
initialise Minit so that the concrete part of the state is initialised. Hence in our example, the combined
system’s state and initialisation are as follows:

Minit

s : PT
l : iseq T

#s≤ max
#l ≤ max

Init init

M′
init

l′ = 〈〉

To check whether an abstract initial state exists that is related to any particuar concrete initial state,
we use just one operation (normally calledInitAinit ) which changes the abstract part of the state to an
initial value and leaves the concrete part unchanged. In ourexample this operation is then:
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[∆Minit
∣∣ s′ =∅ ∧ l′ = l]

For any non-trivial specificationInitAinit is total, thus we do not need the ”catch-all” ELSE branch in
the SAL model-checker which is needed for non-total systemsas described above. Then, with a system
with one operation the required initialisation condition holds if the operation can be performed such that
the resulting abstract and concrete parts of the state are related byR. That is, we require that there exists
a next state such thats= ranl, i.e.:

EX (s= ranl)

Applicability. Applicability conditions in refinements check the consistency of the operations’ pre-
conditions. To encode this as a temporal formula we introduce a variableev to the combined state to
denote the name of the last operation that occurred, and, as in [22], we use a differentfont for the val-
ues of typeev. Since we will need an additional operation to ensure totality, the combined state for an
applicability check in our example will be the following:

Mapp

s : PT
l : iseq T
ev: {AEnter,CEnter,ALeave,CLeave,Choose}

#s≤ max
#l ≤ max

The applicability condition requires that if abstract and concrete states are related by the retrieve
relation, then the concrete operation must be applicable whenever the abstract one was. For the sake
of efficiency we initialise to states which are already related by the retrieve relation, that is, here of the
form1:

Initapp= [M′
app

∣∣ s′ = ranl′]

Operations are then specified, one for each abstract or concrete operation, each shadowing the be-
haviour of the original operation, and only specifying the values of that operation (egAEnterapp defines
values for variables that originate from the abstract specification). In addition, we introduce aChoose
operation.

AEnterapp

∆Mapp

p? :T

#s< max
p? 6∈ s
s′ = s∪{p?}
ev′ = AEnter

ALeaveapp

∆Mapp

p? :T

p?∈ s
s′ = s\{p?}
ev′ = ALeave

1The value ofevcan be left underspecified.
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CEnterapp

∆Mapp

p? :T

#l < max
p? 6∈ ranl

l′ = l a 〈p?〉
ev′ = CEnter

CLeaveapp

∆Mapp

p? :T

p?∈ ranl
l′ = l ↾ (T \{p?})
ev′ = CLeave

Chooseapp =̂ [∆Mapp | ev′ = Choose]

The applicability check can now be written in CTL as follows.

(EX (ev= AEnter)⇒ EX (ev= CEnter))∧ (EX (ev= ALeave)⇒ EX (ev= CLeave))

Correctness. A similar methodology is applied to check the correctness condition, and here we
use the same combined state and initialisation as used for applicability, as well as the same totalisation
Choose:

Mcorr =̂ Mapp

Initcorr =̂ Initapp

Choosecorr =̂ Chooseapp

The downward simulation correctness condition requires that any after-state of a concrete operation
is related by the retrieve relation to an after-state of the abstract operation. To encode this correctly one
needs to ensure that each operation in the combined state does not alter variables from the portion of
state it is not representing. Thus we have operations of the form:

AOpcorr =̂ [AOpapp | l′ = l]
COpcorr =̂ [COpapp | s′ = s]

This allows us to perform the operationsCOpcorr andAOpcorr in sequence so that the abstract part
of the final state reached is identical to that which could have been reached by performing onlyAOpcorr,
and the concrete part is identical to that which could have been reached by performing onlyCOpcorr. The
correctness condition is then:

EX (ev= AEnter)⇒ AX (ev= CEnter⇒ EX (ev= AEnter ∧ R))
∧

EX (ev= ALeave)⇒ AX (ev= CLeave⇒ EX (ev= ALeave ∧ R))

Implementation in SAL. The above is described in terms of combinations of Z specifications, al-
though, of course, it is implemented in terms of combining SAL modules in our tool-suite.

The process of combining the two LATEX Z specifications plus retrieve relation into a single SAL
specification in order to check the downward simulation conditions was achieved using an extension to
our Z to SAL parser. When translating a single Z specificationto SAL our compiler first parses the Z, then
transforms it into an internal SAL representation and finally the SAL file is generated. In extending the
tool-set to combine two specifications in the manner described above the major modification was to the
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middle phase, the transformation from Z to SAL. Nevertheless the process of parsing two specifications
sequentially required some modification for a number of issues.

For example, declarations in the abstract and concrete state schemas need to be checked to ensure
that they contain distinct identifiers, but where types and constants occur in both specifications they
have to be identical to cope with SAL’s strict type checking.Neither of these problems caused much
difficulty since, e.g., there already was a mechanism to ensure that a variable name used in two different
Z operations did not lead to a conflict in the SAL translations(where all variables had the same scope).
In our simple, single specification, translation this is achieved by prefixing the variable name by the
name of its transition wherever an ambiguous name is detected and the same mechanism was used when
producing a single combined specification. The only modification was that variables from axiomatic
definitions were prefixed by the specification name rather than the transition name.

Treating types declared in two different specifications as the same was slightly more complicated
as types from the abstract specification occurring in the concrete had to be identified. In our single
translation types are canonical, for reasons explained in [8] and this had to be maintained in the combined
translation without the parser rejecting a concrete specification which contains an apparently second
declaration of a type which has been declared in the abstractspecification. This problem also occurred
with identical constants in both specifications.

Having parsed the two specifications, the retrieve relationis read in and parsed as a single Z operation
with everything from both the abstract and concrete specifications in scope.

The process of transforming a single Z specification into SALconsists of fixing the finite ranges of
all the types, eliminating redundant predicates, giving initial values to all the constants and identifying
any named types that would have to be generated in SAL. In transforming two specifications into one
SAL specification the finite ranges were fixed to the widest required by either specification but apart
from that the process is essentially simple. The two sets of initial declarations were combined and the
two lists of operation schemas in Z became a single list of transitions in SAL. The resulting structure is
that of our internal representation of any SAL specificationand a SAL text file could be generated from
it in the standard way.

The result produced by our tool-kit of the two SAL modules forthe correctness condition is given in
Appendix B. It is then a trivial matter to check the required theorem on it.

5 A further example

A further example, which provides a comparative analysis with the manual approach to refinement check-
ing, is given by the following (now standard) example.

The Marlowe box office allows customers to book tickets in advance using theBook operation –
mpool is the set of tickets, and if a ticket is available (mpool 6= ∅) then one is allocated then and there.
When the customer arrives, operationArrive presents this ticket.Ticketis the set of all tickets, and a free
type adds a possibly null ticket, andtkt models which tickets have been allocated.

[Ticket] MTicket::= null
∣∣ ticket〈〈Ticket〉〉

Marlowe
mpool: PTicket
tkt : MTicket

MInit
Marlowe

tkt= null
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MBook
∆Marlowe

tkt= null
mpool6=∅

tkt′ 6= null
ticket−1(tkt′) ∈ mpool
mpool′ = mpool\ {ticket−1(tkt′)}

MArrive
∆Marlowe
t! : Ticket

tkt 6= null
tkt′ = null
t! = ticket−1(tkt)
mpool′ = mpool

In an alternative description - the Kurbel - customers stillbook tickets in advance. However, now if
there is an available ticket then this is simply recorded by the operationBookprovided the customer has
not already booked. Only when the customer actually arrivesat the box office, is the ticket allocated by
Arrive. kpool is the pool of tickets andbkddenotes whether a ticket has been booked.

Booked::= yes
∣∣ no [Ticket]

Kurbel
kpool: PTicket
bkd: Booked

KInit
Kurbel

bkd= no

KBook
∆Kurbel

bkd= no
kpool 6=∅

bkd′ = yes
kpool′ = kpool

KArrive
∆Kurbel
t! : Ticket

bkd= yes
kpool 6=∅

bkd′ = no
t! ∈ kpool
kpool′ = kpool\ {t!}

The Marlowe specification is a downward simulation of the Kurbel (and in fact Kurbel is an upward
simulation of Marlowe). The retrieve relation linking the two that one is tempted to write down is the
following:

R
Marlowe
Kurbel

bkd= no⇒ tkt= null ∧ kpool= mpool
bkd= yes⇒ tkt 6= null ∧ kpool= (mpool∪{ticket−1(tkt)})

In [22] a hand translation of these specifications into SAL was performed, followed by a merging into
a single SAL specification - also performed by hand. A naturalquestion to ask therefore is to what
extent our automatic translation and combination is comparable with the manual process. The above
candidate retrieve relation was used in the manual process,which revealed a failure to pass the necessary
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refinement conditions - both specification and retrieve relation needing adjustment before the Marlowe
was shown to be a valid downward simulation of the Kurbel.

It is interesting to note that the results of the automatic translation were broadly comparable to the
manual one, and in fact due to our optimizations show slight reduction in state space size (see table be-
low). The automatic combination essentially identical to the manual. The latter is to be expected - the
combination is essentially simple once the specifications have been converted into SAL.

Step Manual Auto
0 1344 840
1 3360 6072
2 8544 6072
3 8544 6072
4 8544 6072

6 Conclusion

This work contributes on one hand to the strand of work on providing tool support for Z, and on the other
hand to automatic refinement checking.

Recent work on providing tool support for Z includes the CZT (Community Z Tools) project [16],
our own work [9], as well as related work such as ProZ [19], which adapts the ProB [15] tool for the Z
notation.

Work on automatic refinement checking includes that of Bolton who has used Alloy to verify data
refinements in Z [1]. There have also been a number of encodingof subsets of Z-based languages in the
CSP model checker FDR [11, 17, 14], which checks that refinement holds between two specifications by
comparing the failures/divergences semantics of the specifications; and simulation-based refinement can
be encoded as a failures/divergences check [7, 13, 12].

Clearly there is much to be done in terms of further work here,not least some performance charac-
terisations of when such an approach produces feasible state spaces.

Acknowledgements:This work was done as part of collaborative work with Graeme Smith and Luke
Wildman of the University of Queensland. Tim Miller also gave valuable advice on the current CZT
tools.
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State : MODULE =

BEGIN

LOCAL max : NAT

LOCAL l : sequence {T; T__B, 3} ! Sequence

INPUT p? : T

LOCAL invariant__ : BOOLEAN

DEFINITION

invariant__ = (sequence {T; T__B, 3} ! injective?(l) AND

sequence {T; T__B, 3} ! valid?(l) AND

p? /= T__B AND

sequence {T; T__B, 3} ! size?(l) <= max)

INITIALIZATION [

l = sequence {T; T__B, 3} ! empty AND invariant__

-->

]

TRANSITION [

CEnter :

sequence {T; T__B, 3} ! size?(l) < max AND

NOT set {T;} ! contains?(sequence {T; T__B, 3} ! range(l), p?) AND

l’ = sequence {T; T__B, 3} ! append(l, p?) AND

invariant__ AND

invariant__’

-->

l’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE}

[]

CLeave :

set {T;} ! contains?(sequence {T; T__B, 3} ! range(l), p?) AND

l’ = sequence {T; T__B, 3} ! remove(l,p?) AND

invariant__ AND

invariant__’

-->

l’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE}

[]

ELSE --> l’ = l

]

END;

END

Appendix B

The result of automatically combining the two SAL modules from Z specifications given in Section 2:

r2corr : CONTEXT = BEGIN

NAT : TYPE = [0..5];

T : TYPE = {T__1, T__2, T__3, T__B};

EVENT__ : TYPE = {AEnter, ALeave, CEnter, CLeave, Choose__};

T__counter : CONTEXT = count4 {T; T__1, T__2, T__3, T__B};

State : MODULE =

BEGIN

LOCAL max : NAT
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LOCAL max : NAT

LOCAL s : set {T;} ! Set

INPUT p? : T

LOCAL l : sequence {T; T__B, 3} ! Sequence

LOCAL ev__ : EVENT__

LOCAL invariant__ : BOOLEAN

DEFINITION

invariant__ =

(T__counter ! size?(s) <= max AND

sequence {T; T__B, 3} ! injective?(l) AND

p? /= T__B AND

sequence {T; T__B, 3} ! valid?(l) AND

sequence {T; T__B, 3} ! size?(l) <= max)

INITIALIZATION [

(s = sequence {T; T__B, 3} ! range(l))

-->

]

TRANSITION [

AEnter :

T__counter ! size?(s) < max AND

NOT set {T;} ! contains?(s, p?) AND

s’ = set {T;} ! insert(s, p?) AND

ev__’ = AEnter AND

invariant__ AND

invariant__’

-->

s’ IN {x : set {T;} ! Set | TRUE};

l’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE};

ev__’ IN {x : EVENT__ | TRUE}

[]

ALeave :

set {T;} ! contains?(s, p?) AND

s’ = set {T;} ! remove(s, p?) AND

ev__’ = ALeave AND

invariant__ AND

invariant__’

-->

s’ IN {x : set {T;} ! Set | TRUE};

l’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE};

ev__’ IN {x : EVENT__ | TRUE}

[]

CEnter :

sequence {T; T__B, 3} ! size?(l) < max AND

NOT set {T;} ! contains?(sequence {T; T__B, 3} ! range(l), p?) AND

l’ = sequence {T; T__B, 3} ! append(l, p?) AND

ev__’ = CEnter AND

invariant__ AND

invariant__’

-->

s’ IN {x : set {T;} ! Set | TRUE};

l’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE};

ev__’ IN {x : EVENT__ | TRUE}
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[]

CLeave :

set {T;} ! contains?(sequence {T; T__B, 3} ! range(l), p?) AND

l’ = sequence {T; T__B, 3} ! remove(l,p?) AND

ev__’ = CLeave AND

invariant__ AND

invariant__’

-->

s’ IN {x : set {T;} ! Set | TRUE};

l’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE};

ev__’ IN {x : EVENT__ | TRUE}

[]

Choose__ :

ev__’ = Choose__ AND

invariant__ AND

invariant__’

-->

s’ IN {x : set {T;} ! Set | TRUE};

l’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE};

ev__’ IN {x : EVENT__ | TRUE}

]

END;

END
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