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Quantum walks can reconstruct quantum algorithms for quantum computation, where the precise
controls of quantum state transfers between arbitrary distant sites are required. Here, we investigate
quantum walks using a periodically time-varying coin both numerically and analytically, in order to
explore the controllability of quantum walks while preserving its random nature.

1 Introduction

The quantum computer promises drastically fast processing using quantum algorithms based on unique
features of quantum mechanics. Just as classical random walks have been used to design computational
algorithms in computer science, quantum walks|[[1] also have been used to reconstruct algorithms suitable
for quantum mechanics and play an incredibly important role in quantum information processing and
computation protocols[6l [11].

A state transfer is required in such quantum algorithms. It is, however, difficult to control the state
transfer because the quantum walk is inherently random[3, 9} [16} [17]. One of the propositions to solve
this problem is a coin that has a part in determining the movement of the quantum walk. Wojcik et al.
extended the coins that previously, were spatially constant to space-dependent coins[14]. Bafiuls et al.
diversified their work further into the time domain, led to a more generalized quantum walk[3]. They
found that a time-varying coin[2, 3, 14, [7, [12, [13} [15]] can modify trajectories of the quantum walks. This
implies that quantum walks are controllable.

In this paper, we present that the time-varying coins can control the trajectories on demand while
preserving random processes. First, we numerically show that the trajectories can be surely modified by
using the simplest time-varying coin, i.e., linear time dependent coin. Then, we discuss on the walking
mechanism using the analytic solution derived by means of the long-wavelength approximation method
by Knight, Roldan, and Sipe[10]. Moreover, we investigate quantum walks with another important
coin which is more general time-dependent in both numerical and analytical perspective, leading to the
controllability of the quantum walks by the time-varying coins. Controlling the quantum walks can
improve the quantum algorithm to be more efficient.

2 Quantum walk with a time-varying coin

Let us consider a quantum walk with a time-varying coin on a line. In random walks, the walker moves
one step to right or left depending on the outcome of the coin toss. A quantum walk is a quantum-
mechanical counterpart of the classical random walk. Then, a quantum walk lives in a bipartite system
comprising positions and coin degrees of freedom represented as an entire Hilbert space ¢ = J¢, ® JZ.,
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where 77}, and J#, are the Hilbert spaces of the walker’s position and the coin spanned by {|m),m € Z}
and {|R),|L)}, respectively. The walker’s behaviour is characterized by both the coin and the shift
operators. The time-varying coin unitary operator employed in this paper is defined as

A cos(0(t)) sin(6(r))
= <sin<e<r>> —cos<e<z>>>’ @

which transforms the internal state of a coin through a time-varying phase 6(z). On the other hand, the
shift operator given by
$|m,R) =|m+1,R), 2)
S’m7L>:‘m_laL>7 (3)

shifts the walker’s position.
The state after n steps |y), is described by

v), = (5C)" |w),, 4)

where |y), represents the walker’s initial state. This is also re-expressed by

n

W), =Y [Runlm,R) +Lyn|m,L)], (5)

m=—n

if we introduce |R(L),, ,|* representing the probability of being in the internal state R(L) at position m
after n steps. Here, the probability amplitudes R, , and L,, , at position m after n steps are determined by

Rm,n+1 = COs 6anfl,n +sin eanfl,m (6)
Liypy1 =sin60,R; 110 —COSO L1, @)

where 6, = 0(nT) with T being the time interval between steps. Therefore, the probability of finding
the walker at position m after n steps P, (n) is described by

Py(n) = Byi(n) + By(n), ®)
Prﬁ(”) = |Rm,n‘2’ PnI;(”) = ’Lm,n‘z‘ 9

3 Linear time evolution of the phase in the coin operator

Here, let us discuss the linear time evolution of the phase, i e., 8(t) = 6y + @t in the coin operator as the
simplest example of time-varying coins. Through this example, we will extract the essential properties
of a quantum walk with a time-varying coin and elucidate the walking mechanism.

3.1 Numerical approaches

Numerical simulations are carried out by using 8 () = 6y + @t as a specific time-dependent expression of
the coin operator in Eq. (I)) with various values for the initial phase 6, and the frequency ®. Figure 1 (A),
(B) and (C) show the probability distributions of finding a walker on a line as a function of time under
the identical frequency @ = /60 (upper panels) and their walker’s trajectories representing the place
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where the existence probability is high (lower panels). It is found that the time-varying coin leads to
periodic walker’s trajectories classified into three types depending on the initial phase of the coin 8y: (1)
Loop-line chain which is composed of loops and lines appearing alternately as shown in Fig. 1(A), (2)
Crossing loop-loop chain where two major trajectories intersect as shown Fig. 1 (B), and (3) Touching
loop-loop chain where two major trajectories come into contact as shown in Fig. 1 (C). In addition,
walker’s trajectories are also modified by the frequency . As the frequency @ increases, the size of the
loops tends to become smaller in time and narrower in space (not displayed in Fig. 1).
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Figure 1: Probability distributions obtained by numerical simulations (upper panels) and their walker’s
trajectories (lower panels) for quantum walks over 300 steps with the time interval between steps 7' = 1
and initial state |y), = |0,R) /v/2+i|0,L) /+/2, for various initial phases (A)8 = 7/4, (B)6) = 0, and
(C)6y = 37m/2 under the fixed coin’s frequency @ = 7/60. The corresponding analytical solutions are
given in (a), (b) and (c) of the bottom panels.

3.2 Analytical approach

In order to explore the physical origin of walker’s trajectories obtained by numerical simulations in the
previous section, analytical probability distributions are obtained according to the method proposed by
Knight, Roldén and Sipe[10]. Equations (6)) and (7) are reduced to the following recurrence formula,

Am,n+1 _Am,n—l = —COos gn(Am+1,n _Am—l,n)7 (10)

where 6, = 6y +nwT and A = R, L. In the long-wavelength approximation, we obtain the wave equation
for the continuous function A(x,1)

d o X33
TEA(x,t) = —cos0(r) <X8x + 3!8x3>A(x’[)' (11)
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where X stands for the distance between steps. We further introduce other two fields A*(&,7) and
A~ (&, 1) to express the waves spreading in both sides on a line, resulting in the wave equation

3
;TAi(g 7) = Fcos 6(7) <aa§+31'aa§>A (&.7), (12)

where & = x/X and T =1¢/T. This differential equation can be solved using Fourier techniques after
separation of variables in a usual manner. The solution for Eq. (12)) are given as follows

A*(&,7) = %Z(Am,() +An1)Z (& —m, 1), (13)
with

1

zZ5(&,1) = e* Ai({), (14)

<i§ s+ )) (15)

) (16)

2
5(7)

K
s(7)

"‘fm(ﬁ‘s

4

=F / cosO(t a7n

where Ai represents the Airy function. The probability distribution of finding a walker is then given by
P(&,7) =P*(£,7)+P"(E, ), (18)

PAE.7) = AT (& 1)+ (-1)"A7 (8. 7)) (19)

Figure 1 (a), (b) and (c) show probability distributions depicted by the analytic solution for the same
value as coin parameters used in numerical simulations to (A), (B) and (C), respectively. Our analytical
solution reproduces the numerical simulation well.

One definite example is as follows. Figure 2 shows the top view of the probability distributions
obtained by the analytical solution (left) and the numerical simulation (right) at ) = 0 and @ = 7/60.
According to the probability distribution given analytically in Eq., the probability P(&,7) is com-
posed of PR(&, 1) and PE(E, 7). The highest probabilities in the analytical probability distribution are
highlighted in blue (PR(&,7)) and red (PX(&,7)). The blue line and red line are exactly intersecting at
T = 60 with the same amplitude, resulting in a crossing loop-loop chain as seen in the numerical simu-
lation. Actually, there exists a slight difference between analytical solutions and numerical simulations.
Specifically, the amplitudes of the first and second loops differ only slightly in the graph on the left of
Fig. 2. This is due to the approximation limit based on the wave nature of the quantum walk, i e., the
nature of the Airy function. The maximum peak of the Airy function Ai(x) is not located at x = 0, but
at slightly negative position. As a result, the blue peak shifts more negatively than the dotted green line,
and the red peak does the opposite. In other words, the maximum peak exists at the inside of the numer-
ical loop at T = 30, and outside at T = 90 because the direction of the Airy function is reversed. This
tiny difference causes only a few deviations. Thus, the analytical solution approximates the numerical
simulation well. However, the linear spreading inherent in the quantum walk is not reproduced in the
analytical solution and remains unsolved.
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Despite the above better agreement, the probability distribution shown in Fig. 1 (b) may look dif-
ferent from that of numerical simulation shown in Fig. 1 (B). This difference is due to the Poggendorff
illusion[8]], which is a geometrical-optical illusion that involves the brain’s perception of the interaction
between diagonal lines and horizontal and vertical edges. In fact, the probability of being inward in the
first (left) loop and outward in the second (right) loop causes the Poggendorftf illusion. In contrast, the
numerical simulation does not show such a difference, resulting in no Poggendorff illusion. From the
above, the analytic solution seemed to be different from the probability distribution of the numerical
simulation, but in fact the analytic solution could approximate the numerical simulation correctly.
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Figure 2: Top views of the probability distributions depicted in Fig.1 (B) and (b) over 120 steps. The
analytical probability distributions are shown on the left, where the high probabilities formed by PR (€, 7)
and PL(E, 1) are highlighted in blue and red with shaded lower existence probability. Two embedded
figures represent the sectional view of the probability distribution at 7 = 30 and 7 = 90, respectively.
The numerical probability distribution displayed on the right is formed by a trail with high probabilities
highlighted in blue and a triangular area with low probabilities highlighted in orange, which are not drawn
in Fig. 1(B) due to the accuracy of the color gradation. The values of the probability distributions are
equal to zero in yellow area of both diagrams. The doted lines in both diagrams represent the amplitude
of the walker’s trajectory given analytically in Eq.

3.3 Waking mechanism

Now, let us discuss the walking mechanism based on the analytical solutions supported by numerical
simulations obtained above. To find the walker’s trajectories which are a key clue for elucidating the
walking mechanism, we examine the behavior of the probability amplitude A* (&, 7), which is the main
element that determines the probability distribution. The amplitude A* (&, 7) is expressed as follows:
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AE(E, 1) = / ) e*SA* (k, T)dk

—oo

T
_ B <§ T / cos9(f’)d1’,1’> , (20)
0
where B* (&, T) represents a shifted probability amplitude described by

B+ (é,'ﬂ _ /m eik:: (ei%ik3 jgcose(r’)dr/Ai(hO)) dk. Q1)

oo

Therefore, the walker’s trajectories is analytically obtained by the shift in Eq. (20) as follows:
T
Xe = $/ cosO(t")dt
0
1 . I .
=F | —sin(6y+ 01) — —sinhy | . (22)
[0 0]

Equation means that walker’s trajectories are composed of two antisymmetric sinusoidal functions
with same parameters such as amplitude 1/, initial phase 6y, frequency @, and bias —sin6y/®. The
walker’s trajectories are formed by overlap of two sinusoidal waves, and are classified into three cat-
egories like loop-line chains, crossing loop-loop chains, and touching loop-loop chains as seen in nu-
merical simulations. According to our simple overlap model, these three types of chains are interpreted
as follows. Figure 3 (a) shows the first type of walker’s trajectories named “loop-line chain”. In fact,
two different size loops appear alternately though loop and line seemed to appear alternately. This type
of chains is generated when the bias is finite except for 6y = nm/2,(n =integer). Figure 3 (b) shows
the second type of walker’s trajectories, named “crossing loop-loop chain”. This type of chains occurs
when the bias is equal to 0, equivalently 8y = nmw. Figure 3 (c) shows the third type of walker’s tra-
jectories “’touching loop-loop chain”, which appears when the sinusoidal-wave amplitude equals its bias
(6p = (2n+1)m/2). In this way, based on our analytical solution, it is found that walker’s trajectories
are classified into three depending on the 6y as obtained by numerical simulation.

The walker’s trajectories reflecting the walking mechanism reveal its physical origin. A trajectory
is, in general, simply described by [ v(¢)dr wiht v(r) being time-dependent velocity. According to wave
theory, the velocity v(¢) works to connect the wave number k (space) and frequency o (time) through the
well-known dispersion relation @ = vk in the linear wave. From our wave equation, Eq.(I2)), the term
Fcos 0(T) corresponds to the wave velocity. In other words, the velocity that determines the trajectory is
nothing but the transition amplitude of the coin itself. This shows that the time-varying coin parameter,
i.e., the wave velocity, controls the walker’s trajectories. This is our central result of this paper.

4 Sinusoidal time evolution of the phase in the coin operator

In the previous section, we have revealed the walking mechanism of the quantum walk with a time-
varying coin for the simplest example. Here let us apply this mechanism to other time-varying coin
such as 6(r) = Gy sin(wr). This is considered to be a great clue for extending to coins with general time
dependence because 6y sin(@t) is a component of the Fourier series expansion which describes general
time dependences.
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Figure 3: Three types of walker’s trajectories depicted by the analytic solution for the quantum walk
over 300 steps with a time-varying coins for identical coin frequency @ = /60 (a) a loop-line chain
emerging with 6y = /4 (b) a crossing loop-loop chain emerging with 6y = nx (c) a touching loop-loop
chain emerging with 6y = (2n+1)7/2

The analytic solutions Eqgs. (13)-(I7) are derived parallel to the previous section. Figure 4 shows the
probability distribution obtained both numerically and analytically. The analytical solutions agree well
with the numerical simulations. The walker’s trajectory is similarly obtained by

T
Xe = :F/ cos (90 sin(a)r’))d‘c’
0

=F {10(90)T+ i J2k(6o) Sin(zka”))} (23)

k=1

where J;(6p) is the Bessel function of the first kind of order k of 6y. The walker’s trajectory spreads
linearly owing to the first term Jy(6p)7 in Eq. , and fluctuates periodically around the linear term
due to the rest of the other terms. In practice, the trajectory can be described accurately with only a few
terms in the summation due to the Bessel functions. As a result, it is found that our walking mechanism
can be applicable to the walker’s trajectories on the quantum walk with more general time-varying coin.
More general extensions will appear elsewhere.

5 Conclusion

We have investigated quantum walks with a time-varying coin, in order to explore the controllability of
quantum walks for efficient implementations of quantum state transfers in quantum walk-based quantum
computers. Our numerical simulations have revealed the key fundamental behaviour behind the time-
varying coined quantum walk through the walker’s trajectory analysis at the simplest linear time-varying
coin. Then, an analytical solution based on the wave nature of the quantum walk has unraveled the
walking mechanism that the wave velocity of the quantum walk is governed by the time-varying coin
parameter. This mechanism has been shown to be applicable to more important time-varying coins such
as sinusoidal functions. Therefore, the walking mechanism enables us to control quantum walks by
manipulating coin parameters. The designed time-varying coined quantum walk opens a new pathway
for manipulating quantum state transfers in quantum information technology.
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300

Figure 4: Probability distributions obtained numerically (left) and analytically (right) for quantum walks
over 300 steps with the time-varying coin 0(t) = (57 /4) sin(7¢/80) and initial state |y), = |0,R) /v/2 +
i|0,L) /v/2. The other parameters are the same as in Fig. 1.
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