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The quantum walk differs fundamentally from the classical random walk in a number of ways, in-
cluding its linear spreading and initial condition dependent asymmetries. Using stationary phase ap-
proximations, precise asymptotics have been derived for one-dimensional two-state quantum walks,
one-dimensional three-state Grover walks, and two-dimensional four-state Grover walks. Other pa-
pers have investigated asymptotic behavior of a much larger set of two-dimensional quantum walks
and it has been shown that in special cases the regions of polynomial decay can be parameterized.
In this paper, we show that these regions of polynomial decay are bounded by algebraic curves
which can be explicitly computed. We give examples of these bifurcation curves for a number of
two-dimensional quantum walks.

1 Introduction

The quantum walk is a discrete quantum mechanical system which serves as an analogue to the clas-
sical random walk. While the probability distribution of a classical random walk approximates a nor-
mal distribution with a linearly growing variance in large time, the quantum walk has more involved
asymptotic behavior. A paper by Ambainis et. al. [2] provides a detailed asymptotic description of the
one-dimensional Hadamard walk (a quantum walk governed by a 2×2 Hadamard matrix) for large time.
The large time behavior of the quantum walk contrasts with that of the classical random walk in both the
shape of the probability density and its rate of spread. Ambainis et. al. showed that the standard devi-
ation of the Hadamard walk grows at O(t) and in particular the distribution at time t is almost entirely
contained in the interval

[
− t√

2
, t√

2

]
. In this interval, the distribution contains highly oscillatory peaks at

the boundaries and is approximately uniform near the origin.
These results were among the first in a line of papers describing asymptotic behavior of more general

quantum walks. A few years later, Konno et. al. [13] extended these results to two state quantum walks
governed by general unitary matrices. Inui et. al. [11] provided asymptotic results on the three-state one
dimensional Grover walk with a focus on localization phenomena. Analysis of two-dimensional quantum
walks started with a brief survey by Mackay et. al. [18], and continued with a description of localization
in the two-dimensional Grover walk by Inui et. al. [10], and a differential geometric interpretation of two-
dimensional quantum walks by Baryshnikov et. al. [4]. The asymptotic behavior of the one dimensional
Hadamard walk described by Ambainis et. al. has served as a common baseline through these papers.
The standard deviation of these walks grows as O(t), and the probability distributions are almost entirely
contained in a linearly expanding subset of the domain, which we term as the region of polynomial
decay. In Kuklinski [16], these regions of polynomial decay are investigated further. In particular, it was
shown that in certain low state two-dimensional quantum walks, the regions of polynomial decay can be
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explicitly parameterized. However, these parameterizations are often unwieldy and cannot easily give a
description of the bounds on the region.

In this paper, we show that for any quantum walk defined on Zd , one can write down a collection
of algebraic curves which bound the regions of polynomial decay. This procedure builds upon previous
methods to analyze the asymptotic behavior of the quantum walk. First, we conduct an eigenvalue
decomposition of the quantum walk operator via a Fourier transform. The state of the quantum walk
particle at time t becomes a sum of integrals whose asymptotic behavior we analyze using the method
of stationary phase. Solving for points of stationary phase in these integrals leads to the previously
discussed parametric representation of the regions of polynomial decay. We will take this a step further
and compute bifurcation curves corresponding to these integrals by computing a Hessian determinant
of the phase of the integrand. These bifurcation curves divide the space Rd into a discrete collection of
subsets, a finite number of which are found to belong to the region of polynomial decay. The bifurcation
curves are found to be solutions to a system of multivariate polynomial equations. We use a Gröbner
basis computation to derive an implicit algebraic representation of these curves. However, this system
of multivariate polynomial equations is quite large which puts strain on our algorithm, thus only in
the simplest cases can we derive the bifurcation curves. We present a non-rigorous ad-hoc method for
computing bifurcation curves for more complicated quantum walks.

The remainder of this paper is organized as follows. The definition of the quantum walk as well as a
discussion of stationary phase approximations is given in section 2. In section 3 we explicitly write the
multivariate polynomial system corresponding to the bifurcation curves and discuss solution techniques.
In section 4 we compute bifurcation curves for several examples of two-dimensional quantum walks.

2 Definitions and Method of Stationary Phase

We begin by defining the quantum walk on a group, as first introduced by Acevedo et. al. [1]:
Definition 2.1 Let (G, ·) be a group, let Σ ⊂ G with |Σ| = n, and let U be an n×n unitary matrix. The
quantum walk operator Q : `2(G×Σ)→ `2(G×Σ) corresponding to the triple (G,Σ,U) may be written
as the composition Q = T (I⊗U) where for g ∈ G and σ ∈ Σ, T : |g〉|σ〉 7→ |σ · g〉|σ〉. We denote this
correspondence as Q↔ (G,Σ,U).
The ordered pair (G,Σ) can be thought of as an undirected Cayley graph which admits loops [7]. In
this paper, we will primarily consider G = Z2. Let Cd ⊂ Zd be the set of unit directional vectors and let
C̃d = Cd ∪{0}. Two of the unitary matrices which we will use in this paper are the Grover matrix and
the Hadamard matrix. If In is the n×n identity matrix and 1n is the n×n matrix filled with ones, then we

define the n×n Grover matrix as Gn =
2
n 1n− In. The Hadamard matrix is defined as H = 1√

2

[
1 1
1 −1

]
.

One way to view this quantum walk operator is as a linear combination of translations. Let ψ ∈ `2(G)
and let Tσ : `2(G)→ `2(G) be a translation operator which acts as Tσ (ψ(g)) = ψ(σ−1 · g) with σ ∈ Σ.
Then we can visualize Q acting on the vector Ψ = [ψσ1 , ...,ψσn ] as follows:

QΨ =

Tσ1

. . .
Tσn

UΨ (1)

When G = Zd , we can gain a better understanding of Q through the application of a discrete Fourier
transform. If θ ∈ Rd , the multi-dimensional Fourier transform acts on a translation as:

F [Tσ ψ](θ) = eiσ ·θ F [ψ](θ) (2)
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Applying a Fourier transform to equation (1) and using equation (2), we find:

F [QΨ](θ) =

eiσ1·θ

. . .
eiσn·θ

UF [Ψ] = M(θ)F [Ψ](θ) (3)

We refer to M(θ) as the multiplier matrix of the quantum walk operator.
After t steps of the quantum walk, the Fourier transform of the state becomes

F [QtΨ](θ) = M(θ)tF [Ψ](θ). Thus, if we wish to study long term behavior of the quantum walk, we
must take large powers of the multiplier matrix. If {λm(θ)}n

m=1 is the set of eigenvalues of M(θ), then
we can write the transform of a quantum walk with initial condition Ψ0 as:

M(θ)tF [Ψ0](θ) =
n

∑
m=1

λ j(θ)
tEm(θ) (4)

Here, the Em(θ) are scaled eigenvectors of M(θ) whose weights depend on the initial condition. Since
M(θ) is unitary, we can write λm(θ) = eiHm(θ) where Hm : [−π,π]n → R. To return to the original
domain, we conduct an inverse Fourier transform on equation (4):

Qt
Ψ0 =

1
(2π)d

n

∑
m=1

∫
‖θ‖∞≤π

Em(θ)exp [i(tHm(θ)− x ·θ)]dθ (5)

Here, ‖·‖∞ refers to the `∞ norm [15]. We let x = Xt such that our spatial variable of interest is now
X ∈ Rd . This scales position space such that we will no longer be observing a linearly expanding spatial
region but a stationary one. Substituting this into equation (5), we have:

Qt
Ψ0 =

1
(2π)d

n

∑
m=1

∫
‖θ‖∞≤π

Em(θ)exp [it(Hm(θ)−X ·θ)]dθ (6)

We use the method of stationary phase [5] to asymtptotically evaluate the integrals in equation (6).
Consider the following d-dimensional oscillatory integral:

I(t) =
∫
Rd

g(x)eit f (x)dx. (7)

where g and f are smooth functions with compact support. Consider the set:

S =

{
x ∈ Rd : ∇ f (x) = 0,det

([
∂ 2 f

∂x j∂xk

])
6= 0
}

whose members we refer to as points of stationary phase or nondegenerate critical points. If ∇ f (x) = 0
and the determinant of the Hessian matrix also vanishes, we say that x is a degenerate critical point. We
state two results from Stein [21] relating this set to an approximation of I(t) in equation (7):

Proposition 2.1 Suppose f has no critical points in the support of g. Then I(t) =O(t−n) for every n≥ 0.

This proposition says that if the set of critical points is empty, then the integral I(t) in equation (7)
decays superpolynomially (often this superpolynomial decay can be shown to be exponential). If the set
of critical points is nonempty, then we can use the following proposition:
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Proposition 2.2 If f has a nondegenerate critical point at x0 and g is supported in a sufficiently small
neighborhood of x0, then I(t) = O(t−d/2).

Thus, if the set of nondegenerate critical points is nonempty, then the integral I(t) decays polynomially,
slower than the decay dictated by proposition 1.

We apply these propositions to the integrals in equation (6). Let f j(θ) = H j(θ)−X ·θ correspond
to the expression in the exponential for the jth integrand. This integral has a critical point if ∇ f j(θ) = 0,
or if ∇H j(θ) = X for some θ ∈ [−π,π]d . By letting θ vary in this range we can trace out a region
in Rd on which the amplitudes decay polynomially. In this way, ∇H j maps the region of integration
[−π,π]d into the spatial domain on which the quantum walk resides. This representation requires that
we can analytically solve for the eigenvalues λm(θ) of M(θ) which is not always possible, especially for
quantum walks with many states. Moreover, this parametric representation is often complicated and it is
not immediately apparent how to connect this representation to the more general structure of the region
of polynomial decay, or even to a mathematical description of its boundaries.

We mention that a critical condition for the stationary phase propositions is the smoothness imposed
on f and g. In the context of proposition 2.1, a discontinuity in an nth derivative of one of these func-
tions will lead to a slower polynomial rate of decay than the superpolynomial decay guaranteed by the
proposition for smooth amplitude and phase functions. It is not trivial to show that the eigenvalues and
eigenvectors of the multiplier matrix are smooth. The following proposition was proved by Rainer [19]:

Proposition 2.3 Let A(t) = [Ai j(t)]1≤i, j≤n be a C -curve of normal complex matrices, i.e., the entries Ai j

belong to C (R,C), such that PA is normally nonflat. Then there exists a global C -parameterization of
the eigenvalues and the eigenprojections of A.

Here, C is a subalgebra of C∞ (Rainer notes that it may be true that C =C∞), which the entries of M(θ)
can be shown to belong to. However, this proposition only applies to families of normal matrices whose
entries are smothly parameterized by a single variable. Families of normal matrices parameterized by
more than one variable may not admit a smooth selection of eigenvalues (e.x. consider the family of

Hermitian matrices
[

x y
y −x

]
). This means that for one-dimensional quantum walks, we can provably

distinguish between a region of polynomial decay and a region of superpolynomial decay. This distinc-
tion is not guaranteed for higher dimensional quantum walks, although in the examples that follow a
smooth selection of eigenvalues and eigenvectors can be demonstrated. In any case, for general higher
dimensional quantum walks a lack of smoothness in the eigenvalues and eigenvectors of the multiplier
matrix would not negate existence of a distinct region of polynomial decay bounded by algebraic curves,
it simply does not guarantee qualitatively faster rates of decay outside this region.

3 Multivariate Polynomial System

Instead of focusing our attention on the locus of critical points, we illustrate a method to construct
algebraic surfaces representing the bifurcation curves of the quantum walk. These bifurcation curves will
more appropriately describe the structure of the region of polynomial decay than does the aforementioned
critical point parameterization. The degenerate critical points θ of the integral in equation (6) must
simultaneously satisfy:

det
([

∂ 2Hm

∂θ j∂θk

]
(θ)

)
= 0 (8)

∇Hm(θ) = X (9)



P. Kuklinski & M. Kon 63

Using implicit differentiation, one can represent equations (8) and (9) as multivariate polynomial
equations in terms of derivatives of the characteristic polynomial. Let p0(λ ;θk) be the characteristic
polynomial of M(θ) in λ . Since the entries of M(θ) are linear combinations of terms of the form eiθk ,
we can write a multivariate polynomial p(λ ;xk) such that the roots in λ of p(λ ;eiθk) coincide with the
eigenvalues of M(θ) (i.e. the roots of p0(λ ;θk) in λ ). Thus, if λ (θ) is an eigenvalue of M(θ), we have:

p(λ (θ);xk(θ)) = 0 (10)

Recall that λ (θ) = eiH(θ), and that we are searching for derivatives of H(θ) to use in equations (8) and
(9). As such, let us take a derivative of this equation with respect to θ j:

∂λ

∂θ j
= i

∂H
∂θ j

eiH(θ) = i
∂H
∂θ j

λ (θ) (11)

From here, let us refer to partial derivatives via subscripts (not to be confused with the indexing of
eigenvalues in the previous section) and suppress mention of θ . Rearranging terms, we find:

H j =
λ j

iλ
(12)

If X = (X1, ...,Xn), we can substitute equation (12) into equation (9) to find:

λ j− iλX j = 0 (13)

If we take a second derivative of equation (11) with respect to θk, we have:

λ jk = i(H jkλ +H jλk) (14)

By isolating H jk and substituting the expression in equation (12) for H j, we may write:

H jk =
i

λ 2

(
λ jλk−λ jkλ

)
(15)

We can similarly substitute equation (15) into equation (8) such that:

det
([

λ jλk−λ jkλ
])

= 0 (16)

Both equations (13) and (16) may be used to describe the bifurcation curves, however these equations
are dependent on derivatives of λ (θ). We can solve for these derivatives in terms of the characteristic
polynomial by taking derivatives of equation (10) with respect to θ j. Let us take a first derivative with
respect to θ j:

∂ p
∂λ

∂λ

∂θ j
+

∂ p
∂x j

∂x j

∂θ j
= 0 (17)

Noticing that ∂x j
∂θ j

= ix j, we can rearrange terms to write:

λ j =−
ip jx j

pλ

(18)

This can be substituted into equation (13) to find:

p jx j +λ pλ X j = 0 (19)
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We take an additional derivative of equation (17) with respect to θk. If j 6= k, then we can write:(
∂ pλ

∂λ

∂λ

∂θk
+

∂ pλ

∂xk

∂xk

∂θk

)
∂λ

∂θ j
+

∂ p
∂λ

∂ 2λ

∂θ j∂θk
+

(
∂ p j

∂λ

∂λ

∂θk
+

∂ p j

∂xk

∂xk

∂θk

)
∂x j

∂θ j
= 0 (20)

If we rearrange terms and substitute equation (18), we have:

λ jk =
x jxk

p3
λ

[
pλλ p j pk− pλk p j pλ − pλ j pk pλ + p jk p2

λ

]
(21)

Meanwhile, if j = k then we must account for an additional term:(
∂ pλ

∂λ

∂λ

∂θ j
+

∂ pλ

∂x j

∂x j

∂θ j

)
∂λ

∂θ j
+

∂ p
∂λ

∂ 2λ

∂θ 2
j
+

(
∂ p j

∂λ

∂λ

∂θ j
+

∂ p j

∂x j

∂x j

∂θ j

)
∂x j

∂θ j
+

∂ p
∂x j

∂ 2x j

∂θ 2
j
= 0 (22)

Expanding this expression and making similar substitutions, we find:

λ j j =
x j

p3
λ

[
pλλ p2

jx j−2pλ j p j pλ x j + p j j p2
λ

x j + p j p2
λ

]
(23)

We can substitute equations (21) and (23) into equation (16) and eliminate the pλ denominator factors to
arrive at a polynomial equation in λ and {xk}, which we term the exponential Hessian determinant.

The equations (10), (16), and (19) make up a system of n+ 2 multivariate polynomial equations in
2n+ 1 variables; these are λ , {xk}, and {Xk}. Using a Gröbner basis calculation [6], we can reduce
this system to a single equation of n spatial variables {Xk}. Unfortunately the exponential Hessian
determinant is often prohibitively large and the system requires significant computational resources to
solve. However, we present a more feasible naı̈ve method of bifurcation curve computation which, while
not rigorously supported, generates curves that bear striking visual resemblance to the quantum walk
boundaries. Consider the polynomial system f (x) = ∑

n
k=0 akxk = 0 and g(x) = ∑

n
k=0 bkxk = 0. We wish

to find a resultant multivariate polynomial F(ak,bk) such that selections of coefficients {ak,bk} which
admit simultaneous solutions of the polynomial system in x also satisfy the equation F(ak,bk) = 0. Such
a resultant may be computed using the determinant of a 2n×2n Sylvester matrix [22]:

Res( f ,g;x) = F(ak,bk) = det



an an−1 . . . a0 0

bn bn−1 . . . b0 0
. . .

0 an . . . a1 a0
. . .

0 bn . . . b1 b0
. . .

. . . . . . . . . . . .
an . . . a0
bn . . . b0


In this notation, x is the variable being cancelled. There are two shortcomings with this formula. First,
this resultant will often overrepresent solutions in the system in the sense that solutions of F(ak,bk) = 0
in {ak,bk} may not admit solutions in the corresponding polynomial system. For example, consider the
system f (x)= ax+b= 0 and g(x)= cx+d = 0 such that the resultant satisfies F(a,b,c,d)= ad−bc= 0.
If we let a = c = 0, then the resultant equation is trivially satisfied, but any nonzero choice of b or d leads
to a polynomial system with no solutions. The second shortcoming of this procedure is that the resultant
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will not take into account any a priori restrictions on the cancelled variable. For instance in our current
quantum walk example, we will require that the cancelled variables satisfy |λ | = |xk| = 1. It is often
difficult to discern which portions of the generated bifurcation curves satisfy these conditions, as these
variables are absent from the resultant. Though this method overrepresents solutions of the polynomial
system, it will not miss any of the solutions and we use our non-rigorous judgment to hypothesize which
ones truly exist in the system.

We use a simple extension of this method to solve a larger system of polynomial equations. Suppose
we have a system of n polynomial equations in n variables with a set of variable coefficients. Let us
write these polynomials as p0,k(x1, ...,xn) where 1 ≤ k ≤ n. Using the Sylvester matrix determinant, let
p1,k(x1, ...,xn−1) = Res(p0,k, p0,n;xn) for 1 ≤ k ≤ n− 1, in other words we choose a base polynomial
p0,n and compute resultants with the remaining polynomials in the system by cancelling xn. The new
system {p1,k} has n− 1 equations and n− 1 variables. We can continue inductively to arrive at a total
multivariate resultant polynomial in the coefficient variables. As with the Gröbner basis calculation, even
small systems in multiple variables can lead to extremely large resultant polynomials. To combat this,
we factor the intermediate polynomials in the system to create a tree of possible solutions, these putative
solutions being more feasible to derive. Also, depending on the structure of the system, different choices
of base polynomials as well as different orders of variable cancellations can often lead to significant
changes in computation time.

Up to this point, the naı̈ve method we have described for computing bifurcation curves is legitimate,
we need only take care to ensure that we judiciously select correct bifurcation curves from the overrep-
resentation provided. However, the exponential Hessian determinant still provides a massive roadblock
and renders this naı̈ve method just as intractible as the Gröbner basis method. It has been observed that
replacing the exponential Hessian determinant with the far simpler equation pλ = 0 results in bifurcation
curve solutions which visually bound the regions of polynomial decay, though it is not clear how these
curves can be rigorously justified. If we let pλ = 0, then there are no restrictions on the spatial variables
X j in equation (20), and these are the variables of interest. A Gröbner basis calculation would fail to
render spatial bifurcation curves in this case while the naı̈ve method generates outputs. We have found
that letting pλ = 0 be the first base polynomial, and cancelling the variables {xk} before cancelling λ

leads to more digestible factors for the algorithm. In the subsequent section, we will clearly state when
the displayed bifurcation curves result from the Gröbner basis calculation and when they are derived
from the naı̈ve method.

4 Examples

In this section, we compute parameterizations of regions of polynomial decay for five different two-
dimensional quantum walks and compute bifurcation curves where possible. In the following cases,
characteristic polynomials of the multiplier matrix will often be symmetric quartic polynomials. Suppose
we have a characteristic polynomial

p0(λ ;x,y) = λ
4 + x(θ)λ 3 + y(θ)λ 2 + x(θ)λ +1

such that x and y are functions of a vector θ . This polynomial can be factored as:

p0(λ ;x,y) = (λ 2 +a(θ)λ +1)(λ 2 +b(θ)λ +1)

where a+ b = x and ab+ 2 = y, otherwise a(θ) = 1
2

[
x(θ)±

√
x(θ)2−4y(θ)+8

]
and b(θ) takes the

opposite sign. These quadratic factors allow for an explicit representation of the eigenvalues, but recall
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that λ = eiH and we are searching for ∇H. Using implicit differentiation and previous equations, we find
that the following holds:

∇H(θ) =
a(θ)∇x(θ)−∇y(θ)

(2a(θ)− x(θ))
√

4−a(θ)2
(24)

This formula will grant us a parametric representation for the region of polynomial decay in these exam-
ples.

4.1 Four-State Grover Walk

We first consider the two-dimensional four-state Grover walk (Z2,C2,G4). Recall that the 4×4 Grover
matrix is written as:

G4 =
1
2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


We write the corresponding multiplier matrix M(θ1,θ2) as:

M(θ1,θ2) =
1
2


−eiθ1 eiθ1 eiθ1 eiθ1

e−iθ1 −e−iθ1 e−iθ1 e−iθ1

eiθ2 eiθ2 −eiθ2 eiθ2

e−iθ2 e−iθ2 e−iθ2 −e−iθ2


The characteristic polynomial of the multiplier matrix thus satisfies:

p0(λ ;θ1,θ2) = (λ 2−1)(λ 2 +(cosθ1 + cosθ2)λ +1)

We pause to note that the solution λ = ±1 causes a breakdown in the stationary phase approximation
in that the only critical point that exists corresponding to this eigenvalue is at (X1,X2) = (0,0) and is
degenerate. This phenomenon is known as localization and has been explored by several authors [10]
[11] [14] [20]; we will not elaborate any further on it in this paper. We will term constant solutions to
the characteristic polynomial as trivial.

As the non-trivial portion of the characteristic polynomial is quadratic, we can explicitly solve for
the non-trivial eigenvalues and use a reduced version of equation (24) to construct a parameterization of
the region of polynomial decay:

(X1,X2) =

(
sinθ1√

4− (cosθ1 + cosθ2)2
,

sinθ2√
4− (cosθ1 + cosθ2)2

)
(25)

It was shown in Kuklinski [16] that this parameterization traces the circle 2X2
1 +2X2

2 ≤ 1 in R2, albeit in
an atypical way.

In this example, we can in fact solve for the bifurcation curve. By letting x1 = eiθ1 and x2 = eiθ2 , we
can write the characteristic equation in a different way:

p(λ ;x1,x2) = 2x1x2λ
2 +(x1x2 +1)(x1 + x2)λ +2x1x2 = 0

The corresponding exponential Hessian determinant is small enough that the system may be efficiently
reduced via Gröbner basis computation. The result is as we expect:

2X2
1 +2X2

2 = 1 (26)
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Figure 1: (Left) 250 steps of the four-state Grover walk in initial position 1
2 |0,0〉(|R〉+ |L〉− |U〉− |D〉)

(Center) Parameterization of the four-state Grover walk region of polynomial decay (Right) Bifurcation
curve of the four-state Grover walk.

4.2 Five-State Grover Walk

We explore a variant of the four-state Grover walk [3] with the operator Q↔ (Z2,C̃2,G5) The 5× 5
Grover matrix is written as:

G5 =
1
5


−3 2 2 2 2
2 −3 2 2 2
2 2 −3 2 2
2 2 2 −3 2
2 2 2 2 −3


We write the corresponding multiplier matrix M(θ1,θ2) as:

M(θ1,θ2) =
1
5


−3eiθ1 2eiθ1 2eiθ1 2eiθ1 2eiθ1

2e−iθ1 −3e−iθ1 2e−iθ1 2e−iθ1 2e−iθ1

2 2 −3 2 2
2eiθ2 2eiθ2 2eiθ2 −3eiθ2 2eiθ2

2e−iθ2 2e−iθ2 2e−iθ2 2e−iθ2 −3e−iθ2


The characteristic polynomial of this multiplier matrix satisfies

p0(λ ;θ1,θ2)

= (λ −1)
(

λ
4 +

2
5
(3c1 +3c2 +4)λ 3 +

2
5
(4c1 +4c2 +2c1c2 +5)λ 2 +

2
5
(3c1 +3c2 +4)λ +1

)
= 0

where c1 = cosθ1 and c2 = cosθ2. Notice that the eigenvalue λ = 1 leads to localization in this walk as
well.

Using equation (24), we can write an explicit parameterization of the region of polynomial decay:

(X1,X2) =

 3as1−4s1−2s1c2√
(9c2

1 +9c2
2−2c1c2−16c1−16c2 +16)(4−a2)

,

3as2−4s2−2s2c1√
(9c2

1 +9c2
2−2c1c2−16c1−16c2 +16)(4−a2)

 (27)
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Figure 2: (Left) 250 steps of the five-state Grover walk in initial position
1

2
√

5
|0,0〉(|R〉+ |L〉+ |U〉+ |D〉− |S〉) (Right) 250 steps of the five-state Grover walk in initial

position 1
2 |0,0〉(|R〉+ |L〉− |U〉− |D〉).

Here, s1 = sinθ1, s2 = sinθ2, and a = 1
5

(
3c1 +3c2 +4±

√
9c2

1 +9c2
2−2c1c2−16c1−16c2 +16

)
. No-

tice that in this case, the choice of plus/minus in a(θ1,θ2) results in different regions of polynomial
decay.

To find the bifurcation curves of this quantum walk, we rewrite the characteristic polynomial:

p(λ ;x1,x2) = 5x1x2λ
4 +(3x2

1x2 +3x1x2
2 +8x1x2 +3x1 +3x2)λ

3

+(x2
1x2

2 +4x2
1x2 + x2

1 +4x1x2
2 +10x1x2 +4x1 + x2

2 +4x2 + x2
2 +1)λ 2

+(3x2
1x2 +3x1x2

2 +8x1x2 +3x1 +3x2)λ +5x1x2 = 0

In this example, the exponential Hessian determinant is several pages long, so a Gröbner basis calculation
is computationally infeasable. We choose to illustrate the naı̈ve method for this system. Let P1 = p,
P2 = p1x1 +λ pλ X1, P3 = p2x2 +λ pλ X2, and P4 = pλ . We first cancel x1 from this system by letting P4
be the base polynomial:

Res(P1,P4,x1) = (λ −1)2(λ +1)2Q1

Res(P2,P4,x1) = λ
2(λ +1)2Q2

2

Res(P2,P4,x1) = λ
2(λ +1)2Q2

3

The Qk polynomials are irreducible. We can omit factors of λ in the second two equations as |λ |= 1. If
we substitute the factor λ =±1 from one of these equations, substitute into the remaining two, and then
cancel x2 from the resulting system, the generated curves do not visually fit the system, so we ignore this
option and proceed with solving the system {Q1,Q2,Q3}. By choosing Q2 to be the base polynomial and
eliminating x2 from the system, we find:

Res(Q1,Q2,x2) = λ
40X12

2 (λ −1)14(λ +1)32R1

Res(Q2,Q3,x1) = λ
40(15λ

4 +20λ
3 +58λ

2 +20λ +15)2(λ +1)32
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Figure 3: (Left/Center) Parameterizations of the five-state Grover walk regions of polynomial decay
(Right) Bifurcation curve prediction of the five-state Grover walk.

If we substitute λ =−1 from the second equation into R1, then we find:

0 = 405(X8
1 +X8

2 )−648(X6
1 +X6

2 )+(378−180X2
1 X2

2 )(X
4
1 +X4

2 ) (28)

+(1416X2
1 X2

2 −96)(X2
1 +X2

2 )+830X4
1 X4

2 −596X2
1 X2

2 +9

The remaining factors from the second polynomial do not satisfy |λ | = 1 so we ignore these. Although
this is not proof, equation (28) visually replicates the boundary of both regions of polynomial decay.
Notice that although we have found two distinct regions of polynomial decay in the parametric repre-
sentation, this irreducible bifurcation curve traces the boundaries of both regions. We note that the outer

curve has a maximum distance of
√

3
5 and a minimum distance of 1√

2
from the origin, while the inner

curve has a maximum distance of 1√
3

and a minimum distance of 1√
10

from the origin. These maxima
are attained on the cardinal axes, and the minima are attained on the axes y =±x.

4.3 Triangular Quantum Walk

We now analyze the triangular Grover walk with operator Q↔ (Z2,Σ,G3) where
Σ = {(0,1),(−1,−1),(1,−1)}. The multiplier matrix of this operator may be written as:

M(θ1,θ2) =
1
3

 −eiθ2 2eiθ2 2eiθ2

2e−i(θ1+θ2) −e−i(θ1+θ2) 2e−i(θ1+θ2)

2ei(θ1−θ2) 2ei(θ1−θ2) −ei(θ1−θ2)


Letting xk = eiθk , the eigenvalues of this matrix satisfy the following equation:

p(λ ;x1,x2) = 3x1x2
2λ

3 + x2(x2
1 + x1x2

2 +1)λ 2− (x2
1x2

2 + x1 + x2
2)λ −3x1x2 = 0

The structure of this polynomial does not lend itself to an analytic solution of λ (θ) without invoking the
cubic formula [9]. We do not write the formula here, but we may graphically display this parameteriza-
tion.

Furthermore, the Hessian determinant is too large to facilitate a Gröbner basis calculation for the
bifurcation curves. However, using the naı̈ve elimination procedure outputs the bifurcation curve:

4X2
1 +3X2

2 +2X2−1 = 0 (29)

This equation represents an ellipse centered at (X1,X2) = (0,−1
3) with vertical major axis length 4

3 and
horizontal minor axis length 2√

3
.



70 Bifurcation Curves of Two-Dimensional Quantum Walks

Figure 4: (Left) 250 steps of the triangular quantum walk in initial position 1√
3
|0,0〉(i|U〉+ |RD〉− |LD〉)

(Center) Parameterization of the triangular quantum walk region of polynomial decay (Right) Bifurcation
curve prediction of the triangular quantum walk.

4.4 Hexagonal Quantum Walk

We now illustrate an example of a quantum walk which traverses a hexagonal lattice on Z2. The hexag-
onal or honeycomb lattice has been the subject of a few quantum walk investigations [12] [17]. Let us
define the set:

Σ = {(2,0),(−1,1),(−1,−1),(−2,0),(1,−1),(1,1)}

Consider the quantum walk operator Q↔ (Z2,Σ,X ⊗G3) where X is the Pauli-X gate [8] X =

[
0 1
1 0

]
.

In this case, amplitudes will travel on two separate hexagonal lattices. To be clear, this hexagonal Grover
walk takes place on a subset of Z2 spanned by the elements of Σ. The multiplier matrix of this quantum
walk takes the form:

M(θ1,θ2) =
1
3



0 0 0 −e2iθ1 2e2iθ1 2e2iθ1

0 0 0 2ei(θ2−θ1) −ei(θ2−θ1) 2ei(θ2−θ1)

0 0 0 2e−i(θ1+θ2) 2e−i(θ1+θ2) −e−i(θ1+θ2)

−e−2iθ1 2e−2iθ1 2e−2iθ1 0 0 0
2ei(θ1−θ2) −ei(θ1−θ2) 2ei(θ1−θ2) 0 0 0
2ei(θ1+θ2) 2ei(θ1+θ2) −ei(θ1+θ2) 0 0 0


The characteristic polynomial of the multiplier matrix of this quantum walk operator is written as:

p0(λ ,θ1,θ2) = (λ 2−1)
(

λ
4− 2

9
[4cos2θ2 +8cos3θ1 cosθ2−3]λ 2 +1

)
The factor λ 2− 1 indicates that localization is present in this walk. The remaining eigenvalues satisfy
the following equation:

p(λ ;x1,x2) = 9x3
1x2

2λ
4− (4x6

1x3
2 +4x6

1x2 +4x3
1x4

2−6x3
1x2

2 +4x3
1 +4x3

2 +4x2)λ
2 +9x3

1x2
2 = 0

Since the characteristic polynomial is quadratic in λ 2, we can efficiently parameterize the region of
polynomial decay:

(X1,X2) =

(
12sin3θ1 cosθ2√

81− (4cos2θ2 +8cos3θ1 cosθ2−3)2
,

4sin2θ2 +4cos3θ1 sinθ2√
81− (4cos2θ2 +8cos3θ1 cosθ2−3)2

)
(30)
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Figure 5: (Left) 125 steps of the hexagonal quantum walk in initial position
1√
6
|0,0〉(|R〉+ |LU〉+ |LD〉+ |L〉+ |RD〉+ |RU〉) (Center) Parameterization of the hexagonal quantum

walk region of polynomial decay (Right) Bifurcation curve prediction of the hexagonal quantum walk.

Again, the characteristic polynomial is too large for a Gröbner basis calculation, but the naı̈ve method
leads to two possible bifurcation curves:

X2
1 +3X2

2 −1 = 0 (31)

X2
1 +3X2

2 −2 = 0 (32)

These equations represent two concentric ellipses with major axis of length
√

3 times the length of the
minor axis. It seems likely that the larger ellipse in equation (31) is a bifurcation curve of the system, but
it is uncertain whether the smaller ellipse in equation (32) is a legitimate bifurcation curve.

4.5 Four-State Hadamard Walk

In the final example we consider a quantum walk governed by a different unitary matrix. Let Q↔
(Z2,C2,H⊗H) such that the corresponding multiplier matrix becomes:

M(θ1,θ2) =
1
2


eiθ1 eiθ1 eiθ1 eiθ1

e−iθ1 −e−iθ1 e−iθ1 −e−iθ1

eiθ2 eiθ2 −eiθ2 −eiθ2

e−iθ2 −e−iθ2 −e−iθ2 e−iθ2


The characteristic polynomial of this matrix becomes:

p0(λ ,θ1,θ2) = λ
4− i(sinθ1 + sinθ2)λ

3− (cos(θ1 +θ2)+1)λ 2 + i(sinθ1 + sinθ2)λ +1 = 0

This is not a symmetric quartic polynomial, but the parametrization of the region of polynomial decay
may stille be solved using a modification of equation (24):

(X1,X2) =

(
as1 + s1+2√

((c1 + c2)2−4c1+2 +4)(4−a2)
,− as2 + s1+2√

((c1 + c2)2−4c1+2 +4)(4−a2)

)
(33)

Here, we let s1+2 = sin(θ1 +θ2), c1+2 = cos(θ1 +θ2), and a =−1
2

[
c1 + c2±

√
(c1 + c2)2−4c1+2 +4

]
.

By letting x1 = eiθ1 and eiθ2 , we can rewrite the characteristic polynomial:

p(λ ;x1,x2) = 2x1x2λ
4− (x1x2 +1)(x1− x2)λ

3− (x1x2 +1)2
λ

2 +(x1x2 +1)(x1− x2)λ +2x1x2 = 0
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Figure 6: (Left) 250 steps of the Hadamard walk in initial position 1√
2
|0,0〉(|R〉+ |U〉) (Center) Parame-

terization of the Hadamard walk region of polynomial decay (Right) Partial bifurcation curve prediction
of the Hadamard walk.

This characteristic polynomial is too large for a Gröbner basis calculation, and even the naı̈ve method
cannot generate a complete set of outputs. However, this algorithm is capable of generating the equations
for the two main ellipses in the region of polynomial decay:

3X2
1 −2X1X2 +2X1 +3X2

2 −2X2 = 0 (34)

3X2
1 −2X1X2−2X1 +3X2

2 +2X2 = 0 (35)

The major axes of these ellipses are parallel to the line x = y and have length 1 while the minor axes have
length

√
2

2 . Though it did not appear in the calculation, we also predict that the bifurcation curve set also
includes a rhombus and a 16th order algebraic curve.

5 Conclusion

In this paper we have detailed a process to compute bifurcation curves of two-dimensional quantum
walks, as well as describe a non-rigorous algorithm to trace bifurcation curves for more complicated
examples which are difficult to solve analytically. In addition, we have provided parameterizations of
the regions of polynomial decay. These methods are not unique to two-dimensional quantum walks, and
with sufficient computational resources could potentially be extended to computing bifurcation surfaces
for higher-dimensional quantum walks.
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