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We introduce a framework to describe probabilistic models in Bell experiments, and more gener-
ally in contextuality scenarios. Such a scenario is a hypergraph whose vertices represent elementary
events and hyperedges correspond to measurements. A probabilistic model on such a scenario as-
sociates to each event a probability, in such a way that events in a given measurement have a total
probability equal to one. We discuss the advantages of this framework, like the unification of the
notions of contexuality and nonlocality, and give a short overview of the results obtained in Ref. [2].

The main goal of physics is to understand how Nature works, and usually, physicists proceed as
follows: first, observe a phenomenon, then propose a model that explains it, extract predictions from
this model, and, finally, confront these predictions with experimental data. Repeat until the experimental
results match the theoretical predictions. In some situations, however, it can be fruitful to limit the model
to a minimum. This idea was recently investigated in the paradigm of device-independence[4]. There,
an experimenter has access to a physical device with classical commandsx ∈ X and classical results
a∈ A and chooses not to model the inner workings of the device any further. This might seem futile at
first sight: how can one hope to say anything meaningful when only observing conditional probabilities
of the formP(a|x), corresponding to the probability of obtaining outcomea when applying command (or
measurement)x? The key idea is to considern physical devices used in a space-like separated way byn
experimenters. Then, one has access to the conditional probability distributionP(a1 . . .an|x1 . . .xn) with
ai andxi referring to the outcomes and measurements of theith party, where the no-signaling principle
constrainsP non-trivially. Stronger restrictions can be imposed by requiring the devices to be compat-
ible with quantum theory, or even to be classical. In this paper, we summarize a framework allowing
to describe suchBell-typescenarios in a very general way, and that extends naturally to contextuality
scenarios. See [2] for more details.

1 Contextuality scenarios

We define acontextuality scenarioto be a hypergraphH = (V,E) whose verticesv∈V correspond to the
events of the scenario, and the hyperedgese= {v1, · · · ,vk} ∈ E are subsets ofV that should be thought
of as the measurements of the scenario. We demand in additionthat all the vertices belong to at least
one hyperedge. Such scenarios have been studied before in quantum logic where they are known as “test
spaces” [19]. Aprobabilistic modelon the scenarioH is then given by an assignmentp : V → [0,1]
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Figure 1: The 16 events and 12 measurements of the CHSH scenario, B2,2,2

of a probabilityp(v) to each eventv∈V satisfying the normalization condition∑v∈e p(v) = 1 for each
measuremente∈ E. Let us denote byG(H) ⊆ [0,1]|V | the set of probabilistic models for the scenario
H. By construction, this set is a polytope, the set of “states”on H in the terminology of test spaces. Let
us note that this approach was inspired by the framework developed in [5], but that a crucial difference
between the two works is that we explicitly work with normalized probability distributions, instead of
subnormalized ones.

2 Bell-type scenarios

An important application of this framework concerns Bell-type scenarios wheren parties have access
to n distinct devices. For simplicity, we restrict ourselves tothe scenarioBn,m,k, where then devices
all havem different settings andk possible outcomes. In particular,B2,2,2 will correspond to the usual
CHSH scenario. We now describe the hypergraphBn,m,k. Its vertices are the(mk)n events of the form
(a1 . . .an|x1 . . .xn). The trickier part is to characterize the measurements of the scenario. Usually, one
would define a measurement to be the set of events of the form(·|x1 . . .xn) for fixed settingsxi . However,
our framework includes additional measurements: a measurement in the scenarioBn,m,k corresponds
to any strategy applied by then parties,possibly coming together, where each of the parties measures
their device. More specifically, a measurement ofBn,m,k is given by a temporal ordering of the parties:
i1 ≤ i2 ≤ . . . ≤ in where partyi1 first chooses a measurement settingxi1 and obtains an outcomeai1.
Then, partyi2 chooses a settingxi2, possibly depending onxi1 andai1, and obtains an outcomeai2. This
process is repeated until the last party performs their measurement. Note that the strategy can be adaptive,
meaning that partyik can choose their measurement setting to be a function of the previous outcomes
xi1, . . . ,xik−1. In fact, in the most general kind of measurement allowed by our definition of Bell scenario,
even the order of the parties may be adaptive in the sense thatit may depend on previous outcomes. The
scenario obtained this way is displayed on Fig. 1 for the caseof B2,2,2. Similarly general measurements
have also been considered in [18].

The main advantage of definingBn,m,k as above is thatG(Bn,m,k) is exactly the standard no-signaling
polytopeNS(Bn,m,k), defined as correlations satisfying

∑
ai+1...an

p(a1 . . .an|x1 . . .xn) = p(a1 . . .ai |x1 . . .xi)

for any splitting of then parties into two groups. This may seem surprising, since some hyperedges of
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Bn,m,k correspond to correlated measurements among the parties, where they communicate to each other.
However, these measurements are exactly the ones which guarantee the no-signaling properties of the
allowed probabilistic models. The proof thatG(Bn,m,k) = NS(Bn,m,k) is straightforward [2] and here we
only give the intuition in the case ofB2,2,2. We wish to show that the normalization of the hyperedges
(i.e. that the total probability of the events in any measurement is 1) is equivalent to the no-signaling con-
dition. A typical no-signaling condition for CHSH reads:p(00|00)+ p(01|00) = p(00|01)+ p(01|01)
(corresponding to the first row on Fig. 1). This can be derivedfrom the normalization of the measurement
“00” consisting of events of the form(·|00) and implying thatp(00|00)+ p(01|00) = 1− p(10|00)−
p(11|00) and of the event{(10|00),(11|00),(00|01),(01|01)} implying thatp(00|01)+ p(01|01) is also
equal to 1− p(10|00)− p(11|00). Hence, normalization implies no-signaling and the converse property
can also be checked in the same fashion.

3 Classical and quantum models

There are two natural restrictions that one might want to impose on the devices: either of a classical, or a
quantum nature, leading respectively to the notions ofclassicalandquantumprobabilistic models. First,
a deterministicmodel onH is a probabilistic model (hence satisfying normalization)such thatp(v) ∈
{0,1} for all eventsv ∈ V. Then, classical models are given by convex combinations ofdeterministic
models:p(v) = ∑λ qλ pλ (v), whereqλ is a probability distribution, and everypλ is a deterministic model
on H. The set of classical models onH is denoted byC(H). If H is a Bell-type scenario, thenC(H) is
the standard Bell polytope. IfH is a general contextuality scenario, classical models are those that can
be explained by noncontextual hidden variables [8].

A quantum modelp on H is a probabilistic model such that there exist a Hilbert space H , a nor-
malized density matrixρ ∈ B(H ), and for each vertexv∈V, a projectorPv such that∑v∈ePv = 1H for
each measuremente∈ E that give rise top via the Born rule:p(v) = tr(ρPv), for each eventv. The set
of quantum models onH is denoted byQ (H). Contrary toC(H) andG(H), the quantum set is usually
not a polytope, and a recurring question in the literature isto find some “natural principle” that limits
correlations observable in Nature to be those in the quantumset. SinceQ (B2,2,2)( NS(B2,2,2), it is clear
that the no-signaling principle alone is not sufficient to restrict the correlations to be quantum.

4 The quantum set from a natural principle

Several such candidate principles have been suggested and investigated: Information Causality [16],
Macroscopic Locality [15], the nontriviality of communication complexity [6], and more recently, Local
Orthogonality [10]. The latter is particularly interesting in the sense that it is a genuinely multipartite
principle, a necessary condition in order to recover the quantum set [11]. The framework we introduced
above turns out to be remarkably well-suited for the study ofLocal Orthogonality (LO). The principle
defines a notion of orthogonality between events of a Bell scenario, which in the language of this work
is expressed as follows: two eventsu andv are orthogonal if they belong to a common measurement,
i.e., there exists a measuremente∈ E such that{u,v} ⊆ e. Then, a setC = {v1, · · · ,vl} ⊆V of events
is said to beorthogonal if its elements are pairwise orthogonal. The principle finally says that the
sum of the individual probabilities of a set of orthogonal events is at most one,∑v∈C p(v) ≤ 1. The
set obtained this way is a polytope denoted byLO1(H). In our framework, the LO principle turns to
be equivalent to theConsistent Exclusivityprinciple for general contextuality scenarios [3, 12], hence
we will focus on the study of the latter. A natural strengthening of the CE principle assumes that if a
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given probabilistic model is “physical”, then the same should apply to an arbitrary numberk of copies
of this model. Then, Consistent Exclusivity should also be satisfied by the model corresponding to these
k copies. Copies of a scenario can be defined via thek-fold Foulis-Randallproduct of the scenarioH
with itself, H⊗k. The Foulis-Randall product [9] is especially relevant in the context of Bell scenarios:
scenarios with many parties can be obtained by taking the product of several single-party scenarios. In
particular,Bn,m,k = B⊗n

1,m,k. Now, the strengthening of CE says that the resulting product probabilistic

modelp⊗k ∈ G(H⊗k) should also satisfy CE. We denote byCEk(H) the set of probabilistic models onH
such thatp⊗k ∈ CE1(H⊗k). Note that for Bell scenariosCEk(Bn,m,k) = LOk(Bn,m,k), where the latter set
was defined in [10]. In the limit of an arbitrary number of copies, this gives rise to the setCE∞(H), which
would ideally match the setQ (H), were the CE principle sufficient to recover quantum correlations. We
note that another way to naturally strengthen CE would be to allow for wirings of boxes. However, it
has been proved in [10] that these leave the setCE∞(H) invariant. It turns out that characterizing the set
CE∞(H) of correlations satisfying the CE principle is quite challenging. While it is reasonably easy to
verify thatQ (H)⊆ CE∞(H)⊆ G(H), saying much more is difficult.

Our framework, however, allows for a reformulation ofCE∞(H) in terms of graph invariants. In-
troduce thenon-orthogonality graph G= NO(H) of the contextuality scenarioH to be the undirected
graph with vertex setV(H), and such that{u,v} is an edge ifu andv do not belong to a common mea-
suremente∈ E(H). Then, one can show [2] that a probabilistic modelp belongs toCE∞(H) if and
only if Θ(NO(H), p) = 1 whereΘ(G, p) refers to the Shannon capacity of the graphG weighted by the
distribution p. This characterization can then be used to prove thatCE∞(H) is in general strictly larger
thanQ (H) 1, and that there even exist contextuality scenarios for which CE∞(H) is not convex [2].

5 Hierarchies

Another feature of our framework is that the various sets of correlations we mentioned can be approxi-
mated through some hierarchies of relaxations. Such hierarchies have been intensely studied in convex
optimization (see Ref. [13] for a recent review) and have been extended to noncommutative polynomial
optimization [7, 17], including a characterization of quantum correlations in Bell scenarios [14].

Let us first introduce the notion of moment matrix associatedwith a contextuality scenarioH =
(V,E). A moment matrix of orderk associated withH is a symmetric matrixMk whose rows and columns
are indexed bywordsof size at mostk written in the alphabet formed byV. More explicitly, if V =
{v1, . . . ,vn}, the rows of the moment matrix will be indexed by:

/0,v1, . . . ,vn,v1v1,v1v2, . . . ,v1vn, . . . ,vnvn,v
3
1, . . . ,v

k
n,

wherevk
i is the word obtained by concatenatingk times the lettervi . Here, /0 refers to the empty string,

and we choose the normalizationMk( /0, /0) = 1. We denote byV∗ the set of strings of arbitrary size onV.
A matrix Mk will be acertificate of order kfor the probabilistic modelp onH if it is positive semidefinite,
Mk � 0, and ifMk(v, /0) = p(v) for everyv∈V.

The matricesMk can display additional “natural” properties that we define now: Normalization,
Orthogonality and Commutativity. A moment matrix isnormalizedwith respect to the contextuality
scenarioH = (V,E) if for every two strings~v,~w∈V∗, and every hyperedgee∈E, the following condition

1In fact, a proof that the setsCE∞(H) andQ (H) are not equal was found by Miguel Navascués before this formalism had
been set up.
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holds:

∑
u∈e

M(~vu,~w) = M(~v,~w). (Normalization)

A matrix is orthogonalwith respect toH if for every e∈ E, and~v,~w∈V∗, the fact thatv,w∈ e (v 6= w)
implies that

M(~vv,~ww) = 0 ∀~v,~w∈V∗. (Orthogonality)

Finally, a matrix iscommutativeif for any two strings~v,~w∈V∗, and every permutationπ of size|~v|,

M(π(~v),~w) = M(~v,~w), (Commutativity)

whereπ(~v) is the string obtained by permuting the letters of~v with the permutationπ.
We are now in a position to define sets of models for which thereexist certificates satisfying some of

these properties. These sets actually form hierarchies of sets(Sk)k≥1, such thatSk ⊆ Sk−1 is the set of
probabilistic models with a certificate of orderk. The hierarchies we will introduce admit limits that we
denote byS∞ :=

⋂

k≥0Sk. Let us define three hierarchies of setsGk,Qk andCk as follows. A probabilistic
model p on H belongs toGk(H) if there exists a certificate of orderk for p satisfying Normalization; it
belongs toQk(H), if there exists a certificate of orderk satisfying Normalization and Orthogonality; and
it belongs toCk(H) if there exists a certificate of orderk satisfying Normalization, Orthogonality and
Commutativity. Our results show that these hierarchies converge to the expected sets.

Theorem 1 (Convergence of the hierarchies). For every contextuality scenario H= (V,E),

G∞(H) = G1(H) = G(H),

Q∞(H) = Q (H),

C∞(H) = C|V |(H) = C(H).

Proof. The fact thatG1(H) = G(H) holds by definition. Moreover, ifp∈ G(H), then one can construct
an explicit certificate of any order by fixing:M(v1 . . .vn,w1 . . .wm) := ∏n

i=1 p(vi)∏m
j=1 p(w j), which is of

rank 1 and clearly satisfies Normalization.
Given a quantum modelp∈ Q (H), together with its associated Hilbert spaceH , density matrixρ ∈

B(H ), and projectorsPv for eachv∈V, one can defineM(v1 . . .vn,w1 . . .wm) := tr
(

ρ ∏n
i=1Pvi ∏1

j=mPwj

)

.
It is straightforward to check that this (infinite) matrix ispositive semidefinite and satisfies both Normal-
ization and Orthogonality. Alternatively, one needs to show that if such a certificate of orderk can be
associated withp for anyk ≥ 0, then it it possible to find a quantum model forp. This is done via the
Gelfand-Naimark-Segal (GNS) construction by interpreting the infinite matrixM as a∗-algebraic state
through the assignmentφ(Pv1 . . .Pvn) = M(v1 . . .vn, /0) on the∗-algebra with generators{Pv,v∈V}, and
relationsPv = P2

v = P∗
v and∑v∈ePv = 1 for all e∈ E. The GNS constructions then turns it into a quantum

model satisfyingp(v) = φ(Pv) for all v∈V. Full details of the proof are presented in Ref. [2].
Consider finally a modelp∈ C∞(H). By definition, if it is not empty,C∞(H) is contained inQ∞(H) =

Q (H). Because of the commutativity property and the fact that repeating a letter does not change the
value of the entry (itself a consequence of Normalization and Orthogonality), it is clear that the sequence
(Ck(H))k≥1 converges after at most|V| steps (since no “new” word can be formed with more letters).
The projectorsPv obtained from the GNS construction commute and can all be diagonalized in the same
orthonormal basisΛ = {|λ 〉}. Expressing the associated density matrixρ ∈ B(H ) in the same basis, and
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denoting byρ̃ the diagonal density matrix with the same diagonal asρ , it is clear thatρ̃ gives rise to the
same model asρ . Writing ρ̃ = ∑λ∈Λ qλ |λ 〉〈λ |, one obtains that for allv∈V, p(v) = ∑λ∈Λ qλ 〈λ |Pv|λ 〉,
where the distribution(〈λ |Pv|λ 〉)λ∈Λ corresponds to a deterministic model onH. Hence,p(v) ∈ C(H).

Conversely, for any classical modelp∈ C(H), there exist a probability distribution(qλ )λ∈Λ and de-
terministic modelspλ onH for eachλ ∈ Λ such thatp(v) = ∑λ∈Λ qλ pλ (v). Define a Hilbert space with
basis{|λ 〉 : λ ∈ Λ}, projectorsPv = ∑λ∈Λ pλ (v)|λ 〉〈λ | for all v∈V, and the diagonal density matrixρ =
diag(qλ1

,qλ2
, . . .). It is straightforward to check that the matrixM defined byM(v1 . . .vn,w1 . . .wm) :=

tr
(

ρ ∏n
i=1 Pvi ∏

m
j=1Pwj

)

is a certificate of any order satisfying Normalization, Orthogonality and Com-
mutativity.

The hierarchies(Gk)k≥1 and(Ck)k≥1 both converge after a finite number of steps, and it is natural
to ask whether the same holds for(Qk)k≥1. It is in fact an open question related to difficult problems in
the theory ofC∗-algebras whether there exist contextuality scenariosH for which the hierarchy needs
infinitely many steps to converge (see Section 8.3 of [2] for details).

6 Link between CE∞(H) and the quantum set

In the same way asCE∞(H) can be characterized via the Shannon capacity of the non-orthogonality
graph NO(H), weighted by the distributionp, the first level of the quantum hierarchy,Q1(H), can be
characterized by the Lovász numberϑ of NO(H), weighted byp. More precisely, a probabilistic model
p on the contextuality scenarioH, belongs toQ1(H) if and only if ϑ(NO(H), p) = 1.

For every graphG, and any choice of weightp for the vertices ofG, it is known thatΘ(G, p) ≤
ϑ(G, p), which immediately implies that for every contextuality scenario,Q1(H)⊆ CE∞(H). This proves
that the Local Orthogonality principle is not sufficient to recover the set of quantum correlations for
arbitrary contextuality scenarios, since in generalQ (H)( Q1(H).

A possible strengthening of the CE principle is inspired by arecent paper [20]. One may take it
as part of a principle to assume for granted that quantum correlations are physicalfor any contextuality
scenario Hand then only look for a postulate that excludes the existence of probabilistic models outside
Q (H). Using this idea, it is possible to show that the set of probabilistic models satisfying this extension
of CE is no longerCE∞(H), but ratherQ1(H) (which is not equal toQ (H) in general). However, asking
that a property like the existence of quantum models holds for any contextuality scenario may not be as
natural as asking that it holds for Bell-type scenarios only.

To summarize, we have introduced a new framework for contextuality and nonlocality, that allows
to treat Bell scenarios as a particular case of contextuality scenarios. This approach significantly refines
that of [5], since it includes the normalization of the probabilistic models; only this allows us to recover
Bell scenarios as special cases. Moreover, the descriptionof Bell scenarios is instrinsically related to the
existence of correlated measurements among the parties, and these are naturally described in terms of the
Foulis-Randall product of contextuality scenarios. This framework is well-suited for studing correlations
based on orthogonal events, such as those characterized from the Consistent Exclusivity principle or the
Local Orthogonality principle. In particular, we defined the non-orthogonality graph of a contextuality
scenario, and used it to characterize whether a probabilistic model belongs toCE∞(H) in terms of a
graph invariant. We further defined a hierarchy of relaxations that converge to the quantum set, and used
it to prove that in generalQ (H)( CE∞(H). We believe that there exist other connections between this
framework and other formalisms, that may be of great use for understanding the set of quantum models.
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