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University of Oxford

Quantinuum, 17 Beaumont Street
Oxford, OX1 2NA, United Kingdom

boldizsar.poor@quantinuum.com

Robert I. Booth
University of Edinburgh
robert.booth@ed.ac.uk

Titouan Carette
Centre for Quantum Computer Science,

Faculty of Computing, University of Latvia,
Raina 19, Riga, Latvia, LV-1586

titouan.carette@lu.lv

John van de Wetering
University of Amsterdam
john@vdwetering.name

Lia Yeh
University of Oxford

Quantinuum, 17 Beaumont Street
Oxford, OX1 2NA, United Kingdom

lia.yeh@cs.ox.ac.uk

We present a smorgasbord of results on the stabiliser ZX-calculus for odd prime-dimensional
qudits (i.e. qupits). We derive a simplified rule set that closely resembles the original rules
of qubit ZX-calculus. Using these rules, we demonstrate analogues of the spider-removing
local complementation and pivoting rules. This allows for efficient reduction of diagrams
to the affine with phases normal form. We also demonstrate a reduction to a unique form,
providing an alternative and simpler proof of completeness. Furthermore, we introduce a
different reduction to the graph state with local Cliffords normal form, which leads to a
novel layered decomposition for qupit Clifford unitaries. Additionally, we propose a new
approach to handle scalars formally, closely reflecting their practical usage. Finally, we have
implemented many of these findings in DiZX, a new open-source Python library for qudit
ZX-diagrammatic reasoning.

1 Introduction

A helpful tool to reason about quantum computation is the ZX-calculus [22, 21], a graphi-
cal language which can represent any qubit computation. It has been used, for example, in
measurement-based quantum computing [36, 4, 53], error-correcting codes [34, 37, 29], quan-
tum circuit optimisation [7, 33, 50], classical simulation [51, 19, 52], quantum natural language
processing [20, 54], quantum chemistry [61], and quantum machine learning [67, 74].

All the above results use the qubit ZX-calculus, but recent years have seen a surge of interest
in studying quantum computation using d-dimensional systems, called qudits. Qudit-based
quantum computation has been experimentally realised in a variety of physical systems, such
as ion traps [60, 45], photonic devices [18], and superconducting devices [11, 69, 71, 44, 40].
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On the theory side, there has been work in translating work on qubits to qudits in quantum
algorithms [68], fault-tolerant quantum computing [42, 15], quantum communication [25], and
more [31, 38, 12, 55].

This raises the question of how we can use the ZX-calculus to reason about qudit systems.
There exist several variations of the ZX-calculus that extend it to higher-dimensional qudits.
Many have focused on the specific case of qutrit systems [65, 39, 65, 62], with applications
in quantum computation [70, 63], and complexity theory [62]. Recent papers have focused on
the stabiliser fragment of odd prime dimensional qudits, including Ref. [24] that explores error
correction and detection in this context, and also Ref. [13] mentioned below. Some proposals
capture all finite or infinite dimensions [59, 66, 57, 30], but lack many of the nicer features of the
qubit calculus. Of particular importance to our paper is Ref. [13], which constructs a calculus
for odd prime dimensions while retaining many of these desirable properties and establishing
completeness for the stabiliser fragment. Despite these advancements, practical utilisation of
the rewrites in these calculi has received limited attention, leaving room for further exploration
and development.

To understand the usefulness of rewrite rules, we can take a look at the original qubit
calculus. In qubit ZX, we can distinguish between ‘standard’ rules — spider fusion, identity
removal, state copying, bialgebra, and colour change — and ‘harder’ rules — supplementarity,
Euler angle colour permutation, and the rules dealing with the triangle generator. The standard
rules, with minor modifications, were those originally discovered [21], and they are the most
commonly used in practice. For instance, all the rewrites used in the PyZX compiler [49] can
be proved using just these standard rules [33]. These rules are sufficient to prove completeness
for the stabiliser fragment of the ZX-calculus [1], while the harder rules were developed to prove
completeness for larger fragments. This suggests that carefully studying the qudit stabiliser
fragment could be a fruitful avenue for developing useful qudit ZX rewrite rules.

Recall that the stabiliser fragment corresponds to Clifford computation, which is an efficiently
simulable subset of quantum computation [41] that forms the basis of many quantum protocols,
such as error-correcting codes [48, 47], superdense coding [10], quantum teleportation [9], and
quantum key distribution [8]. Completeness of the qubit stabiliser fragment of ZX was proved
in [1], while for qutrits it was proved in [65]. Recently, completeness was proved for the stabiliser
fragment for any odd-dimensional prime qudit dimension in [13]. The proofs of all these results
work essentially the same way: first, they show that any state diagram can be reduced to a Graph
State with Local Cliffords (GSLC), and then they show that any pair of GSLCs implementing
the same state can be rewritten to a common reduced form.

In this paper, we take this last complete calculus for prime-dimensional qudits [13] as a
starting point, and extend it in several ways:

1. We simplify the rules to a smaller set that has a clearer relation to the original qubit
stabiliser calculus, and for most of which we can prove the necessity.

2. We incorporate a well-tempered axiomatisation for our calculus following the convention
of [27], removing most of the scalars in our rewrite rules, and thus, simplifying our calcu-
lations.

3. We introduce a new approach to handle scalars, formalising the often-used convention of
writing scalar numbers alongside diagrams.

4. We discover the qupit versions of the spider-removing local complementation and pivoting
rules found in [33] and generalised to qutrits in [62]. These rules serve as the foundation
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for optimisation and simulation strategies in the qubit setting [33, 50, 7, 49]. Our findings
demonstrate that these strategies can be adapted to work for prime-dimensional qudits,
thus extending their applicability beyond qubits.

5. Using these rewrite rules, we simplify the original completeness proof of [13] by reducing
the number of case distinctions required.1 Specifically, we demonstrate that these rewrites
reduce diagrams to a normal form that we call the affine with phases (AP) form, which
originally appeared in [32]. Then, given an AP-form diagram, we show how to reduce it
further to a unique form, resulting in completeness.2

6. Additionally, we demonstrate how to rewrite diagrams into a graph-state with local Cliffords
(GSLC) form, which yields a layered decomposition for Clifford unitaries similar to the
one proposed for qubits in [33].

Our findings highlight that qupit stabiliser diagrams share many familiar properties with
their qubit counterparts. Furthermore, many results regarding optimisation and normal forms
extend seamlessly to the odd prime-dimensional qudit setting.

Finally, we have implemented many of these findings in DiZX, a new open-source Python
library for qudit ZX-diagrammatic reasoning based on PyZX [49].3

Related work Subsequent to submission, we were made aware of a related, parallel work,
Ref. [28], which also concerns well-tempered axiomatisations for qudit ZX-calculi.

2 The qupit Clifford ZX-calculus

In this section, we introduce the qudit stabiliser ZX-calculus for odd prime dimensions.
We let p denote an arbitrary odd prime, and Zp = Z/pZ the ring of integers modulo p. Since

p is prime, Zp is a field, implying that every non-zero element in Zp has a multiplicative inverse.
We denote the group of units (i.e. invertible elements) as Z∗

p := Zp \ {0}. We also define the
Legendre symbol, for x ∈ Z∗

p, as follows:
(︃
x

p

)︃
=

{︄
1 if ∃y ∈ Z∗

p s.t. x= y2;
−1 otherwise;

(1)

The Hilbert space of a qupit is H = span{|m⟩ | m ∈ Zp} ∼= Cp. Letting ω := e
i 2π

p be a p-th
primitive root of unity, we can write down the following standard operators Z andX, occasionally
known as the clock and shift operators: Z |m⟩ := ωm |m⟩ and X |m⟩ := |m+1⟩ for any m ∈ Zp.
Notably, ZX = ωXZ.

A Pauli operator is defined as any operator of the form ωkXaZb for k,a,b ∈ Zp. We consider
Pauli operator trivial if it is proportional to the identity. Each Pauli operator has a spectrum
given by {ωk | k ∈ Zp}, and we denote |k :Q⟩ as the eigenvector of a Pauli operator Q associated
with the eigenvalue ωk. It follows from the definition of Z that we can identify |k : Z⟩ = |k⟩.

1In addition to being aesthetically and ergonomically preferable, reducing the number of case distinctions also
makes the proof more easily verifiable. During the preparation of this manuscript, we identified and communicated
several errors and omissions in [13], which were subsequently fixed.

2A similar normal form for qubits was independently found in [53]. It is worth noting that our formulation was
already employed for qubits in the Oxford Quantum Software course prior to the preprint [53] appeared online.

3See https://github.com/jvdwetering/dizx.

https://github.com/jvdwetering/dizx
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The collection of all Pauli operators is denoted P1 and called the Pauli group. For n ∈ N∗,
the generalised Pauli group Pn is defined as ⨂︁n

k=1 P1. Of particular importance to us are
the (generalised) Clifford groups. These groups are defined for each n ∈ N∗ as the (unitary)
normaliser of Pn. In other words, a unitary operator C on H⊗n belongs to the Clifford group
if, for any P ∈ Pn, the conjugation CPC† is also an element of Pn. While every Pauli operator
is Clifford, there exist non-Pauli Clifford operators.

In the case of prime qudit dimensions, the group of Clifford unitaries can be generated by
three gates: the Hadamard gate defined as H := ∑︁

k∈Zp
|k : Z⟩⟨k :X|, the S gate defined as S :=∑︁

k∈Zp
ω2−1k(k−1) |k : Z⟩⟨k : Z|, and the CX gate defined as CX := ∑︁

j,k∈Zp
|j,j+k : Z⟩⟨j,k : Z| [42].

Note that in this context the Hadamard gate is sometimes also just called the Fourier transform.
Stabiliser quantum mechanics is operationally described as a fragment of quantum mechanics

where the allowed operations include initialisations and measurements in the eigenbases of Pauli
operators, as well as unitary operations from the generalised Clifford groups.

2.1 Generators

We define the symmetric monoidal category ZXStab
p as having objects N and morphisms generated

by the following diagrams, for any x,y ∈ Zp and s ∈ C:
x, y

m
... n

... :m→ n
x, y

m
... n

... :m→ n : 1 → 1 : 1 → 1
: 0 → 2 : 2 → 0 : 2 → 2 s : 0 → 0

In addition to the “standard” generators of ZX, we have introduced a new generator represented
by a light-grey bubble with a scalar written inside it, which we refer to as an explicit scalar.
These explicit scalars offer a convenient way to streamline the often cumbersome reasoning
related to scalars that is typically involved in many graphical completeness papers. Note that
the presence of the red X-spider as a generator is in principle unnecessary since the Z-spider
surrounded by Hadamard boxes is equivalent to it. However, our goal is not to provide a minimal
set of generators, but rather a convenient one.

Diagrams in our framework can be composed in two ways: sequentially, by connecting output
wires to input wires, or vertically, by “stacking” diagrams, corresponding to the tensor product
operation which is defined as n⊗m= n+m on objects.

2.2 Interpretation

The interpretation of a ZXStab
p -diagram is defined on objects as JmK :=Cpm , and on the generators

as:
s

x, y

m
... n

...

{
= p

n+m−2
4

∑︂
k∈Zp

ω2−1(xk+yk2) |k : Z⟩⊗n ⟨k : Z|⊗m J K =
∑︂

k∈Zp

|k : Z⟩⟨k : Z|

s
x, y

m
... n

...

{
= p

n+m−2
4

∑︂
k∈Zp

ω2−1(xk+yk2) |−k :X⟩⊗n ⟨k :X|⊗m J K =
∑︂

k∈Zp

|k : Z⟩⟨k :X|

r z
=

∑︂
k∈Zp

|kk : Z⟩
r z

=
∑︂

k∈Zp

⟨kk : Z|
r z

=
∑︂

k,ℓ∈Zp

|k,ℓ : Z⟩⟨ℓ,k : Z|

and J s K = s.
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There are a couple of things we should remark about this interpretation. First, the definition
of the X-spider does not follow the standard convention. It is defined in such a way that it maps
X-eigenstates to their additive inverse (modulo p). This definition is used in order to satisfy
the property of flexsymmetry [16, 17], which allows us to treat diagrams as undirected graphs.
Second, note that the interpretation of phases on the spiders has an additional 2−1 factor which
is necessary for the later stated Euler and Gauss axioms to be sound. This factor is considered
modulo p, so for instance, for p = 5 we have 2−1 ≡ 3. Finally, the spiders are defined with a
global scalar factor of pn+m−2

4 to follow the well-tempered normalisation convention of [27]. This
allows us to present the axioms later on with significantly fewer scalar factors floating around.

While the conventional qudit ZX-calculus represents spiders using a (d−1)-dimensional vec-
tor [59], we employ a different approach by leveraging a useful property of the Clifford group
for prime-dimensional qudits: the phases of its spiders are pm-th roots of unity raised to poly-
nomial functions with a maximum degree of 2 [26]. This property enables us to capture the
essence of Clifford spiders using only two parameters: the coefficients of the linear and square
terms. As a result, we develop a more elegant and intuitive framework for reasoning about
stabiliser maps, requiring only two parameters in any odd-prime dimension. To establish a con-
nection between our convention and the original qudit ZX-calculus, we define a mapping where
a spider with phase parameter (x,y) corresponds to the spider described in [59] with parameter
−→α := (α1, · · · ,αd−1), where αk = ω2−1(xk+yk2).

For any a ∈ Zp, the diagrams
a, 0

and
a, 0

correspond to the single qupit Pauli

Za and Xa gates, respectively. Similarly, the diagrams
a, b

and
a, b

correspond to
Clifford unitaries for any a,b ∈ Zp. As a result, we designate spiders with a phase (a,0) as Pauli
spiders, and spiders with a phase (a,b) as Clifford spiders. Furthermore, spiders with a phase
(0, b) are referred to as purely-Clifford spiders, while spiders with a phase (a,z) where z ̸= 0 are
termed strictly-Clifford spiders. When the parameters of a spider are all zero, i.e. x= y = 0, we
call the spider phase-free and we denote it without label as , and similarly for the X-
spider. Lastly, we designate the phase-free X-spider as the antipode since it implements
the map |k : Z⟩ ↦→ |−k : Z⟩.

Contrary to the qubit case, the qudit Hadamard gate is not self-inverse. Instead, it follows
the property that four successive applications of the Hadamard gate results in the identity, that
is, H4 = I. Therefore, the inverse of the Hadamard gate is given by H3. To maintain the
clarity and simplicity of diagrams, we introduce the shorthand notation - :=
to represent the inverse of the Hadamard box.

2.3 Axioms

We present the axioms of our calculus in Figure 1. In addition to these concrete rules, our
calculus also follows the structural rules of a compact-closed PROP. This property implies
that “only connectivity matters”, allowing us to treat our diagrams as undirected graphs while
preserving their interpretation as linear maps.

These rewrite rules are essentially a simplified version of the complete set of rewrite rules
found in [13]. We can show these rules are equivalent to those found in that paper, by deriving
the missing axioms.
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=
(Special)...p-1

=
(Bigebra)

=
(Fusion)

a, b ...
...

c, d ...
...

a+c,
b+d

...

...

...

...

1, 0
=

(Copy)
1, 0

1, 0

a, b

=
(Colour)...

a, b...
...

... =
(M-Elim) ...z

a, b

-z-1a, z-2b

=
(Euler) 0, 1

0, -1

0, 1

Stabiliser axioms Scalar axioms

=
(Zero)

00

=
(One)

1

λ µ λµ=
(Prod)

1, 0

=
(Nul)

0

(︁
b
p

)︁
i
- p-1

2

0, b

=
(Gauss)

√
p

a, 0

c, d

=
(Omega) ω2-3ac

ω2-2a2d

=
(Fusion)

a, b ...
...

c, d ...
...

a+c,
b+d

...

...

...

...

{︄
if b= 0

Figure 1: The rewrite rules of the qudit stabiliser ZX-calculus for any odd prime dimension p.
Here a,b,c,d ∈ Zp, z ∈ Z∗

p and λ,µ ∈ C.
(︂

b
p

)︂
is the Legendre symbol, as defined in Equation (1).

The dotted square in One depicts the empty diagram.

Proposition 1. For any z ∈ Z∗
p and a,c,d ∈ Zp, ZXStab

p proves the following axioms from [13]:

=
(Z-Elim)

=
(X-Elim)

=
(Char)

=
(Shear)

=
(Mult)...z

0, z-1

0, z

0, z-1

c, da, 0 a, 0 c + ad, d

0, z-1

ω2-2ac+2-3a2d

a, 0
=

(Copy)
a, 0

a, 0

...p

Note that all the proofs in the paper can be found in the appendices.
We also change the presentation of scalars, but we can rely on the reduction in [13] of the

scalar fragment to the elementary scalar fragment:
Definition 2. An elementary scalar is a diagram A ∈ ZXStab

p [0,0] which is a (possibly empty)
tensor product of diagrams from { λ , s, 0 1, 0 , , , 0, 1 | λ ∈ C,s ∈ Zp}.

Lemma 3. ZXStab
p is complete for elementary scalars. Explicitly, if s : 0 → 0 is an elementary

scalar, then s JsK= .
With these results, we can see that every derivation of [13] is also valid in our calculus, so

that the rules of Figure 1 are complete. For this reason, we freely use the lemmas of [13] in the
rest of this paper.

In deriving Mult and Shear in Proposition 1, as well as in the reduction to AP-form of
Section 3, we make extensive use of the following “strictly-Clifford” state colour-change rules:
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Lemma 4. Strictly-Clifford states can all be represented both using Z- and X-spiders: for any
a ∈ Zp and b ∈ Z∗

p,

=
a, b

-ab-1, b-1

ab-1, -b-1

=
a, b

-ab-1, b-1

-ab-1, -b-1

This lemma gives a qupit version of the well-known qubit ZX rule ∝
± π

2 ∓ π
2

.
On the way to proving this lemma, we also prove the qupit Clifford version of supplementarity,

originally introduced for the qubit case in Ref. [56]:
Lemma 5. For any b ∈ Z∗

p,

=0, b

0, -b
=0, b

0, -b

A generalisation of this rule is known to be necessary, but not sufficient, for the completeness of
the Clifford+T fragment in the qubit case [56, 46].

2.4 A word on scalars

Handling scalars in a graphical language is always a delicate issue. Scalars are essential to guar-
antee the soundness of rewriting rules but can sometimes be seen as a cumbersome bureaucracy
that can be omitted in practice and recovered through a quick normalisation check at the end of
a calculation. As a result, some textbooks prefer to work up to non-zero scalars [23], and in [1],
a first proof of completeness is presented without scalars, which are addressed in a subsequent
article [2]. There is no perfect solution to this situation.

In this paper, we adopt an intermediary approach that can be extended to other graphical
languages: the introduction of grey scalar boxes. This approach bears resemblance to how
the ZH-calculus handles scalars [3], although in the ZH-calculus, the scalar boxes are directly
representable within the calculus itself, requiring no extension as described here. Given any prop
P, the set of scalars P[0,0] forms a commutative monoid [43]. We view P[0,0] as a monoidal
category with a single object, where the ⊗ and ◦ operations are identified. We then consider the
product category P[0,0] × P, which also forms a prop, with arrows represented as pairs (s,f),
where f : n → m is an arrow of P and s is a scalar. Graphically, such a pair is depicted as
a diagram representing f together with a floating grey scalar box containing s. The principal
equations governing the behaviour of scalar boxes are then One and Prod. In P[0,0] × P,
grey boxes and diagrams are treated independently. To achieve the desired axiomatization of
P, we need to quotient the equational theory by the equation s JsK= for all s : 0 → 0. This
can be accomplished by introducing rules that guarantee the desired result for a family of well-
chosen elementary scalars. Then it is enough to show that any diagram 0 → 0 can be reduced
to elementary scalars as we do in Lemma 3.

3 Normal forms

In this section, we show that we can simplify stabiliser diagrams into two distinct normal forms:
the affine with phases (AP) form and the graph state with local Cliffords (GSLC) form. The
AP form can be efficiently transformed into a unique reduced form, offering an alternative proof
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of completeness. On the other hand, the GSLC form is particularly useful for rewriting and
decomposing stabiliser unitaries.

3.1 Graph simplifications

Before reducing the diagrams to our normal forms, we first need to simplify them into a graph-
like form. In this form, the diagrams consist only of Z-spiders and H-edges. To define the qupit
graph-like diagrams, we first define H-boxes as:

:=x
...x

where x ∈ Zp is the weight of the H-box. Unlike the multipliers in [13], H-boxes are undirected,
thus, we can treat diagrams that contain only generators and H-boxes as undirected (weighted)
graphs.
Proposition 6. ZXStab

p proves the following equations:
yx = x

y
= x + y

0 =1 =

- xy

yx = xy-1

Since edges that contain H-boxes are central to the subsequent proofs, we define H-edges,
similarly to the qubit case, as a blue dashed line with the corresponding weight on top:

:=... ... ... ...xx (2)

Definition 7. A ZX-diagram is graph-like when:
1. All spiders are Z-spiders.
2. Z-spiders are only connected via H-edges.
3. There are no self-loops.
4. Every input or output is connected to a Z-spider.
5. Every Z-spider is connected to at most one input or output.
Using standard techniques [33], it is evident that any ZX-diagram can be transformed into a

graph-like form. This transformation involves several steps: performing a colour change on all
X-spiders, fusing all Z-spiders, removing self-loops, and introducing identity elements to ensure
that each input and output is correctly connected to a Z-spider. Once in graph-like form, the
diagram can be represented as an open, weighted graph, where the edge weights are elements of
Zp and each vertex is labelled by a phase (a,b) ∈ Z2

p.
Now that we have a graph-like diagram, we can differentiate between boundary spiders, those

directly connected to an input or output, and interior spiders, those that are only connected to
other spiders. Subsequently, we demonstrate that many of the internal spiders can be removed
from a diagram using similar techniques to the qubit case [33].

The local complementation simplification enables the removal of a strictly-Clifford interior
spider by introducing phases and wires to the spiders it is connected to. This technique is
analogous to the qubit version described in [33].
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Lemma 8 (Local complementation simplification). For any z ∈ Z∗
p and for all a,αi,βi,ei,wi,j ∈

Zp where i, j ∈ {1, . . .k} such that i < j we have:
a, z

e1
e2

ek

α1, β1

α2, β2

αk, βk

w2k

w12
w1k

· · ·

· · ·
· · ·

· · ·

≈
γ1, δ1

γ2, δ2

γk, δk

g2,k
g1,2

g1,k

· · ·

· · ·
· · ·

· · ·

Here γi = αi −eiaz
-1, δi = βi −z-1e2

i , and gi,j = wij −z-1eiej .
We also have an analogue of the pivot rewrite rule. This rule enables us to eliminate con-

nected interior Pauli spiders by introducing additional phases and connections to the spiders
they are connected to.

First, we prove a simplified version of pivoting:
Lemma 9. The following version of pivoting is derivable in ZXStab

p :

=
a, 0 b, 0...

...

...

...
...

... e1

ei

f1

fj

ϵ

-ϵ-1be1, 0

-ϵ-1bei, 0

-ϵ-1af1, 0

-ϵ-1afj , 0

...
...

...

...
...

...

-ϵ-1eifj

-ϵ-1e1f1
-ϵ-1e1fj

-ϵ-1eif1

ω2-3ϵ-1ab

Here ϵ ∈ Z∗
p and all the other variables are allowed arbitrary values.

Then the general version can be derived from that:
Lemma 10 (Pivoting simplification). General pivoting is derivable in ZXStab

p :

a, 0 b, 0
ϵ

α1, β1
αk, βk

· · ·

e1
ek

f1 fk

· · · · · ·
α2, β2

· · ·

e2

f2
g1,k

g1,2 g2,k

=
γ1, δ1

γ2, δ2

γk, δk

· · ·
· · · · · ·

· · ·

ω2-3ϵ-1ab

Here again ϵ ∈ Z∗
p with every other variable on the left-hand side allowed arbitrary values. On

the right-hand side γi = αi − ϵ-1(afi + bei), δi = βi −2ϵ-1eifi, and gi,j = −ϵ-1(eifj +ejfi).

3.2 AP-form

The above results suggest that through the application of local complementation and pivoting,
it is possible to transform any state diagram (a diagram without inputs) into a graph-like
diagram where only Pauli spiders remain internal spiders, and they are exclusively connected to
boundary spiders. This is achieved through a two-step process. Firstly, any internal spider that
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is Clifford is eliminated through local complementation. This ensures that only Pauli spiders
remain internal. Secondly, given that the diagram contains only Pauli internal spiders, any
connected pair of internal spiders can be removed using pivoting. We give a name to this type
of diagram:
Definition 11. We say that a graph-like diagram is in Affine with Phases form (AP-form)
when:

• There are no inputs;
• The internal spiders are Pauli spiders;
• Internal spiders are only connected to boundary spiders.
We refer to this class of diagrams as “Affine with Phases” because they correspond to states

described by an affine subspace of Z basis states, with an additional phase function applied to
the output. This characterisation is supported by the following lemma:
Lemma 12. A general non-zero n-qupit diagram in AP-form is described by the diagram:

a1, 0

α1, β1

α2, β2

αn, βn

ak, 0

e1,1
ek,1

e1,2

e1,n

ek,n

ek,2
...

f1,2

f1,n
f2,n

... (3)

where al,αi,βi,eh,i,fi,j ∈ Zp with l ∈ {1, . . . ,k} and i, j ∈ {1, . . . ,n} such that i < j. The inter-
pretation of this diagram is (up to some non-zero scalar) equal to a state∑︂

Ex⃗=a⃗

ωϕ(x⃗) |x⃗⟩ (4)

where E is the weighted bipartite adjacency matrix of the internal and boundary spiders, a⃗
describes the Pauli phases of the internal spiders, and ϕ is a phase function that describes the
connectivity and phases of the boundary spiders:

E =

⎡⎢⎢⎢⎢⎣
e1,1 · · · e1,n

e2,1 · · · e2,n

...
...

ek,1 · · · ek,n

⎤⎥⎥⎥⎥⎦ , a⃗=

⎡⎢⎢⎣
a1
...
ak

⎤⎥⎥⎦ , ϕ(x⃗) =
∑︂

i,j∈{1,...,n}
i<j

2-3xiαi +2-2x2
iβi −2-3fi,jxixj

Notably, states described by AP-form diagrams correspond to the stabiliser normal forms
described in Ref. [64].

With AP-form diagrams, we can prove a qupit version of the Gottesman-Knill theorem, which
states that we can efficiently sample from the probability distribution of a stabiliser computation.
Let us consider an AP-form diagram represented by (E, b⃗,ϕ). When we measure this state in the
computational basis, we observe that the phase function ϕ has no impact on the measurement
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outcomes, allowing us to disregard it. Hence, we can describe the state as N∑︁
Ex⃗=a⃗ |x⃗⟩, where

N is a normalisation constant. This state represents a uniform superposition of the states |x⃗⟩
that satisfy the equation Ex⃗= a⃗.

To sample from such states, we need to generate solutions to this equation uniformly at
random. Efficiently achieving this involves finding any solution Ex⃗′ = a⃗ and then obtaining a
basis v⃗1, . . . , v⃗ℓ for the linear space {Ex⃗= 0⃗}. We can then return x⃗′ +∑︁ℓ

i biv⃗i, where the bi ∈ Zp

are chosen uniformly at random.
AP-form diagrams also enable us to provide an alternative, more direct proof of the com-

pleteness of ZXStab
p through reduction to a unique normal form. In the context of graphical

calculi, completeness means that the rewrite rules of the calculus can prove any true equation.
In other words, if JAK = JBK, then it is possible to rewrite diagram A into diagram B.
Definition 13. We say that a diagram in AP-form defined by (E,a⃗,ϕ) is in reduced AP-form
if it is either zero, or it is non-zero and satisfies the following conditions:

• E is in reduced row echelon form (RREF), i.e., it is fully reduced using Gaussian elimina-
tion.

• E contains no fully zero rows.
• ϕ only contains free variables from the equation system of E, i.e., variables that do not

correspond to pivot columns in E.

Lemma 14. For any non-zero state |ψ⟩, there is at most one triple (E,a⃗,ϕ) satisfying the
conditions of reduced AP-form such that:

|ψ⟩ ≈
∑︂

Ex⃗=a⃗

ωϕ(x⃗) |x⃗⟩

Therefore, a diagram in reduced AP-form is unique.
Now, our objective is to demonstrate that we can rewrite a ZX-diagram in AP-form in a

manner that transforms its biadjacency matrix E into RREF. Additionally, we need to show
that we can modify the diagram so that the corresponding phase function ϕ only includes
free variables from the equation system Ex⃗ = a⃗. Put simply, we need to prove that we can
perform primitive row operations on a ZX-diagram in AP-form as well as eliminate any phase
or Hadamard edge from a pivot spider.
Lemma 15. We can perform primitive row operations on a ZX-diagram in AP-form, i.e., we can
“add” one inner spider to another. For any k,a,b,ei,fj ∈ Zp where i ∈ 1, . . . ,n and j ∈ 1, . . . ,m:

a, 0

b, 0

e1
e2

en f1
f2

fn

...

≈

a, 0

ka + b, 0

e1
e2

en
ke1+f1

ke2+f2

ken+fn

...

Using this result, we can apply primitive row operations to E in AP-form diagram and hence
reduce it to RREF. Through diagrammatic rewrites, we can show that when E is in RREF, we
can eliminate all the phases and H-edges associated with the non-free variables of E.
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Lemma 16. If an AP-form diagram has its biadjacency matrix E in RREF, we can rewrite the
diagram so that the boundary spiders corresponding to non-free variables of E have zero phases,
and there are no H-edges connecting them to other boundary spiders.

Lemma 17. Any diagram in ZXStab
p can be converted into one in reduced AP-form.

The completeness result follows immediately from the above lemma.
Theorem 18 (Completeness). For any pair of ZX-diagrams A,B ∈ ZXStab

p , if JAK = JBK, we can
provide a sequence of rewrites that transforms A into B.

3.3 GSLC form

The AP-form is advantageous as it can be directly transformed into a unique normal form, and
allows for straightforward classical sampling. However, it may be less suitable for other applica-
tions. For instance, when applying the algorithm described above to a diagram originating from
a Clifford unitary, it becomes challenging to establish a clear relationship between the resulting
simplified diagram and a corresponding quantum circuit.

In this section, we introduce the qupit version of the well-known qubit GSLC-form diagrams.

Definition 19. We say a diagram is in GSLC form (Graph State with Local Cliffords) when it
is graph-like, up to Hadamards on input and output wires, and it has no internal spiders.

The algorithm for reducing a diagram to AP-form may still yield diagrams with internal
spiders, specifically Pauli spiders connected to boundaries. However, we can eliminate these
internal spiders by using a boundary pivot.
Lemma 20. The following boundary pivot rule is derivable in ZXStab

p :

a, 0

b, c

α1, β1

αi, βk

γ1, δ1

γj , δl

...
...

...

...
...

...
e1

ek

f1

fl

ϵ ≈

α1, β1

αi, βk

γ1-ϵ-1af1, δ1

γj -ϵ-1afj , δl

...
...

...

...
...

... g11

g1l

gk1

gkl

-ϵ-1a, 0

-

-ϵ-1a, 0

b, c

d-1

h1 h1

hk

hk

Here gij := −ϵ−1eifj and hi := −ϵ−1ei. This rule holds for all choices of phases as long as ϵ ̸= 0.
To observe how this rewrite aids in eliminating internal spiders, consider that the spider

with a phase of (b,c) now becomes an internal spider connected to an internal Pauli spider.
Consequently, if c = 0, we can eliminate the pair using standard pivoting. On the other hand,
if c ̸= 0, we can employ a local complementation to remove the (b,c) spider. This alteration
modifies the phase of its sole neighbour, subsequently enabling its removal through another
local complementation.

Lemma 20 can be straightforwardly modified, similar to Lemma 10, to accommodate arbi-
trary connectivity between the internal spider and the boundary. By incorporating additional
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spider unfusions, we can extend the application of Lemma 20 to boundary spiders that are con-
nected to multiple inputs or outputs. It is worth noting that when applying Lemma 20 multiple
times to the same boundary, different powers of the Hadamard gate may appear on the input
or output wire. For instance, applying it twice yields (H3)2 =H2, and another iteration reverts
back to H.

Hence, we can observe that it is indeed possible to eliminate all internal spiders from a
diagram, allowing for an efficient reduction of diagrams to GSLC form. This is particularly
significant for diagrams derived from unitaries, as we can then rewrite them in the following
manner:

H?

H?

H?

...

H?

H?

H?

··
· = ··
·

x

y

z

A

H?

H?

H?

H?

H?

H?

... ... ...

x y

z

a1, b1

a2, b2

an, bn

c1, d1

c2, d2

cn, dn

a1, b1

a2, b2

an, bn

c1, d1

c2, d2

cn, dn

(Fusion)

(Colour)

Here, the boxes labelled with H? represent a possible power of a Hadamard gate acting on the
qupit. By applying spider unfusion and colour change operations, we observe that the diagram
can be decomposed into several layers consisting of Hadamard gates, Z phase gates, CZ gates,
and a middle portion represented by a weighted biadjacency matrix A. This part of the circuit
implements a map of the form |x⃗⟩ ↦→ |Ax⃗⟩, where x⃗ ∈ Zn

p and A is an n×n matrix over Zp.
Since we assume the entire map to be unitary, A must also be invertible. Consequently, such a
‘linear’ qupit map can always be implemented through a series of CX gates, transforming |x,y⟩
to |x,x+y⟩ (the decomposition is achieved via standard Gaussian elimination over Zp). Thus,
we arrive at the following result.
Theorem 21. Any odd-prime-dimensional qudit Clifford unitary can be efficiently decomposed
into a quantum circuit consisting of the following layers:

H—Z—S—CZ—CX—H—CZ—Z—S—H
To the best of our knowledge, such a Clifford normal form for qudits has not been described

before in the existing literature. It is worth noting, though, that this result bears a striking
resemblance to the qubit normal form for Clifford circuits outlined in [33].

4 Conclusion

We presented a simplified version of the qudit ZX-calculus for odd prime dimensions based on the
work in Ref. [13]. This version includes fewer rules and a new scalar gadget to bring the reasoning
about scalars more in line with practice. We also extended the spider-removing versions of local
complementation and pivoting to qupits. This extension enabled us to reduce diagrams efficiently
to AP-form and its unique version, the reduced AP-form. As a result, we obtained a new
completeness proof for the qupit stabiliser fragment, which is more straightforward compared to
previous proofs. Additionally, we discovered a reduction to GSLC form, leading to a novel layered
decomposition of qupit Clifford unitaries. To support these developments, we implemented our
rewrites into DiZX, a port of PyZX that now supports qudit stabiliser diagrams of arbitrary
dimension.
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For future work, it would be interesting to investigate whether our techniques can be applied
to develop a useful circuit optimisation pipeline for qudits. It would also be valuable to identify
specific circuits that would benefit from such optimisation.
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Appendix

A Necessity of the rules

We can demonstrate that most of the non-scalar rules of our axiomatisation are necessary,
meaning that they cannot be derived from the other rules.

Note that the standard approach to showing necessity involves defining an alternative in-
terpretation of the diagrams in which every rewrite rule remains sound, except for the specific
rule being examined for necessity. This approach reveals that the other rules cannot establish
the rule that undermines soundness. Several examples of this approach can be found in the
works of Backens, Perdrix, and Wang [5, 6]. In particular, we may define an interpretation into
projective Hilbert spaces (quotienting by all non-zero scalars), in order to automatically satisfy
all the scalar axioms and focus on the non-scalar axioms. This automatically satisfies all the
scalar axioms, allowing us to focus solely on the non-scalar axioms. Another approach involves
using graph properties that are invariant under all but one rule. In the following discussion, we
rely on the invariants of non-emptiness and connectivity.

We can demonstrate the necessity of all but two of the stabiliser rules:
• At least one of the Fusion rules is necessary, as they are the only rules that allow the

decomposition of a spider with an arbitrary number of legs into spiders with fewer legs. In
other words, these rules are not sound for an interpretation that assigns zero to all spiders
with at least p legs.

• Special is the only axiom that enables the removal of all non-identity generators from
a diagram. This breaks the interpretation where every generator is zero, except for the
identity.

• Colour is necessary. To see this, consider the interpretation into projective Hilbert spaces
where we redefine the X-spiders to swap the sign of the Pauli phase. It can be easily verified
that this new interpretation satisfies all axioms except for Colour.

• Copy is necessary since it is the only axiom that can transform a connected diagram into
a disconnected one.

• Euler is necessary, as shown by a modified interpretation similar to those in Refs. [35, 39].
We propose a conjecture regarding the necessity of M-Elim, as it stands out as the only rule

that establishes a connection between elements in Z∗
p and their multiplicative inverses. Although

we lack a formal proof for this intuition, we believe it to be true.
It is worth noting that despite its centrality in most derivations, there remains one stabiliser

axiom for which we have no knowledge of its necessity, even in the qubit case [6] or in the
setting of graphical linear algebra [73]: Bigebra. We leave this intriguing open problem for the
particularly motivated reader to explore further.

As for the scalar rules, at least one subcase of each is necessary:

https://arxiv.org/abs/1805.03032
https://doi.org/10.22331/q-2021-06-04-466
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• One subcase of Omega is necessary because it is the only rule that allows the introduction
of an ω scalar box, thereby breaking the interpretation where we redefine the ω scalar box.

• Zero is the only rule that relates a diagram without a zero scalar box to one that includes
it. This means that when we interpret the zero scalar box as equal to 1 and set all other
generators to zero, this rule becomes necessary.

• One is necessary as it is the only rule that connects a non-empty diagram to an empty
diagram.

• Prod is necessary because there are complex numbers that cannot be expressed within
the fragment of the language without scalar boxes. This rule is the only one that allows
the multiplication of two such numbers.

• Nul is necessary, following an analogous argument as of Ref. [5].
• In Gauss, the subcase b= 0 is necessary since it is the only rule that allows one to interpret

a diagram to a scalar box with a non-unit modulus. Additionally, at least one subcase
b ̸= 0 is necessary because these are the only rules that introduce a −1 scalar box.

B Qupit Clifford ZX-calculus

B.1 Multipliers

We extend our language by multipliers [13], which are defined as:

x:=x - x:=x - (5)

We can explicitly express multipliers as, for x ∈ Z∗
p,

...xx = ...xx = (6)

The following equations hold for multipliers and are proved in Ref . [13]:
Proposition 22.

= -1

x y = xy z-1 = z

x

y
= x + y

= 1 p = 0

B.2 Recovering the derivations of Ref. [13]

In this appendix, we recover all of the lemmas that were proved in [13]. We do this by proving
that all of the axioms used there are derivable from the simplified set given in section 2 (up to
scalars). We also show that the language is complete for the scalar fragment, which completes
the proof. Since many of these proofs are entirely analogous to their counterparts in Ref. [13],
we omit them and refer to Ref. [13] instead. In order to avoid ambiguity, we refer to the proofs
in the specific version of Ref. [13] cited as Ref. [14].
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=
(Z-Elim)

=
(X-Elim)

=
(Char)...p

=
(Bigebra)

=
(Shear)

=
(Mult)...z

=
(Fusion)

a, b ...
...

c, d ...
...

a+c,
b+d

...

...

...

...

0, z-1

0, z-1

0, z

0, z-1

a, 0
=

(Copy)
a, 0

a, 0

( )⊗z

a, b

=
(Colour)...

a, b...
...

...

( )⊗p

=
(M-Elim)...z

a, b -z-1a, z-2b

( )⊗z-1
c, da, 0 a, 0

c, 0
a, 0

c + ad, d

-2-1, 0
da2, 0

Figure 2: The original rule set of the qupit stabiliser ZX-calculus of [13].

In [13], the calculus was axiomatised using the equations presented in Figure 2.
Comparing with the axioms of this paper (and ignoring scalars for now), the missing axioms

are Z-Elim, X-Elim, Char, Mult, Shear. In addition, the axioms of Fusion and Copy were
made more minimalistic.
Lemma 23. Green 1 → 1 spiders are trivial:

=

Proof.
= ...p-1 = ...p-1 =

(Fusion)(Special) (Special)

Lemma 24. Products of Hadamards are antipodes:

=

Proof. Same as Lemma 37 of Ref. [14].

Lemma 25. Antipodes are self-inverse:

=

Proof.
=

(Special) ...p − 1 =
(Fusion) ...p − 1 =

(Special)

Lemma 26. Hadamards and antipodes commute:

=
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Proof. Same as Lemma 38 of Ref. [14].

Lemma 27. The inverse Hadamard is a product of Hadamards, and admits a “tree” Euler
decomposition:

- = =
0, 10, 1

0, -1

= =

Proof. The first part is the same as Lemma 39 of Ref. [14], and the second part follows using
Euler and Colour. The last two follow from the first equation and Lemma 24.

Lemma 28. The product of the Hadamard and its inverse equals the identity:

- = = -

Proof.
- = = =

(Lem 24)(Lem 27) (Lem 25)

The second equation can be proved similarly.
Lemma 29. Units absorb antipodes:

= =

Proof. Same as Lemma 40 of Ref. [14].

Lemma 30. For any x,y ∈ Zp,
x, yx, y -x, y

=
-x, y

=

Proof.
x, y

=
(Lem 23) x, y

=
(M-Elim) -x, y

x, y

=
(Colour) x, y

=
(Lem 26) x, y

=
-x, y

=
-x, y(Colour)

Lemma 31. The bigebra law holds for multiple legs: for any m,n ∈ N, 2 ≤ n,m,

=...n
...m

...n
...m ,

where in the diagram on the LHS, there are m green and n red spiders, and each green spider
is connected to each red spider by a single wire.

Proof. Follows from straightforward induction (which furthermore is analogous to the qubit
case).

Lemma 32. Using the Copy rule in Figure 1, the Copy rule in Ref. [13] is derivable:

a, 0
=

(Copy)
a, 0

a, 0
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Proof. The following holds for a= 2, · · · ,p. As p mod p= 0, this also proves the a= 0 subcase
of Copy. The a= 1 case is just Copy.

a, 0

...d-a

-1, 0

=
(Fusion)

-1, 0

-1, 0

-1, 0

=
(Lem 31)

1, 0

1, 0

=
(Lem 30)...d-a

...d-a

a, 0

a, 0

=
(Fusion)

=
(Copy)

1, 0

1, 0

1, 0

1, 0

-1, 0

-1, 0

-1, 0

-1, 0

=
(Lem 30)

...d-a

...d-a

...d-a

...d-a

Lemma 33. The Hopf identity is derivable in ZXStab
p :

=

Proof.

= =

==

(Fusion) (Bigebra)

(Lem 29) (Lem 32)

=
(Omega)

Lemma 34. The axiom Char of [13] is derivable:

=...p

Proof.

=...p

...p − 1

= =
(Fusion) (Special) (Lem 33)

We are now ready to prove the completeness of the calculus for elementary scalars.
Lemma 3. ZXStab

p is complete for elementary scalars. Explicitly, if s : 0 → 0 is an elementary
scalar, then s JsK= .

Proof. First, note that we have:

=
(Lem 33)

=
(Omega)

= 1

We can use this rule and the scalar axioms to rewrite every scalar in Definition 2, as well as
the zero scalar 1, 0 , into an explicit scalar. Then, we apply Prod to rewrite this collection
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of explicit scalars into a single one.
Lemma 35. Self-loops on green spiders can be eliminated:

= =
√

p
√

p

We include the colour-swapped version of this rule for completeness, even though it no longer
includes a genuine self-loop.

Proof.

= = = =
(Lem 25) (Fusion) (Lem 33) (Fusion) √

p

(Gauss)

The red version follows form Colour and Lemma 24.
Lemma 36. Green units absorb red rotations and vice-versa:

x, y

=
x, y

=

Proof.
x, y

x, y

= =

x, y

=
(Fusion) (Lem 32) (Omega)

The red version follows form Colour.
Lemma 37. The green co-multiplication copies antipodes:

=

Proof.

==

=

=

= =

(Fusion)

(Fusion)

(Lem 29)

(Lem 29)(Lem 32)

(Bigebra)

Lemma 38. Green Pauli states copy through red rotations and vice-versa:

a, 0 c, d

=
a, 0 c, d

=
a, 0 -a, 0

ω2-3ac+2-2a2d ω2-3ac+2-2a2d

Proof.

a, 0 c, d

=
(Fusion)

a, 0
c, d

=
(Lem 32)

a, 0 c, d

a, 0
=

a, 0

ω2-3ac+2-2a2d(Omega)
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a, 0 c, d

=
(Colour)

- =
(Lem 28) a, 0 c, d

=
a, 0

=
(Colour)

-a, 0

a, 0 c, d
ω2-3ac+2-2a2d ω2-3ac+2-2a2d

Lemma 39. The antipode can be rewritten as a multiplication:

= ...p-1 = -1

Proof. This follows from Special and the definition of the multiplier, Equation (5).

Lemma 40. For any x,y ∈ Zp and m,n ∈ N,

x, y

m
... n

...
x, y

m
... n

...
-x, y

m
... n

...=
-x, y

m
... n

...

Proof.

x, y

m
... n

...
-x, y

m
... n

...= m
... n

...

x, y

= m
... n

...

x, y

m
... n

...

-x, y

==
(Fusion) (Lem 30) (Fusion)(Lem 37)

x, y

m
... n

...
-x, y

m
... n

...=
x, y

m
... n

... =
(Colour) x, y

m
... n

... =
-x, y

m
... n

... =
(Lem 26) (Colour)

Lemma 41. We can derive the Colour rule for both red and green spiders, and also for the
Hadamard inverse:

a, b

=...
a, b...

...
...

-a, b

= ...
a, b ...

...
...

a, b -

-

-

-
=...

-a, b...
...

...
a, b

= ...
a, b-

-

-

-

...
...

...

Proof. This follows from Colour and Lemmas 27 and 40.
Lemma 42. Hadamard gates or their inverses can be pushed through spiders:

a, b

=...
a, b...

...
... =

a, b...
...

-a, b ...

-

-

...

-

-

Proof. This follows from Lemmas 28 and 41.
Lemma 43. Green spiders copy red Pauli phases, and vice-versa: for any x ∈ Zp,

x, 0

x, 0

x, 0

=
x, 0

-x, 0

-x, 0

=
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Proof.

x, 0
==

x, 0x, 0 x, 0

=
x, 0

x, 0

=
(Fusion) (Bigebra) (Lem 37) (Lem 32)

(Fusion)

The second equation follows from Lemmas 28 and 41.

Lemma 44. Parallel multipliers sum: for any x,y ∈ Zp:

...x

...y
= ...x + y

Proof. This is a straightforward consequence of Fusion.

Lemma 45. For any z ∈ Z∗
p,

...z =...z =

Proof.
...z = ...z =

(Lem 32) (Fusion)

The other rule follows from Colour.
Lemma 46. For any x,y ∈ N,

=...x
...y

...x · y

Proof.

...x
...y

...x · y

...x
...y= = ...x

...y

= ...x · y =

(Lem 31) (Lem 37)

(Fusion) (Lem 37)

The second equality follows from Colour.

Lemma 47. For any x ∈ Z∗
p,

...x
...x = ...x

...x=
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Proof.

...x
...x

...x

...x

=
...x

...x
...x =

=
...x

= =

=

=

(Lem 25)

(Lem 37)

(Fusion)

(Fusion) (Lem 31)

(Lem 40)

(Lem 45) (Lem 30)

(Fusion)

(Lem 25)

The second equality follows from Colour.
Lemma 48. Spiders copy invertible multipliers: for any x ∈ Z∗

p,

x

x

x =
(a)

x

-x

-x

=
(b)

Proof.

x

x

x = ...x = ...x = ...x

...x

...x
= =

...x

...x
=

(Eq 5) (Lem 37) (Lem 31)

(Fusion) (Fusion) (Eq 5)

The other equation follows form Colour and the definition of the multiplier, Equation (5).

Lemma 49. The action of multipliers on spiders is given by, for any x ∈ Z∗
p,

a, b ...
...

x

x

x

x

ax, bx2
...

...=
a, b ...

...
x

x

ax, bx2
...

...=
x

x

Proof. This follows from Lemma 48 and M-Elim.

Lemma 50. We can “push” multipliers through spiders as follows, for any a,b ∈ Zp and x ∈ Z∗
p,

a, b

x =
ax, bx2 x

x

...
...

a, b

x =
ax-1, bx-2 x

x

...
...

a, b

x =
ax, bx2 x

x

...
...

a, b

x =
ax-1, bx-2 x

x

...
... (7)



Poór et al. 247

Proof.

a, b

x =
a, b x

x

=
ax, bx2 x

x

x

(Lem 49)(Lem 47) x

x

...
...

...

a, b

x =
a, b x

x

=
ax, bx2 x

x

x

(Lem 49)(Lem 47) x

x

...
...

...

The other proofs follow from the above equations while using the multiplicative inverse of the
multipliers.

Lemma 51. The product of a multiplier and a Hadamard gate is an H-box:

x = x= x

Proof. This follows from Lemma 28 and the definition of the multiplier, Equation (5).
Proposition 6. ZXStab

p proves the following equations:
yx = x

y
= x + y

0 =1 =

- xy

yx = xy-1

Proof. The bottom two equations follow from the definition of the H-box at Section 3.1 and
Lemma 23. The rest can be proved using Lemmas 28, 42 and 51 and Proposition 22.

Lemma 52. H-boxes multiply with multipliers, for any x,y ∈ Zp,

x y= xy =xy

Proof.

x y = x y xy= xy=
(Lem 51) (Lem 51)(Lem 46)

xy = y x xy= xy=
(Lem 51) (Lem 51)(Lem 46)

Lemma 53. We can “push” H-boxes through spiders as follows, for any a,b ∈ Zp and x ∈ Z∗
p,

a, b

=
ax-1, bx-2

x

-x

-x

...
...

a, b

=
-ax, bx2

x

-x

-x

...
...

Proof. First of all,

a, b

=

ax-1, bx-2

x

-x

-x

a, b

x =
a, b

x

-

-

(Lem 42)(Lem 51)

=
(Lem 50) ax-1, bx-2 x

x(Lem 27)

=
(Lem 39) ax-1, bx-2 x

x(Lem 51)

(Lem 52)-1

-1
=

...
...

...
...

...
...
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The other equation can be proved similarly,

a, b

=
-ax, bx2

x

-x

-x

-a, b

=
(Colour)

x -
-

-(Lem 51)
=

(Lem 28) -a, b

x

(Prop 6)

-1

-1

=
-ax, bx2

x

x

-1

-1

(Lem 50) (Lem 52)

Lemma 54.
x

a, 0 b, 0
= ω-2-3abx

Proof.
-ax, 0 b, 0

= ω-2-3abx

(Omega)

x
a, 0 b, 0

=
(Lem 53)

Lemma 55. Any purely-Clifford states can be represented in both the red and green fragment:
for any x ∈ Z∗

p,

0, -x-2
=
(a)

=
(b)0, 1

0, x2 0, -x-2

0, 1

0, x2

Proof. Firstly, we prove the subcase x= 1 of (a):

=
(Lem 41)

0, -1
-

0, -1

0, -1
=

(Fusion)

0, 1
=

(Lem 32)

0, 1
=

(Lem 27)

0, 1
=

(Fusion)

0, 10, 1

0, -1 0, -1
0, -1 0, -1

so that

0, -1

0, 1
0, 1

=
(Fusion)

=
0, -1

0, -1

= 1

(Omega)

and

=
0, -1 0, 1

0, -10, 1

0, 1

=
0, 1

.

Then the general case for any invertible x follows using lemma 49.
(b) follows once again using Colour.

Lemma 56. The Hadamards admit more standard Euler decompositions (originally shown for
qudit ZX in [66]):

- =
0, 10, 10, 1

0, 1

=
0, 10, 10, 1

0, 1

Proof.

=
(Euler)0, 1 0, 1

0, -1

0, 1

0, 1

0, 1

0, 1

0, 1
=

(Fusion) 0, 10, 10, 1
=

(Lem 55)

We obtain the second derivation, as always, using Colour.
In the next few proofs, we make frequent use of the following fact:

Lemma 57. For any x ∈ Zp, there are a,b ∈ Zp such that x= a2 + b2.
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Proof. This is true in general for any finite field. See [72] for a proof.
Lemma 58. For any z ∈ Z∗

p,

z2 =
0, z2 0, z2

0, z-2
=

0, z2 0, z2

0, z-2

0, 1

Proof. We have

==

0, 1 0, 1

0, 1
=

=
0, 1 0, 1

0, 1

0, 10, 1 0, 1(Lem 25) (Lem 24) (Lem 56)

(Colour)

so that

=
0, 1 0, 1

0, 1
z z= z z=

0, z2 0, z2

0, z-2

0, 1 0, 1(Lem 51) (Lem 50)

and

z2 =
0, z2 0, z2

0, z-2
zz= = z

0, z2 0, z2

0, z-2
z

0, 1 0, 1(Lem 52) (Lem 47)

The second version is obtained using a completely analogous argument.
Lemma 59. For any z ∈ Z∗

p (not just squares),

z =
0, z 0, z

0, -z

Proof. If z is a square, then this result is immediate by the previous lemma. Otherwise, by
Lemma 57, z = a2 + b2 and a,b ∈ Zp are non-zero. Then

z

=
0, z 0, z

0, -z

= a2

b2
=

0, a2 0, a20, a-2

0, b2 0, b20, b-2

=
0, z

0, a-2

0, b-2
0, z

=
0, z

0, -a2

0, -b2

0, z

=
0, z

0, -a2 0, -b2

0, z

0, -1 0, -1 0, -1 0, -1

(Bigebra)

(Fusion)

(Lem 58)

(Fusion)(Lem 55)

(Lem 37)

Lemma 60. Hadamard loops correspond to purely-Clifford operations: for any x ∈ Zp and
z ∈ Z∗

p,
0, 2x

=x
0, 2z

=-z-1
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Proof. The case x= 0 is clear by decomposing the H-box according to Section 3.1. Therefore,
we only need to show that for z ∈ Z∗

p:

z
0, -z

0, z

0, z

=
(Lem 59) 0, -z

0, z

0, z

=
(Lem 40)

(Lem 25) 0, -z 0, 2z

=
(Fusion)

0, -z

0, 2z

=
(Lem 33)

(Fusion)

0, 2z

=
(Omega)

(One)

Under the assumption that the weight is invertible, the red version follows using Colour and
the green version:

0, 2z

=-z-1 = -z-1
0, 2z

=z=
(Colour) (Lem 52)

(Prop 22)

(Colour)

Lemma 5. For any b ∈ Z∗
p,

=0, b

0, -b
=0, b

0, -b

Proof. If b= x2 for some non-zero x ∈ Zp, then

=0, b

0, -b
= 0, x2

0, -x2 0, x-2

0, -x-2

=
(Lem 55) (Fusion)

Otherwise b= s2 + t2 where s, t ∈ Zp are non-zero, and

0, b

0, -b 0, -s2

0, b=
0, -t2

0, s-2

0, b=
0, t-2

=
0, s-2

0, t-2
0, b

=
0, s2

0, t2
0, b

0, -s2

0, -t2

0, s-2

0, t-2

s2

t20, b

=
0, -b 0, -b

= b

0, -b

=
0, -b

=

0, s2

0, t2

0, -s2

0, -t2

(Fusion) (Lem 55)

(Fusion)

(Bigebra)

(Lem 58)

(Lem 36)(Colour)

(Fusion)

(Fusion)

(Lem 23)

(Fusion)

The second equation follows from the first equation and the application of Colour.
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Lemma 4. Strictly-Clifford states can all be represented both using Z- and X-spiders: for any
a ∈ Zp and b ∈ Z∗

p,

=
a, b

-ab-1, b-1

ab-1, -b-1

=
a, b

-ab-1, b-1

-ab-1, -b-1

Proof. Firstly,

=
ab-1, b-1 -a, b

b-1 =
-a, b

0, b-1 0, b-1

0, -b-1

(Lem 53) (Lem 59)

=
a, b

0, b-1 0, b-1

0, -b-1

(Lem 40)

so that
a, b

0, b-1

0, -b-1

=
a, b

0, b-1 0, b-1

0, -b-1
0, -b-1 ab-1, b-1

=
0, -b-1

=
(Fusion)

(Fusion)

ab-1, 0

(Lem 23)

whence

=
a, b

0, b-1 a, b

0, b-1

0, -b-1 0, b-1

=

0, b-1

(Lem 32)

(Lem 5)

=
-ab-1, 0ab-1, 0

-ab-1, b-1

a, b

0, b-1
=

(Lem 25)

(Fusion) a, b

0, b-1

0, -b-1

0, b-1

=
(Fusion)

(Lem 30)

(Fusion)

and, finally,

a, b

=
a, b

0, b-1

0, -b-1
=

0, -b-1

=
-ab-1, -b-1

-ab-1, b-1

-ab-1, b-1

-ab-1, 0

(Fusion)

(Fusion)

(Lem 23)

The change of colour in the scalar, as well as the second derivation, follow using Colour.

Lemma 61. The following states are equivalent:

0, z-10, z

=

Proof.

0, z

=
(Fusion) 0, z

=
(Lem 4) 0, -z-1

0, z-1

=
(Omega) 0, z-1

Lemma 62. X-spiders with arbitrary phases copy Pauli Z-spiders and vice-versa:

c, d

a, 0
≈

ad-c, d
a, 0

a, 0

c, d

a, 0
≈

c-ad, d
-a, 0

-a, 0
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Proof. First of all,

c, d

a, 0
==

a, 0
a, 0

=

c, d

c, d

a, 0

a, 0

c, d

a, 0

a, 0

c, d

=
(Fusion) (Lem 31) (Lem 37)

(Lem 32)

(Fusion)
...

...
...

...
...

Then, we separate the equation into two cases based on whether the Z-spider is Pauli or not.
In case d= 0, the Z-spider is Pauli and therefore:

a, 0

a, 0

c, 0

a, 0

=
a, 0

a, 0

-c, 0

=
-c, 0

a, 0

a, 0

(Lem 38) (Fusion)

ω2-3ac ω2-3ac

Note that if d = 0, then ad− c = −c and so the lemma holds. Otherwise, d ̸= 0 and therefore
d-1 exists, so we can apply the state-change lemma:

≈
a, 0

a, 0

cd-1, -d-1

a, 0

≈
a, 0

a, 0

ad-c, d

=
ad-c, d

a, 0

a, 0

=
a, 0

a, 0

a-cd-1, -d-1

a, 0

a, 0

c, d

a, 0 (Lem 4) (Lem 4) (Fusion)

(Fusion)

(Lem 30)

Note that the phases after the application of the second state-change follow from:

−(a− cd-1)(-d-1)-1, -(-d-1)-1 = −(a− cd-1)(-d), d= ad− c, d

We can prove the second equation of the lemma using Hadamard-boxes as follows:

c, d

a, 0
=

c, d

a, 0
=- -

c, d

a, 0
-

≈
ad-c, d

-

a, 0

a, 0

=
ad-c, d

-

-a, 0

-a, 0

-

-
=

c-ad, d
-a, 0

-a, 0

(Colour) (Lem 28)

(Colour)(Lem 42)

We are now ready to prove that axioms Mult and Shear of [13] are derivable from our
simplified set of axioms:
Proposition 63. For any z ∈ Z∗

p,

=
0, z-1

0, z

0, z-1
z

0, z-1
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Proof. We have

z =
0, z 0, z

0, -z

=
0, z 0, z

0, z-1

=
(Lem 59) (Lem 4)

(Fusion)

0, z

0, z

(Lem 30) 0, z 0, z

0, z-1

so that

z

0, z-1

= z-1 =
0, z-1 0, z-1

0, z

=
0, z-1 0, z-1

0, z(Lem 25)0, z-1

z

0, z-1

=
(Lem 25)

(Lem 50)

(Lem 24)

(Lem 51)

Proposition 64. For any a,c,d ∈ Zp,

=
c, d

a, 0 a, 0 c + ad, d

ω2-2ac+2-3a2d

Proof. We first prove the subcase c= 0 and d ̸= 0:

=
a, 0 0, d a, 0

0, d

=
a, 0

0, -d-1

0, d-1

(Fusion) (Lem 4)

=
-a, 0

-a, -d-1

0, d-1

(Lem 43)

=
-a, 0

-ad, d

(Lem 4)

=
-a, 0

ad, d

(Fusion)0, d-1

ad, -d

0, d-1

ad, -d

(Lem 40)

(Lem 40) (Fusion)

Now, we have

0, d

ad, -d
=

(Fusion) 0, d

ad, 0 0, -d

=
(Lem 4) ad, 0

0, d-1
=

(Omega)

ω-2-2(ad)2d-1
=

(Prod)

ω-2-2a2d

(Lem 61)0, d-1

ad, -d
=

so that
=

a, 0 0, d -a, 0ad, d

ω-2-2a2d

Now, if d= 0,

=
a, 0 c, 0

a, 0

c, 0
=

(Fusion) (Lem 43)

a, 0

c, 0
c, 0

=
(Lem 38)

-a, 0

c, 0
=

ω2-3ac -a, 0c, 0(Fusion)

ω2-3ac

and putting both of these derivations together:

=
(Fusion)a, 0 c, d

a, 0

c, 0 0, d

=
-a, 0

c, 0

0, d

ω2-3ac

=
a, 0

c, 0 0, d

ω2-3ac

=
a, 0c, 0

ad, d

ω2-3ac - 2-2a2d

=
a, 0

ω2-3ac - 2-2a2d

c + ad, d

(Lem 40)

(Fusion)

(Lem 25)
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B.3 Graph-like diagrams

Proposition 65. γ-weighted local Zd-complementation is derivable in ZXStab
p , for any graph

G= (V,E), γ ∈ Zp and u ∈ V ,

G ≈
...

}︄
NG(u)

u

...

G
γ
⋆u

...

...

0, −γG2
1w

0, −γG2
Nw

0, γ

(8)

Proof. Same as Lemma 12 of Ref. [14].

B.3.1 Local complementation simplification

Lemma 8 (Local complementation simplification). For any z ∈ Z∗
p and for all a,αi,βi,ei,wi,j ∈

Zp where i, j ∈ {1, . . .k} such that i < j we have:
a, z

e1
e2

ek

α1, β1

α2, β2

αk, βk

w2k

w12
w1k

· · ·

· · ·
· · ·

· · ·

≈
γ1, δ1

γ2, δ2

γk, δk

g2,k
g1,2

g1,k

· · ·

· · ·
· · ·

· · ·

Here γi = αi −eiaz
-1, δi = βi −z-1e2

i , and gi,j = wij −z-1eiej .
Proof. First, we can prove a simplified version of the lemma without phases of the boundary
spiders and H-edges as follows:

a, z

e1
e2

ek

· · ·· · · · · ·
· · ·

=

a, z

e1
e2

ek

· · ·· · · · · ·
· · ·

(Fusion) (Lem 4)

≈
e1

e2
ek

· · ·· · · · · ·
· · ·

az-1, -z-1

=

az-1, 0

0, -z-1

≈

az-1, 0

e1
e2

ek

0, -z-1e2
1

0, -z-1e2
2

0, -z-1e2
k

-z-1e2ek
-z-1e1e2

-z-1e1ek

· · ·

· · ·
· · ·

· · ·

(Fusion) (Prop 65)
e1

e2
ek

· · ·· · · · · ·
· · ·
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≈

az-1, 0

az-1, 0
az-1, 0

e1
e2

ek
0, -z-1e2

1

0, -z-1e2
2

0, -z-1e2
k

-z-1e2ek
-z-1e1e2

-z-1e1ek

· · ·

· · ·
· · ·

· · ·

=

-e1az-1, 0

-e2az-1, 0
-ekaz-1, 0

0, -z-1e2
1

0, -z-1e2
2

0, -z-1e2
k

-z-1e2ek
-z-1e1e2

-z-1e1ek

· · ·

· · ·
· · ·

· · ·

(Lem 32) (Lem 53)

=

-e1az-1, -z-1e2
1

-e2az-1, -z-1e2
2

-ekaz-1, -z-1e2
k

-z-1e2ek
-z-1e1e2

-z-1e1ek

· · ·

· · ·
· · ·

· · ·

(Fusion)

Then, we can use the previous equation to prove the lemma.

=

a, z

e1

e2

ek

α1, β1

α2, β2

αk, βk

w2k

w12

w1k

· · ·
· · ·

· · ·

· · ·

(Fusion)

a, z

e1 e2
ek

α1, β1

α2, β2

αk, βk

w2k

w12
w1k

· · ·

· · ·
· · ·

· · ·

≈

-e1az-1, -z-1e2
1

-e2az-1, -z-1e2
2

-ekaz-1, -z-1e2
k

α1, β1

α2, β2

αk, βk

w2k

w12

w1k

· · ·

· · ·
· · ·

· · ·

-z-1e2ek
-z-1e1e2

-z-1e1ek

=
(Fusion)

(Prop 6)

α1-e1az-1, β1-z-1e2
1

α2-e2az-1, β2-z-1e2
2

αk-ekaz-1, βk-z-1e2
k

w2k-z-1e2ek
w12-z-1e1e2

w1k-z-1e1ek

· · ·

· · ·
· · ·

· · ·
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B.3.2 Pivoting simplification

Lemma 9. The following version of pivoting is derivable in ZXStab
p :

=
a, 0 b, 0...

...

...

...
...

... e1

ei

f1

fj

ϵ

-ϵ-1be1, 0

-ϵ-1bei, 0

-ϵ-1af1, 0

-ϵ-1afj , 0

...
...

...

...
...

...

-ϵ-1eifj

-ϵ-1e1f1
-ϵ-1e1fj

-ϵ-1eif1

ω2-3ϵ-1ab

Here ϵ ∈ Z∗
p and all the other variables are allowed arbitrary values.

Proof. First, we can prove a simplified version of the equation that omits the phases of bound-
ary spiders as follows,

a, 0 b, 0...
...

...

...
...

... e1

ei

f1

fj

ϵ =
(Fusion) ...

...

...

...
...

... e1

ei

f1

fj

ϵ

a, 0 b, 0

= ...
...

...

......

...
-ϵ-1e1

-ϵ-1ei

f1

fj

-ϵ-1a, 0
b, 0

=
... ...

...

......

...
f1

fj

-ϵ

a, 0

b, 0

-ϵ
-ϵ

e1

ei

(Lem 53) (Lem 53)

(Prop 6)

= ...
...

...

...
...

... f1

fj

-ϵ-1e1

-ϵ-1ei

= ...
...

...

...
...

... f1

fj

-b, 0

-b, 0

ϵ-1a, 0

ϵ-1a, 0

(Lem 31) (Lem 32)

(Fusion)

-ϵ-1a, 0 -b, 0

-ϵ-1e1

-ϵ-1ei

-ϵ-1a, 0 b, 0

=

-ϵ-1af1, 0

-ϵ-1afj , 0

...
...

...

...
...

... -f1

-fj

-b, 0

-b, 0

-ϵ-1e1

-ϵ-1ei

-f1

-fj
=

-ϵ-1af1, 0

-ϵ-1afj , 0

...
...

...

...
...

... -f1

-fj

-b, 0

-b, 0

-ϵ-1e1

-ϵ-1ei

-f1

-fj

ω2-3ϵ-1ab

-
-

-
-

(Lem 42)(Lem 53)

-ϵ-1a, 0 -b, 0

(Omega)
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=

-ϵ-1be1, 0

-ϵ-1bei, 0

-ϵ-1af1, 0

-ϵ-1afj , 0

...
...

...

...
...

...

-ϵ-1eifj

-ϵ-1e1f1
-ϵ-1e1fj

-ϵ-1eif1

(Prop 6)

ω2-3ϵ-1ab

=

-ϵ-1af1, 0

-ϵ-1afj , 0

...

...

...

-f1

-fj

-f1

-fj

ω2-3ϵ-1ab

-

-

-

-

-ϵ-1be1, 0

-ϵ-1bei, 0

...
...

... ϵ-1e1
ϵ-1e1

ϵ-1ei

ϵ-1ei

(Lem 53)

Then, we can use the previous equation to prove the lemma as follows:

a, 0 b, 0

α1, β1

αi, βi

γ1, δ1

γj , δj

...
...

...

...
...

...
e1

ei

f1

fj

ϵ =
(Fusion) a, 0 b, 0

α1, β1

αi, βi

γ1, δ1

γj , δj

...
...

...

...
...

...
e1

ei

f1

fj

ϵ

=

-ϵ-1be1, 0

-ϵ-1bei, 0

-ϵ-1af1, 0

-ϵ-1afj , 0

...
...

...

...
...

... -ϵ-1e1f1
-ϵ-1e1fj

-ϵ-1eif1
-ϵ-1eifj

α1, β1

αi, βi

γ1, δ1

γj , δj

=
(Fusion)

α1-ϵ-1be1, β1

αi-ϵ-1bei, βi

γ1-ϵ-1af1, δ1

γj -ϵ-1afj , δj

...
...

...

...
...

... -ϵ-1e1f1
-ϵ-1e1fj

-ϵ-1eif1
-ϵ-1eifj

ω2-3ϵ-1ab ω2-3ϵ-1ab

Now, we prove the general version of pivoting.
Lemma 10 (Pivoting simplification). General pivoting is derivable in ZXStab

p :

a, 0 b, 0
ϵ

α1, β1
αk, βk

· · ·

e1
ek

f1 fk

· · · · · ·
α2, β2

· · ·

e2

f2
g1,k

g1,2 g2,k

=
γ1, δ1

γ2, δ2

γk, δk

· · ·
· · · · · ·

· · ·

ω2-3ϵ-1ab

Here again ϵ ∈ Z∗
p with every other variable on the left-hand side allowed arbitrary values. On

the right-hand side γi = αi − ϵ-1(afi + bei), δi = βi −2ϵ-1eifi, and gi,j = −ϵ-1(eifj +ejfi).
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Proof.

a, 0 b, 0
ϵ

α1, β1
αk, βk

· · ·

e1
ek

f1 fk

=

· · · · · ·

a, 0 b, 0
ϵ

α1, β1
αk, βk

· · ·

e1

ek

f1

fk

· · · · · ·

...
...

α2, β2

· · ·

e2

f2

α2, β2

· · ·

e2 f2
(Fusion)

=

-ϵ-1be1, 0

-ϵ-1bek, 0

-ϵ-1af1, 0

-ϵ-1afk, 0

...
...

-ϵ-1e1f1

-ϵ-1e1fk

-ϵ-1ekfk

-ϵ-1be2, 0 -ϵ-1af2, 0
-ϵ-1e2f2

α1, β1
αk, βk

· · ·· · · · · ·
α2, β2

· · ·

-ϵ-1e1f2 -ϵ-1e2f1

-ϵ-1ekf1

-ϵ-1e2fk -ϵ-1ekf2 ω2-3ϵ-1ab

(Lem 9)

=
α1-ϵ-1(af1 + be1), β1

α2-ϵ-1(af2 + be2), β2

αk-ϵ-1(afk + bek), βk

· · ·
· · · · · ·

-ϵ-1ekfk
-ϵ-1e1f1

· · ·

-ϵ-1e2f2
-ϵ-1e1f2

-ϵ-1e2f1

-ϵ-1e1fk

-ϵ-1ekf1

-ϵ-1e2fk

ω2-3ϵ-1ab

(Fusion)

-ϵ-1ekf2

=

α1-ϵ-1(af1 + be1), β1-2ϵ-1e1f1

α2-ϵ-1(af2 + be2), β2-2ϵ-1e2f2

αk-ϵ-1(afk + bek), βk-2ϵ-1ekfk

· · ·

· · ·

· · ·

-ϵ-1e1fk-ϵ-1ekf1

· · ·

-ϵ-1e1f2-ϵ-1e2f1
-ϵ-1e2fk-ϵ-1ekf2

ω2-3ϵ-1ab

(Prop 6)

(Lem 60)
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C A normal form

Lemma 12. A general non-zero n-qupit diagram in AP-form is described by the diagram:

a1, 0

α1, β1

α2, β2

αn, βn

ak, 0

e1,1
ek,1

e1,2

e1,n

ek,n

ek,2
...

f1,2

f1,n
f2,n

... (3)

where al,αi,βi,eh,i,fi,j ∈ Zp with l ∈ {1, . . . ,k} and i, j ∈ {1, . . . ,n} such that i < j. The inter-
pretation of this diagram is (up to some non-zero scalar) equal to a state∑︂

Ex⃗=a⃗

ωϕ(x⃗) |x⃗⟩ (4)

where E is the weighted bipartite adjacency matrix of the internal and boundary spiders, a⃗
describes the Pauli phases of the internal spiders, and ϕ is a phase function that describes the
connectivity and phases of the boundary spiders:

E =

⎡⎢⎢⎢⎢⎣
e1,1 · · · e1,n

e2,1 · · · e2,n

...
...

ek,1 · · · ek,n

⎤⎥⎥⎥⎥⎦ , a⃗=

⎡⎢⎢⎣
a1
...
ak

⎤⎥⎥⎦ , ϕ(x⃗) =
∑︂

i,j∈{1,...,n}
i<j

2-3xiαi +2-2x2
iβi −2-3fi,jxixj

Proof. We can prove this claim purely diagrammatically, by composing the diagram of Equa-
tion (3) with an effect that corresponds to the vector ⟨x|. By rewriting the diagram while
keeping track of the scalars, we can prove that the diagram indeed represents the one de-
scribed in Equation (4). These transformations are as follows:

a1, 0

α1, β1

α2, β2

αn, βn

ak, 0

e1,1
ek,1

e1,2

ek,2

ek,n

e1,n

...

f1,2

f1,n
f2,n

=
(Fusion)

a1, 0

ak, 0

e1,1
ek,1

e1,2

ek,2

ek,n

e1,n

...

f1,2

f1,n
f2,n

α1, β1

α2, β2

αn, βn

x1, 0

x2, 0

xn, 0

x1, 0

x2, 0

xn, 0
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=
(Lem 32)

a1, 0

ak, 0

e1,1

ek,1

e1,2

ek,2

ek,n

e1,n

...

f2,n

xn, 0

f1,2

f1,n

x1, 0

x2, 0

xn, 0

α1, β1

α2, β2

αn, βn

x1, 0

x1, 0
x2, 0

x2, 0

xn, 0

xn, 0

x2, 0

x2, 0

x1, 0

x1, 0

xn, 0

=

a1, 0

ak, 0

e1,1

ek,1

e1,2

ek,2

ek,n

e1,n

...

xn, 0

x2, 0

x2, 0

x1, 0

x1, 0

xn, 0

ω
-2-3f1,2x1x2

ω
-2-3f1,nx1xn

ω
-2-3f2,nx2xn

ω
2-3x1α1+2-2x2

1β1

ω
2-3x2α2+2-2x2

2β2

ω2-3xnαn+2-2x2
nβn

(Lem 54)

(Omega)

=

a1, 0

ak, 0 ...

-xnek,n, 0

-x2e1,2, 0

-x2ek,2, 0

-x1e1,1, 0

-x1ek,1, 0

-xne1,n, 0

∏︁
i,j∈{1,...,n}

i<j

ω
2-3xiα1+2-2x2

i
βi-2-3fi,j xixj

=

a1-
∑︁n

i
xie1,i, 0

ak-
∑︁n

i
xiek,i, 0

...
(Fusion)

ωϕ(x⃗)

(Lem 53)

(Prod)

Note that if a Z-spider with no legs has phase (z,0) for any z ∈ Z∗
p, then it equals the zero

scalar. This means that the probability of such an effect is 0. Therefore, the above diagram
allows only such x⃗ vectors that satisfy the equation Ex⃗= a⃗. Furthermore, the scalars that are
copied from the phases part of the diagram equal the ωϕ(x⃗) component of the equation. We
conclude that a diagram in Equation (3) indeed equals the state presented in Equation (4).

C.1 Completeness

Lemma 14. For any non-zero state |ψ⟩, there is at most one triple (E,a⃗,ϕ) satisfying the
conditions of reduced AP-form such that:

|ψ⟩ ≈
∑︂

Ex⃗=a⃗

ωϕ(x⃗) |x⃗⟩

Proof. Since |ψ⟩ ̸= 0, the set A = {x⃗ | Ex⃗ = a⃗} is non-empty. Therefore, there is a unique
system of equations in RREF that define A. This means that E and a⃗ are uniquely fixed.
Now, for any assignment {xi1 := c1, . . . ,xik

:= ck} of free variables, there exists a state |x⃗⟩ ∈ A
such that xiµ = cµ. Therefore, we have ⟨x⃗|ψ⟩ = ωϕ(c1, ... ,ck) for some fixed constant λ ̸= 0. Using
this fact we can determine the value of ϕ at all inputs (c1, . . . , ck) which is enough to compute
each coefficient of ϕ. We conclude that ϕ is uniquely fixed by |ψ⟩.

Lemma 15. We can perform primitive row operations on a ZX-diagram in AP-form, i.e., we can
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“add” one inner spider to another. For any k,a,b,ei,fj ∈ Zp where i ∈ 1, . . . ,n and j ∈ 1, . . . ,m:

a, 0

b, 0

e1
e2

en f1
f2

fn

...

≈

a, 0

ka + b, 0

e1
e2

en
ke1+f1

ke2+f2

ken+fn

...

Proof. Firstly, we show that we can transform two disconnected X-states:

a, 0

b, 0

=

a, 0

b, 0

=

a, 0

b, 0

--

=

a, 0

b, 0

-

=

a, 0

b, 0

-

0
(Colour) (Lem 23) (Fusion) (Prop 6)

=

a, 0

b, 0

-

-k k =

a, 0

b, 0

-

-k
k

a, 0
=

a, 0

b, 0

k
ka, 0

=

a, 0

ka + b, 0

k

(Fusion)

-1-1
(Prop 6)

(Fusion)

(Lem 32) (Lem 53)

Then, we can show that we can transform a diagram in AP-form as follows:

a, 0

b, 0

e1
e2

en f1
f2

fn

...

=

e1
e2

en f1
f2

fn

...

a, 0

b, 0

(Fusion)

=

e1
e2

en f1
f2

fn

...

a, 0

ka + b, 0

k

-1

a, 0

ka+b, 0

e1
e2

en
ke1+f1

ke2+f2

ken+fn

...

=≈

a, 0 e1
e2

en

f1
f2

fn

...

ka + b, 0
ke1
ke2

ken

(Lem 9) (Fusion)

(Prop 6)

Lemma 66. We can remove Pauli-phases from the pivot spiders of diagrams in AP-form.
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Proof. For any a,x,ei ∈ Zp where i ∈ {2, . . . ,k} and e1 ∈ Z∗
p:

a, 0

e1

e2

ek

x, 0

...
=

(Lem 23)

a, 0

-e1

e2

ek

xe-1
1 , 0

...
≈ a′, 0

-e1

e2

ek

xe-1
1 , 0

...xe-1
1 , 0

= a′, 0

-e1

-e2

-ek

-xe-1
1 e2, 0

...
-xe-1

1 ek, 0

(Lem 53) (Lem 62) (Lem 53)

(Fusion)

where a′ := −(a+xe-1
1 ).

Lemma 67. We can remove strictly-Clifford phases from the pivot spiders of diagrams in AP-
form.

Proof. To prove this case, we first show that we can push strictly-Clifford Z-spider through
an X-spider with weighted outputs. That is, for any a,ei ∈ Zp where i ∈ {1, . . . ,k} and z ∈ Z∗

p:

a, z
...

e1

ek

≈
az-1, -z-1(Lem 8)

z-1
≈ ...

e1

ek

-ae1, ze2
1

-aek, ze2
k

(Lem 8)

ze1ek

e2 -az-1, -z-1

...

e1

ek

e2 e2
-ae2, ze2

2

ze1e2

ze2ek

-1

Therefore, for any a,x,ei ∈ Zp where i ∈ {2, . . . ,k} and z,e1 ∈ Z∗
p:

a, 0

x, z

...

=
(Lem 42)

e1

e2

e3

ek

xe-1
1 , ze-2

1

...

-e1

e2

e3

ek

a, 0

(Lem 23)
=

(Lem 62)

xe-1
1 -aze-2

1 , ze-2
1

...

-e1

e2

e3

ek

(Fusion)

-a, 0

=

xe-1
1 -aze-2

1 , ze-2
1

...

e1

e2

e3

ek

(Colour)

a, 0

-1

(Lem 49)

(Lem 52)

≈
...

A2, B2

A3, B3

Ak, Bk

e1

e2
e3

ek

a, 0

E2,3

E3,k
E2,k

=
...

A2, B2

A3, B3

Ak, Bk

e1

e2
e3

ek

a, 0(Fusion) E2,3

E3,k
E2,k

where Ai = (aze-1 −x)e-1ei, Bi = ze-2
1 e

2
i , and Ei,j = ze-2

1 eiej ,
Lemma 68. We can remove an H-edge between the pivot spider and a boundary spider that
connects to the same internal spider as the pivot.
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Proof. Let us suppose that the pivot spider is connected to the ℓ-th wire with an H-box. Then,
for any a,x,ei ∈ Zp where i ∈ {2, . . . ,k} and e1 ∈ Z∗

p:

...

x

a, 0
≈...

e1

e2

eℓ

ek

(Lem 10)

=
...

x
a, 0 ...

e1
e2
eℓ

ek

-1

(Lem 28)

(Lem 23)

...

-e-1
1 ax, -2e-1

1 eℓx

...
e-1

1 a, 0 e-1
1 e2

e-1
1 eℓ

e-1
1 ek

-e-1
1 e2x

-e-1
1 ekx

Lemma 69. We can remove an H-edge between the pivot spider and a boundary spider that
does not connect to the same internal spider as the pivot.

Proof. For any a,b,x,ei,fh ∈ Zp where i ∈ {2, . . . ,k}, h ∈ {1, . . . , j} and e1 ∈ Z∗
p:

a, 0
...x

b, 0

...

=

...

e1

e2

ek

f1

fh

fℓ

a, 0
...

x

b, 0

...

...

e1
e2

ek

f1

fh

fℓ

-1

(Lem 28)

(Lem 23)
≈

e-1
1 a, 0

...

b, 0

...

-e-1
1 ax, 0

...

e-1
1 e2

e-1
k e2

f1

fh

fℓ

(Lem 10)

-e-1
1 ekx

-e-1
1 e2x

Lemma 17. Any diagram in ZXStab
p can be converted into one in reduced AP-form.

Proof. First, we can convert any diagram in ZXStab
p into one in AP-form using local comple-

mentation and pivoting. Then, we can translate such a diagram into AP-form with a biadja-
cency matrix in RREF using Gaussian elimination, as demonstrated in Lemma 15. Further-
more, we have established the proofs for removing any phase from the pivot spider (Lemma 66
and Lemma 67), as well as removing any H-edge connected to the pivot spider (Lemma 68
and Lemma 69). These results allow us to transform a diagram in such a way that its phase
function ϕ only contains free variables from the equation system Ex⃗= a⃗. Consequently, we can
conclude that any diagram in ZXStab

p can be rewritten into a form that satisfies the necessary
properties to be considered a diagram in reduced AP-form.

Theorem 18 (Completeness). For any pair of ZX-diagrams A,B ∈ ZXStab
p , if JAK = JBK, we can

provide a sequence of rewrites that transforms A into B.
Proof. Without loss of generality, we can assume that both A and B are states by map-state
duality. If A and B represent the same linear map, i.e. JAK = JBK, then their reduced AP-forms
are identical, thanks to the uniqueness of the form proved in Lemma 14. Therefore, we can
transform both A and B into diagrams in reduced AP-form using Lemma 17. The sequence of
transformations from A to A in reduced AP-form, composed with the series of rewrites from
B in reduced AP-form to B, provides us with a sequence of rewrites that transforms A into
B.
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Lemma 20. The following boundary pivot rule is derivable in ZXStab
p :

a, 0

b, c

α1, β1

αi, βk

γ1, δ1

γj , δl

...
...

...

...
...

...
e1

ek

f1

fl

ϵ ≈

α1, β1

αi, βk

γ1-ϵ-1af1, δ1

γj -ϵ-1afj , δl

...
...

...

...
...

... g11

g1l

gk1

gkl

-ϵ-1a, 0

-

-ϵ-1a, 0

b, c

d-1

h1 h1

hk

hk

Here gij := −ϵ−1eifj and hi := −ϵ−1ei. This rule holds for all choices of phases as long as ϵ ̸= 0.
Proof. Unfuse spiders and introduce Hadamards as follows:

a, 0

b, c

α1, β1

αi, βk

γ1, δ1

γj , δl

...
...

...

...
...

...
e1

ek

f1

fl

ϵ =
a, 0

α1, β1

αi, βk

γ1, δ1

γj , δl

...
...

...

...
...

...
e1

ek

f1

fl

ϵ

b, c

-
-

(Fusion)

(Lem 28)

≈

α1, β1

αi, βk

γ1-ϵ-1af1, δ1

γj -ϵ-1afj , δl

...
...

...

...
...

... g11

g1l

gk1

gkl

-ϵ-1a, 0

-

-ϵ-1a, 0

b, c

d-1

h1 h1

hk

hk

=
a, 0

α1, β1

αi, βk

γ1, δ1

γj , δl

...
...

...

...
...

...
e1

ek

f1

fl

ϵ

b, c

-
-

(Lem 23) (Lem 9)

Where in the last step we applied the regular pivot Lemma 9.
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