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Quantum supermaps provide a framework in which higher order quantum processes can act on lower

order quantum processes. In doing so, they enable the definition and analysis of new quantum pro-

tocols and causal structures. Recently, key features of quantum supermaps were captured through a

general categorical framework, which led to a framework of higher order process theories (HOPT)

[89]. The HOPT framework models lower and higher order transformations in a single unified theory,

with its mathematical structure shown to coincide with the notion of a closed symmetric monoidal

category. Here we provide an equivalent construction of the HOPT framework from four simple

axioms of process-theoretic nature. We then use the HOPT framework to establish connections be-

tween foundational features such as causality, determinism and signalling, alongside exploring their

interaction with the mathematical structure of ∗-autonomy.

1 Introduction

Traditional theories of physics focus on the evolution of states by means of physical processes. More

recently, however, there has been a growing interest in an extended class of theories, where processes can

themselves evolve under a higher level type of operations called supermaps [15, 16, 22, 20, 26, 67, 12]. In

quantum information, the development of supermaps stimulated the study of new protocols involving the

manipulation of quantum processes and quantum causal structures [21, 10, 11, 44, 19, 60, 74, 18, 35, 5,

52, 1, 90, 27, 75, 69, 70, 93, 79, 62, 63, 87, 8, 9, 42, 43, 92, 71, 50, 51]. In addition, quantum supermaps

serve as a lens through which one can examine the kinds of causal structures which are compatible with

quantum theory [54, 25, 66, 20, 14].

Given the usefulness of the supermap framework for quantum theory, it is natural to try and extend it

to more general physical theories. A powerful approach for capturing the structural aspects of physical

processes is the framework of process theories [37], which emerged from research in the field of cate-

gorical quantum mechanics [3, 2, 57, 31, 37]. In this framework, the notions of sequential and parallel

composition of processes are placed at the forefront by adopting the mathematical structure of a sym-

metric monoidal category (SMC) [61]. The process theoretic framework, often aided by its easy-to-use

graphical language [31, 37], has led to categorical formalisation of the notions of entanglement [36],

phase [34], complementarity [33, 46], causal/temporal structure [38, 39, 59, 68, 78, 65], information

extraction [40, 77], postivity [82], dynamics [46], and memory [13], and the interactions between them

[80, 84, 45].
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In a recent work [59], Kissinger and Uijlen approached the study of supermaps in the process the-

oretic framework. Specifically, they built supermaps respecting causality constraints by starting from

compact closed categories with sufficiently well-behaved environment structures as ambient categories.

The higher order theories resulting from this construction were named higher order causal categories

(HOCCs), and were shown to be a special subclass of ∗-autonomous categories. On the other hand, one

may ask which mathematical structure captures precisely the notion of a higher order physical theory,

independently of the specific properties of the ambient category from which the higher order transfor-

mations might be built, and independently of causality constraints. An answer to this question was

proposed by the authors of the present paper, who introduced a categorical notion of supermap and, iter-

atively building on it, the notion of a higher order process theory (HOPT) [89]. Mathematically, HOPTs

were shown to coincide with closed symmetric monoidal categories (CSMCs). The HOPT framework

permits the study of higher order theories in their own right, without reference to additional structures

inherited by their particular means of construction, and prior to introduction of any notion of causality. In

general, HOPTs provide a broad arena for studying the interplay between physical axioms, operational

features, and categorical structures.

In this paper we present a simpler characterisation of the HOPT framework, showing that the struc-

ture of closed monoidal category can be derived from four basic axioms about higher order processes.

The axioms revolve around the idea that the processes of type A → B must be in one-to-one correspon-

dence with states of a higher order object A ⇒ B. We then introduce the notion of a tight HOPT, as a

HOPT C in which all objects are interpretable as types of higher order transformations acting on a basic,

first-order theory C1 (in other words, the objects of C are well-formed expressions built by combining

the objects of C1 with the binary operations ⊗ and ⇒). We then show how the framework can be used to

reason about higher order theories by establishing structural relations between determinism, properties

of correlations, causality, signalling, and ∗-autonomy. Specifically, we demonstrate that

• if C1 is causal and all single-state objects in C have no correlations with other objects, then for

every pair of objects A and A′ in C1 and any arbitrary object X in C the tensor product system

(A ⇒ A′)⊗X does not permit signalling from system A to system X . In other words, discarding

A′ completely blocks the flow of information from A to X . This result reproduces a key finding of

[59] with only reference to basic operational principles.

• if every object A in C1 is equivalent to its double dual (A⇒ I)⇒ I, and the tensor product preserves

equivalence with double duals, then the HOPT C is ∗-autonomous.

• if C1 is causal, C is ∗-autonomous, and all single-state objects in C have no correlations with other

objects, then for every pair of objects A and A′ in C1 and every arbitrary object X in C the tensor

product object (A ⇒ A′)⊗X does not permit signalling from A ⇒ A′ to X . In other words, the

choice of a supermap acting on A ⇒ A′ cannot affect the marginal state of X .

We also prove that the first and third results in the above list hold in a more general setting, where the

HOPT C is not required to be tight. In that setting, causality of C1 is replaced by the requirements that

C is deterministic (i.e. has a unique scalar) and that objects A and A′ are causal (i.e. they have a unique

discarding operation [17, 23, 39, 32]).

A potential avenue for future research is to generalise the work of [59] to generate interesting ex-

amples of HOPTs beyond higher order causal categories, for example by generalising constructions to

infinite dimensional process theories [29, 30, 47, 48, 49] and time symmetric operational theories [56],

alongside including sectorial restrictions [86]. Furthermore there are connections to be explored with

frameworks for causal inferential theories [76], string diagrams with open holes [72, 73], and extensions

to the notion of a lambda calculus to quantum settings [83, 81, 85, 94].
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2 Higher order process theories

2.1 Introduction to higher order transformations

In quantum theory, deterministic state transformations are represented by quantum channels, that is,

completely positive, trace-preserving linear maps acting on density matrices [88]. In turn, quantum

supermaps [15, 16, 22, 20, 26, 12] describe deterministic transformations of quantum channels, and

they are represented by linear maps on a suitable vector space of maps. This notion of a higher order

transformation acting on lower order transformations can be iterated indefinitely to construct an infinite

hierarchy of transformations of increasing complexity [22, 67, 12].

In [59], Kissinger and Uijlen extended the construction of quantum supermaps to a large class of

physical theories. Specifically, they provided a way to build a higher order theory Caus[P] by imposing

a causality axiom on a raw-material category P , assumed to be compact closed. The result of this

construction was named as a “Higher Order Causal Category” (HOCC), and was shown to be a special

type of ∗-autonomous category. More recently, a broad categorical framework for theories of supermaps

was introduced in [89], where we introduced the notion of Higher Order Process Theory (HOPT). HOPTs

were shown to be mathematically equivalent to closed symmetric monoidal categories [61], an important

class of categories that contains ∗-autonomous categories (and so HOCCs) as a special case.

Let us start with an informal summary of the framework of [89]. Following [37], in this framework a

standard physical theory is modelled as a symmetric monoidal category (SMC) C1, with physical systems

represented by objects and physical processes represented by morphisms between objects. When objects

form a set we denote that set by o(C1) and for each pair of objects A,B we denote the set of morphisms

from A to B in C1 by C1(A,B). Symmetric monoidal structure of a theory ensures that it comes with

a notion of parallel composition for objects and morphisms, represented by the symbol ⊗. Each SMC

also comes equipped with a notion of empty space I such that A⊗ I is equivalent to A, the states of

an object B are then considered to be morphisms of the form f : I → B. The category of supermaps

over C1 is then another symmetric monoidal category C , with the property that every pair of objects

A,B in C1 is associated to an object type A ⇒ B in C representing morphisms from A to B in C1, every

process f ∈ C1(A,B) is then uniquely associated to a state f̂ ∈ C (I,A ⇒ B). We refer to the morphism

f ∈ C1(A,B) as a dynamic process, and to the state f̂ ∈ C (I,A ⇒ B) as the static version of process f .

Supermaps are considered to be the morphisms of C , as a result they act on object types such as A ⇒ B.

Axioms are given for two separate tensor products, one denoted ⊗ in which bipartite processes can have

their parts plugged together in sequence or in parallel, and another denoted ⊠ which models the largest

imaginable way to combine objects. We will see that the former product ⊗ is an abstract model for the

non-signalling tensor product of [59]. The latter product ⊠ on the other hand is analogous to the “par”

& of [59]. This manuscript will only be concerned with the former product.

A theory C equipped with just the former product ⊗ contains its own supermaps if the above story

holds with C1 = C . Moreover, the lower and higher order levels within C are linked if each object

A is isomorphic to the object I ⇒ A, representing the processes from the unit object I into A. When

this condition is satisfied, C is called a HOPT. Mathematically, HOPTs can be characterised as closed

symmetric monoidal categories (CSMCs) [89].

In the following subsection, we provide an alternative characterisation of HOPTs/CSMCs in terms

of four simple axioms of process-theoretic nature.
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2.2 Four axioms for higher order process theories

Ref. [89] argued that the appropriate mathematical structure for describing higher order process theories

is the structure of a CSMC. In process-theoretic terms, CSMCs can be defined as follows:

Definition 1. A CSMC C is an SMC in which, for every pair of objects A,B in C , there exists an object

A ⇒ B in C and a morphism εA⇒B : (A ⇒ B)⊗A → B such that for every morphism f : (C ⊗A)→ B

there exists a unique morphism f̄ : C → (A ⇒ B) satisfying

ε

A ⇒ B

A

B

f̄

C

=
f

A

B

C

(1)

The process f̄ will often be referred to as the curried version of the process f . Currying is the key

notion of a CSMC: for each process f : C⊗A → B there is a process f̄ : C → (A ⇒ B) which takes C as

an input and inserts it into the left hand input of f .

Closed monoidal structure is powerful, but it is unclear whether the existence of the curried version

of each process should considered be a fundamental principle. Instead of assuming closed monoidal

structure from the outset, we present four basic operational axioms that pin down the structure of a

CSMC, and derive currying as a consequence. The intention of the axioms is to capture the notion of a

theory in which each process exists both in a static form, manipulable by higher order transformations

within the same theory, as well as in a dynamic form in which such a process may be interpreted as

actually happening to a system.

The axioms are imposed on a given process theory, mathematically described by an SMC C . Infor-

mally, the axioms are as follows:

• Axiom 1. For every pair of objects A,B there exists an object A ⇒ B such that for each process

f : A → B, there exists a unique state f̂ : I → (A ⇒ B).

• Axiom 2. There exists a higher order transformation which uses the static process f̂ as a resource

for implementing the dynamic process f .

• Axiom 3. There exist higher order transformations which plug static processes together in se-

quence or in parallel.

• Axiom 4. Every state ρ : I → B is equivalent to its static representation ρ̂ : I → (I ⇒ B).

We now formally phrase the above axioms in the language of process theories. Axiom 1 is already

expressed formally. To formalise Axiom 2, we introduce the notion of “insertion of a process”:

Definition 2. For a generic pair of objects A and B, an insertion is a process εA,B : (A ⇒ B)⊗A → B such

that

=

f̂

A

f

B
εA,B

A

B

A ⇒ B
(2)

for every f : A → B.
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From here on we will adopt the following notation

:=
εA,B

A

B

A ⇒ B A ⇒ B
A A

BB

(3)

Given any process f : C → (A ⇒ B) that produces a static process in output, the insertion εA,B can be

applied to the static output to make a new process. Explicitly, the new process is obtained by applying

the function

EC
A,B : C (C,A ⇒ B)→ C (C⊗A,B) (4)

defined by

EC
A,B ::

A

B

C

A ⇒ B

7→f

C

f

(5)

We say that εA,B is completely injective if the function EC
A,B is injective for every C.

Physically, since ε is interpreted as usage of a process, it is natural to require that ε be completely

injective. The formal statement of Axiom 2 is that there exist a completely injective insertion εA,B for

every pair of objects A,B ∈ o(C ). Axioms 1 and 2 together imply that there is a bijective correspondence

between the set of processes C (A,B) and the set of states C (I,A ⇒ B). Note that, however, there is an

operational difference between static and dynamic processes: a static process is a resource for generating

the corresponding dynamic process, but the converse may not be true in general.

Axiom 3 demands that sequential and parallel composition appear as higher order processes that can

be applied to static processes. This idea is captured by the following definition:

Definition 3. Let C be a process theory equipped with a completely injective insertion εA,B for each

pair of objects A,B, we say that C has basic manipulations if for every triple (A,B,C) and quadruple

(A,A′
,B,B′) there exists processes ◦ABC and ⊗AA′BB′ denoted

⊗

(A⊗B)⇒ (A′⊗B′)

A ⇒ A′ B ⇒ B′

◦

A ⇒C

B ⇒C A ⇒ B

(6)

such that the following equations hold

=

◦

B

C

A

B

A

C

=

⊗

A

A′

B

B′

A⊗B

A′⊗B′

(7)
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The above equations are reminiscent of equations used in causal inferential theories to derive com-

posed states of knowledge from states of knowledge about individual processes [76]. By inserting static

processes and using the definitions of ε , ◦ and ⊗ it is shown in Appendix A that ◦ and ⊗ implement se-

quential and parallel composition of static processes, respectively. We will from here on adopt a special

notation for the static representation of the identity ˆidA : I → (A ⇒ A):

A ⇒ A

◦

A ⇒ A

:=

ˆidA

(8)

Finally, Axiom 4 postulates an equivalence between each object A and the corresponding object

(I ⇒ A). Formally we require the insertion εI,A : (I ⇒ A)⊗ I → A to be an isomorphism for every object

A ∈ o(C ). In string diagram language this is phrased by asking for a process ηA such that

I

A

A

=

ηA

A

A

I ⇒ A
I

A

I ⇒ A

=

ηA

I ⇒ A

I ⇒ A

A

(9)

We will in general adopt an aesthetic convention of notating with small boxes or circles those processes

which are canonical, in other words, those who’s existence follows from the axioms of a higher order

process theory alone.

Definition 4 (Higher order process theory). A higher order process theory (HOPT) is an SMC C

equipped with a completely injective insertion εA,B for every pair of objects A, B such that

• C has basic manipulations

• For each A the map εI,A is an isomorphism

As it turns out, these conditions are equivalent to providing a closed symmetric monoidal structure:

Theorem 1 (HOPTs = CSMCs). An SMC C is a HOPT if and only if C is a CSMC.

Proof. Given in Appendix B. The key idea is that the curried version of a generic process can be con-

structed from its static version using the inverse of the insertion εI,A along with basic manipulations.

2.3 Tight higher order process theories

In a generic HOPT, there is no explicit distinction between higher levels and lower levels. In particular,

there is no specification of a first-order physical theory C1 on which the higher order processes of C are

based. We now add such a specification by requiring the existence of a first-order theory C1 inside of C ,

such that all of the processes in C can be interpreted as manipulations of processes built from C1. The

definition presented here is a special case of a more general notion of a higher order theory C containing

a first-order theory C1 introduced in [89].

A full sub-process theory S of a process theory C is a symmetric monoidal subcategory of C such

that for any pair of objects A,B in S the processes from A to B in S are all of the processes from A to

B in C .
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Definition 5. A tight HOPT is a pair (C ,C1) where

• C is a HOPT and C1 is a full sub-process theory of C

• The objects of C are generated by combining the objects of C1 with the binary operations ⊗ and

⇒, that is, they are given by the algebra o(C1) ~ ⊗C ~ ⇒C .

For a tight HOPT (C ,C1), we will see in section 5 that the closed monoidal structure imposes con-

straints that are strong enough to allow a lifting of certain properties from the objects of C1 to all objects

in C .

3 String diagram toolbox

We now develop a graphical representation of some basic notions in higher order physics, such as the

notions of combs and acyclic causal structures.

Combs Quantum combs [15, 22] represent quantum circuits with a set of open holes in which quantum

channels can be inserted. In the categorical framework, the canonical morphisms of a HOPT C give

formal meaning to such circuits of the theory with open holes: in the HOPT framework, a comb is

simply represented by a special type of morphism in C . For example, a comb with a single hole for a

process of type A→A′ (left-hand side of the following diagram) is represented by a morphism containing

an insertion of the static type A ⇒ A′ (right-hand side of the following diagram)

g

f

∼=

g

f

(10)

The sign ∼= denotes a correspondence between an informal picture on the left hand side and a morphism

used to represent it on the right hand side.

Every comb defines a supermap, whereby the processes inserted in the empty holes are transformed

into new processes. In the static picture, the action of this supermap is generated by the basic operations

of parallel and sequential composition. For instance, the supermap s f ,g corresponding to the comb in the

above diagram can be decomposed as

=s f ,g

ĝ f̂

◦

⊗

◦

:=

ĝ f̂

◦

⊗

◦

◦
=

f̂ĝ

◦

◦

⊗

◦

(11)

Acyclic causal structures The canonical processes of any HOPT are sufficient to define the insertion

of processes into the vertices of any arbitrary directed acyclic graph. This scenario can be represented

by formal diagrams in the HOPT, which may prove useful for reasoning about information theoretic

protocols involving the agents who perform operations at the nodes of a network.

Definition 6 (Circuit skeleton). A circuit skeleton in a tight HOPT C is a circuit built only from insertion

processes εA,B with A,B ∈ o(C1).
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An example of a circuit skeleton is the following process in which thin wires are used to represent

objects of C1:

(12)

When C1 is causal a circuit skeleton can be interpreted as a raw causal structure of nodes into which

physical processes can be freely inserted. Note that, more broadly, circuit skeletons could also be used

in general non-tight HOPTs by allowing insertion processes εA,B with arbitrary systems A,B ∈ C .

Dualising processes Intuitively, it should be possible to view a state of object A as an “effect on the

effects on A,” that is, as a transformation that maps effects in A ⇒ I into scalars (i.e. elements of I). In a

CSMC, the embedding of A into (A ⇒ I)⇒ I is implemented by a process

dA : A →
[
(A ⇒ I)⇒ I

]
(13)

uniquely defined by the following condition

d

=
A

I
A ⇒ I

I

(14)

The existence of the unique morphism dA is well-known, and a proof is given in Appendix C.

In the following, we will call dA the dualising process for system A. It is natural to require that the

dualising process maps distinct states of A into distinct states of (A ⇒ I)⇒ I. If this injectivity property

holds for every object A ∈ o(C ), we say that the HOPT C has injective dualisation. An example of a

HOPT with injective dualisation is a theory with “enough effects,” in the following sense:

Definition 7 (Enough effects). A HOPT C has enough effects if for every object A ∈ o(C ) and for every

pair of states ρ ,σ ∈ C (I,A), the condition ∀e ∈ C (A, I) : e◦ρ = e◦σ , implies ρ = σ .

A proof that enough effects imply injective dualisation is given in Appendix D. Whilst in general

the dualising process dA may not be an isomorphism, if every dA is indeed an isomorphism, then C is

∗-autonomous:

Definition 8 (∗-autonomous category with global dualising object I). A closed symmetric monoidal

category C is ∗-autonomous with global dualising object I if dA is an isomorphism for every A ∈ o(C ).

In fact the above is a special case of the more refined notion of an ISOMIX [28] category. Later in this

paper we will discuss the relation between the special case of ∗-autonomous HOPTs, and the HOCCs of

Ref. [59].
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Lifting processes on states to processes on effects In a CSMC, it is possible to show that each state

of a system A ⇒ B can be converted into a state of the system (B ⇒ I)⇒ (A ⇒ I) representing a process

from (B ⇒ I) to (A ⇒ I). The conversion

TAB :
(
A ⇒ B

)
→

[
(B ⇒ I)⇒ (A ⇒ I)

]
(15)

termed the lifting process is defined by the following condition

T

=
B ⇒ I

A ⇒ I

A

I

A

B

B

I

(16)

The existence of the lifting process TAB is proven in the Appendix C.

Static currying Every state of type C ⇒ (A ⇒B) defines a process C → (A⇒ B), which in turn defines

a process of type (C⊗A)→ B and so a state of type (C⊗A)⇒ B. The correspondence between states

of C ⇒ (A ⇒ B) and (C ⊗A) ⇒ B is clearly one-to-one. Furthermore, it is possible to show that this

correspondence is implemented by an isomorphism

φ :
[
C ⇒ (A ⇒ B)

]
→

[
(C⊗A)⇒ B

]
(17)

defined by

φ

=

C⊗A

B A

B

C

A ⇒ B
(18)

A short diagrammatic proof that φ is an isomorphism is provided in Appendix E. Alternatively, the

isomorphism property of φ can be derived from the Yoneda lemma.

4 Causality in higher order process theories

We now introduce causality into the picture. In a probabilistic setting, the causality axiom states that the

probability of outcomes obtained at a certain step of a circuit cannot depend on the choice of operations

performed at later steps [17, 23, 24]. This axiom is equivalent to the condition that there exists a unique

deterministic effect, this unique effect is typically written with the following “ground” symbol:

A (19)

In the categorical setting, if one restricts their attention to the category of deterministic processes, causal-

ity is the statement that the monoidal unit I is terminal [39, 32].
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4.1 Causality and determinism

To formulate causality in a HOPT, it is convenient to first define the notion of determinism. In a deter-

ministic theory, there should only be one scalar, which represents certainty.

Definition 9 (Deterministic process theory). A process theory C is deterministic if it contains only one

scalar, that is, if |C (I, I)|= 1. The unique scalar in a deterministic theory is denoted by 1.

HOCCs provide an instance of deterministic HOPTs.

Definition 10 (Causal object/theory). An object A is causal if it has only one effect, that is, if |C (A, I)|=
1. A process theory C is causal if all the objects A ∈ o(C ) are causal.

Note that every causal theory is automatically deterministic. In the higher order setting, it is interest-

ing to study tight HOPTs (C ,C1) in which the first-order theory C1 is causal. In this case, it is immediate

to see that C is deterministic. Notice that, however, it does not make much sense to study the scenario

in which an entire theory C is causal, because any such theory is trivial under the reasonable assumption

that the dualisations are injective:

Theorem 2. A HOPT C with injective dualisation is causal if and only if it is trivial, that is, if and only

if |C (A,B)|= 1 for all objects A,B ∈ o(C ).

Proof. If |C (A,B)|= 1 for every pair of objects A,B, then C is trivially causal. Conversely, assume that

C is a causal HOPT. Then, for a generic object A ∈ o(C ), pick two generic states ρ ,σ ∈ C (I,A), and

consider the states dA ◦ρ and dA ◦σ of (A ⇒ I)⇒ I. These states are in one-to-one correspondence with

effects on system A ⇒ I. Since the theory is causal, system A ⇒ I has only one effect, and therefore we

must have dA ◦ρ = dA ◦σ . Since the dualisation dA is injective, we have ρ = σ . Hence, we conclude that

system A has only one state. More generally, for a generic pair of objects A,B ∈ o(C ), the morphisms of

type A →B are in one-to-one correspondence with the states of A⇒ B, and therefore one has |C (A,B)|=
1.

Note that the above theorem holds in particular when the category C is ∗-autonomous with I the

global dualizing object. In summary, the relevant scenario for causality in HOPTs is the one in which

a sub-theory C1 is causal, while the entirety of C is only deterministic. We conclude the section by

showing that, if C is deterministic, a simple sufficient condition for an object to be causal is that it has

“enough states,” in the following sense:

Definition 11 (Enough states). An object A has enough states if for every object X and for every pair of

processes f ,g : A → X

f = g ⇐⇒ ∀ρ ∈ C (I,A) : f ◦ρ = g◦ρ (20)

In the axiomatic framework of [24, 64], this property can be shown to follow from the condition of

local distinguishability, also known as local tomography [4, 91, 53, 41, 6, 7, 17, 55].

In any deterministic HOPT if an object A has enough states then it must be causal, i.e. there can be

only one effect A → I. Any two effects e1,e2 ∈ C (A, I) satisfy the condition e1 ◦ρ = 1 = e2 ◦ρ for every

state ρ ∈ C (I,A), and therefore the “enough states” condition implies e1 = e2.

4.2 The no-signalling tensor product

An important insight of Ref. [59] is that the tensor product in a higher order causal category does not

allow for signalling between tensor factors of process types between causal objects. More specifically,

Ref. [59] showed that for any first-order objects A,B,A′
,B′ of a HOCC the type (A ⇒ A′)⊗ (B ⇒ B′)
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represents the space of non-signalling channels, for which the output A′ has no dependence on the input

B and the output B′ has no dependence on the input A. This notion can be expressed in the language of

HOPTs whenever each of A,B,A′
,B′ has a unique effect: a state f : I → (A ⇒ A′)⊗ (B ⇒ B′) represents

a non-signalling channel if there exist (dynamic) processes fA : A → A′ and fB : B → B′ satisfying:

=

f

A

A′

B

B′

A

A′ B′

B

fB =

f

A

A′

B

B′

A

A′ B′

B

fA
(21)

An interesting question is whether the above no-signalling property of the tensor product in a HOCC can

be derived through operational principles imposed on a general HOPT.

We now introduce a condition that implies this no-signalling property of the tensor product. The

condition is that objects with a single state cannot form non-separable joint states with other objects.

Intuitively, if a joint state of objects X and Y is interpreted as representing correlations between the states

of X and Y , it should not be possible to correlate any auxiliary object X with a single-state object Y . This

intuition motivates the following definition:

Definition 12 (No correlation with a single-state object). A process theory C has no correlations with

single-state objects if, for any object Y with |C (I,Y )| = 1 and any object X ∈ o(C ), every state ρ : I →
X ⊗Y is of the product form ρ = ρ ′⊗π with ρ ′ ∈ C (I,X) and π ∈ C (I,Y )

X Y
=

ρ ′ πρ

X Y
(22)

The above condition is satisfied by all HOCCs as defined in [59]:

Theorem 3. Every HOCC is a HOPT with no correlations with single-state objects.

Proof. A minor generalisation of lemma 6.1 of [59], given for completeness in Appendix F.

The condition of “no correlation with single-state objects” was crucial to proving that (A ⇒ A′)⊗
(B ⇒ B′) represents a non-signalling channel in [59]. In that context, the statement followed from a

specific decomposition of supermaps, as open circuits of causal processes. Here, instead, we take the

“no correlation with single-state objects” as a basic operational condition.

We now show that, if there is no correlation with single-state objects, then the tensor product has a

no-signalling property. For a given process, non-signalling is defined as follows:

Definition 13 (Non-signalling process). A process m : A → A′⊗X in a deterministic process theory is

non-signalling from A to X if for every effect πA′ : A′ → I there exists an effect πA : A → I and a state

ρ : I → X such that

m
=

πA′

ρ

πA

X
A′

A A

X

(23)
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The definition expresses the idea that when A′ is discarded (in any way) no signal may reach X from

A. Note that, in principle, the definition still allows for a notion of signalling from A′ to X , because in

general the state f ′ of X could depend on the effect πA′ used for discarding. Note, however, that signalling

from A′ to X is not possible if system A′ is causal, because in that case the effect πA′ is unique. In the

following, we will restrict our attention to the case where both systems A′ and A are causal.

Theorem 4 (Non-signalling processes). Let C be a deterministic HOPT with no correlations with single-

state objects, A,A′ be two causal objects in C , and X ∈ o(C ) be an arbitrary object. Then, for every

state f : I → (A ⇒ A′)⊗X the process m defined by:

f

A

A′

m :=

X

X

A

A

A′

A′

(A ⇒ A′) (24)

is non-signalling from A to X.

Proof. As in [59], the core of the proof is the “no correlation with single-state objects” property. In the

proof, this property is applied to the object A ⇒ I, which is a single-state object because Hom(I,A ⇒
I) ∼= Hom(I ⊗A, I) ∼= Hom(A, I) =⇒ |Hom(I,A ⇒ I)| = 1. The discarding effect can as a result be

pulled through the entire process

f

=

f

f

◦=

A

A′

A

I

A

A′

A

I

ˆ

ˆ

(25)

The composition of f̂ with the unique discarding effect on A′ at the bottom of the diagram gives a state

of type (A ⇒ I)⊗X , and so “no-correlation with single-state objects” implies that such a state separates

as the unique discarding state on (A ⇒ I) and a state f ′ on X :

f

◦

f ′

=
f ′

=

A

I
A

I

ˆ
ˆ

(26)

The above immediately entails the fact that states of type f : I → (A ⇒ A′)⊗ (B ⇒ B′) represent
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non-signalling channels (when A,A′
,B,B′ are causal) in the sense of [59], since for such a state f then

=

f

A

A′

B

B′

A

A′ B′

B

fB=
f̂B

B

B′

B′

BA

A B

B′

(27)

The broad takeaway is that it is the causality of an object A that prevents it from signalling to another

object that it is in parallel with.

4.3 Tensor product processes vs bipartite processes

For arbitrary objects A,A′
,B,B′, there is a parallel composition process from the tensor product object

(A ⇒ A′)⊗ (B ⇒ B′) to the space of bipartite processes (A⊗B)⇒ (A′⊗B′). But can this morphism be

an isomorphism? In other words, can the tensor product of processes of type A → A′ and processes of

type B → B′ yield the full set of processes of type (A⊗B)→ (A′⊗B′)? Here we show that the answer is

negative when A′ = B and B′ = A, since in this case the existence of a SWAP process can be leveraged.

Theorem 5. Let C be a deterministic HOPT with no interaction with single-state objects. If A and B are

causal and

⊗ : (A ⇒ B)⊗ (B ⇒ A)→ (A⊗B)⇒ (B⊗A) (28)

is an isomorphism, then A and B are single-state objects.

Proof. Given in Appendix G. The key idea is that the set of processes from A⊗B to B⊗A contains the

swap of objects A and B, and requiring the swap to be no-signalling implies that A and B have only one

state each.

5 The emergence of ∗-autonomy

An important difference between the HOPTs studied in this paper and the HOCCs of [59] is that the latter

are not just closed monoidal, but also ∗-autonomous, since they are equipped with isomorphisms of the

form ((A ⇒ I) ⇒ I) ∼= A for every object A. Here we explore the lifting of ∗-autonomy from lower to

higher orders by showing that for a tight HOPT (C ,C1), the property of ∗-autonomy can be lifted from

the first-order theory C1 to the entire higher order theory C whenever the tensor product is sufficiently

well behaved.

Definition 14 (Equivalence of double duals). An object A in a HOPT C is canonically equivalent to its

double dual if dA : A →
[
(A ⇒ I)⇒ I

]
is an isomorphism.

Such an isomorphism forces states on A to be nothing other than the effects on effects for A, as is

the case in finite dimensional quantum systems. This equivalence can be expressed more generally as a

symmetry between the dynamics on states and the dynamics on effects, such as the symmetry between

the Schrödinger picture and the Heisenberg picture in quantum theory.

Definition 15 (Adjoint dynamics). A HOPT C has adjoint dynamics between A and B if the morphism

TAB : (A ⇒ B) →
[
(B ⇒ I)⇒ (A ⇒ I)

]
is an isomorphism.
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Adjoint dynamics expresses the condition that the processes that may be applied to states are pre-

cisely those that may be applied to effects.

Theorem 6. Let C be a HOPT, the following statements are equivalent.

• For all A,B ∈ o(C ) the HOPT C has adjoint dynamics between A and B

• For all B ∈ o(C ) the HOPT C has adjoint dynamics between I and B

• Every B ∈ o(C ) is canonically equivalent to its double dual in C

Proof. Given in Appendix H.

Given two systems A and B that are canonically equivalent to their double duals, it is natural to ask

whether equivalence is preserved by the binary operations (−⊗−) and (−⇒−), in the following sense:

Definition 16 (Preservation of equivalence of double duals). A binary operation ⊙ : o(C )× o(C ) →
o(C ) preserves equivalence of double duals if dA⊙B is an isomorphism whenever dA and dB are isomor-

phisms.

We now show that the preservation of equivalence by the tensor product ⊗ is enough to guarantee

preservation of the equivalence by the higher order composition ⇒:

Theorem 7 (Lifting canonical isomorphisms). For every HOPT C , if (−⊗−) preserves equivalence of

double duals then (−⇒−) preserves equivalence of double duals.

Proof. Given in Appendix I.

For every tight HOPT (C ,C1), a crucial consequence of the above theorem is that ∗-autonomy lifts

from first-order to higher orders, provided that the tensor product preserves equivalence with double

duals:

Theorem 8. Let (C ,C1) be a tight HOPT. If

• for all objects A ∈ C1 the canonical morphism dA : A → [I ⇒ (I ⇒ A)] is an isomorphism, and

• the monoidal product ⊗ : C ×C → C preserves equivalence of double duals,

then C is ∗-autonomous with dualising object I.

Proof. Follows immediately from the fact that the objects of C are generated from the objects of C1

through the operations ⊗ and ⇒.

6 A stronger no-signalling property

We conclude the paper by showing a strengthening of the no-signalling property shown in subsection 4.2.

There we saw that in a deterministic theory with no correlations with single-state objects, the states of

type (A ⇒ A′)⊗X represent processes which are non-signalling from A to X whenever A and A′ are

causal objects. We now show that, in the presence of equivalence to double duals, this no-signalling

property can be strengthened: the tensor product (A ⇒ A′)⊗X is no-signalling from the whole system

(A ⇒ A′) to X .
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Definition 17. An object Y in a deterministic process theory C has no-signalling states if for every object

X and every bipartite state m : I →Y ⊗X there exists a state m′ : I → X such that for every Π : Y → I

m

Y =

Π

X

m′

X

(29)

In other words an object Y has no-signalling states if the choice of effect for discarding object Y in a

bipartite object X ⊗Y does not affect the marginal state of system X .

Theorem 9. Let C be a deterministic HOPT with no correlations with single-state objects. If

• ⊗ preserves equivalence with double duals, and

• A and A′ are causal and canonically equivalent to their double duals,

then the object (A ⇒ A′) has no-signalling states.

Proof. Given in Appendix J.

The theorem shows that, no matter which supermap is applied on the system A ⇒ A′, and no matter

the way a system is discarded, the state of any other system in parallel will be unaffected. Indeed, for

every pair of processes S : (A ⇒ A′)→ Y and T : (A ⇒ A′)→ Z, and every pair of effects e : Y → I and

k : Z → I, one has

m

=
S

m

T

e k

Y Z

X XA ⇒ A′A ⇒ A′ (30)

In other words, the choice of a supermap on system A ⇒ A′ cannot signal to any other system X . This

can be seen as a generalised causality condition for circuits of processes within a HOPT.

7 Conclusions

We presented HOPTs/CSMCs as an operationally motivated framework for higher order physics. By

using the diagrammatic gadgets which come with a HOPT, we recovered signalling restrictions between

process wires as a consequence of simple principles. We demonstrated that for a sufficiently tame notion

of parallel composition the defining condition of ∗-autonomy (with global dualising object I) lifts from a

first-order theory to its entire higher order theory. Following on from this, we showed that HOPTs with

the above notion of ∗-autonomy satisfy a stronger causality condition, namely that a supermap on first-

order processes cannot be used to signal to other factors of a tensor product. We hope that the definition

of HOPTs will serve as a tool to guide the exploration of new structures arising in higher order physical

theories.
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Proof. For sequential composition note that

=
◦

B

C

A

B

A

C

f̂

ĝ
f̂ ĝ

=

f

g

A

C

f̂ ◦g

= (32)

and so the result is entailed by complete injectivity of the insertion, which allows the removal of inser-

tions whilst preserving equality of diagrams. The proof for the parallel composition supermap is almost

identical.

Complete injectivity also implies an associativity property of the sequential composition maps.

Namely noting that:

=

◦

B

C

A

B

A

C

C

D

C

D

=

◦

A

D

◦

=

A

B

B

D

◦

=

A

D

◦

◦

(33)

it follows that,

◦

◦

◦

◦

=
(34)

this associativity property means that a 3 input sequential composition map can be written unambigu-

ously as

◦
(35)

and similarly for n-input sequential composition processes. Furthermore each sequential composition of

type (A ⇒ B)⊗ (A ⇒ A)→ (A ⇒ B) has the static version of the identity as its right-unit, meaning that

the following equation holds:

◦

◦ = (36)
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indeed this follows from noting that

◦

◦

A

B

=

◦

A

B

A

A
= A

B

(37)

and again using complete-injectivity. An almost identical proof can be used to show that the static

identity ˆidA acts as a left-unit for the sequential composition of type (A ⇒ A)⊗(A ⇒ B)→ (A ⇒ B). The

properties of associativity and unitality also entail that the assignment f ⇒ g given by pre-composition

with f and post-composition with g:

◦

ĝ f̂

=f ⇒ g
(38)

is a bifunctor, meaning that ( f ⇒ g) ◦ ( f ′ ⇒ g′) = ( f ′ ◦ f ) ⇒ (g◦g′) and that identities are preserved.

The above equation can be demonstrated to be true by witnessing two equal interpretations of the same

5 input diagram:

◦

ĝ f̂=

f ⇒ g

f ′ ⇒ g′ ◦

ĝ′ f̂ ′

◦

ĝ f̂

=

ĝ′ f̂ ′

◦ ◦

◦

=

ĝ◦g′ f̂ ′ ◦ f

= ( f ′ ◦ f )⇒ (g◦g′)

(39)

It follows from the above that whenever f is an isomorphism (meaning that it has both a left and a right

inverse) and g is an isomorphism then f ⇒ g is an isomorphism.

B Equivalence between higher order process theories and closed monoidal

categories

Theorem 11 (HOPTs = CSMCs). A symmetric monoidal category C is a HOPT if and only if C is a

closed symmetric monoidal category.

Proof. The proof rests on the same key point as the characterisation theorem for linked monoidal super-

categories, that one can construct the curried version of any process f using the fully static version f̂
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along with the basic manipulations ⊗, ◦, and εI,A. For readability we treat C to be strict monoidal, so

that we do not need to include static unitors in our definitions. We introduce a key process ∆ named

“partial insertion” which takes the static form f̂ : I → (C ⊗A) ⇒ B of a process f : C ⊗A → B and

a state of type C and then inserts that state of type C into f̂ to produce a new static process of type

∆( f ,c) : I → (A ⇒ B).

∆ :=

◦

⊗

◦η(C⊗A)⇒ B C

A ⇒ B

A ⇒ B

C

(C⊗A)⇒ B

I ⇒C A ⇒ A

A ⇒ (C⊗A)

(40)

Using the defining equations of a Higher order process theory, ∆ satisfies

∆

= ◦

⊗

◦η

=

⊗

◦η

=

◦

η

=

A

B A

B C⊗A

B

A

C⊗A
A

A

C⊗A

B

C⊗A

B

I

C (41)

In turn this entails that for each f there exists a process ∆( f ) := ∆◦ ( f̂ ⊗ id) which satisfies

∆
=

f̂
f̂

f=

∆( f )

:=

A

B
A

B

C⊗A

B

(42)

More-over by complete injectivity this ∆( f ) is the unique morphism satisfying the above condition. The

unique choice ∆( f ) for each f then satisfies the defining condition of a closed monoidal category. To

show that every closed symmetric monoidal category is a HOPT all that is required is to show that εI,A

is an isomorphism and that the sequential and parallel composition processes ⊗ and ◦ must exist. The

latter is well known [58], and follows by considering the left hand side of the defining equations of

sequential and parallel composition processes to take the place of the arbitrary f in the definition of a

closed symmetric monoidal category. The two-sided inverse of εI,A which regards it an isomorphism is

constructed by currying of the unitor of a symmetric monoidal category λ : A⊗ I →A to λ̄ : A→ (I ⇒A),
in process-theoretic language, the inverse of εI,A is given graphically by currying the identity.
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C The existence of canonical processes of HOPTs

In this section we prove that in any HOPT C morphisms satisfying the defining conditions for dA, TAB,

and φABC as defined in the main text, uniquely exist for all objects of C .

Theorem 12. The following hold in any HOPT C :

• For each object A there exists a unique dualiser dA

• For each pair A,B there exists a unique lifting process TAB

• For each triple A,B,C there exists a unique static currying φABC

Proof. Each proof follows by one or more applications of the existence of the curried version of any

process, guaranteed by the closed monoidal structure of C . Since C is closed monoidal we know that

for every morphism f : (A⊗C)→ B there exists a unique morphism f̄ : C → (A ⇒ B) such that

ε

A ⇒ B

A

B

f̄

C

=
f

A

B

C

(43)

taking f the right hand side of the condition we wish for dA to satisfy:

d

=
A

I
A ⇒ I

I

(44)

we see that da can be taken to be the currying of the right hand side, the existence and uniqueness of such

a dA are guaranteed by the defining condition of a closed monoidal category. The existence of TAB can

be demonstrated by two applications of currying, there must exist a unique process L satisfying

=

A

I

A

B

B

I

L
(45)

in turn there must be a unique process satisfying

=

T

B ⇒ I

A ⇒ I

L

(46)
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together this implies there is a unique process T such that

T

=
B ⇒ I

A ⇒ I

A

I

A

B

B

I

L

=

A

I

(47)

Finally the defining condition for φ :

φ

=

C⊗A

B A

B

C

A ⇒ B
(48)

is again precisely the condition that φ be the currying of the morphism on the right-hand side of the

condition. That such a φ exists and is unique is then again immediately implied by the closed monoidal

structure of C .

D Enough effects entails injective dualisation

The following proof is a useful exercise in getting used to working with the dualiser process dA.

Theorem 13. If an object A in a HOPT has enough effects, then it has injective dualisation.

Proof. let dA ◦ρ = dA ◦σ , we will show that ρ must equal σ . This follows by using the defining proper-

ties of the insertion process and the dualising process. For every effect e it follows that:

ê

A

I

ρ

d

A ⇒ I

I

=

ê

A

I

ρ

=

ρ ê

e

ρ

=
d

A ⇒ I

I

=

σ ê

=

ê

A

I

σ ê

A

I

σ

=

e

σ

=

(49)

and so by enough effects ρ = σ .
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E Proof that φ is an isomorphism

Theorem 14. The process

φ : C ⇒ (A ⇒ B)→ (A⊗C)⇒ B (50)

defined by

φ

=

C⊗A

B A

B

C

A ⇒ B
(51)

is an isomorphism

Proof. Define the currying ∆̄ of ∆ by

∆̄

= ∆
C

A ⇒ B

(52)

Then using complete injectivity of all insertion morphisms, its is sufficient to check that ∆̂ and φ are

isomorphisms up to insertion. First we check that φ ◦ ∆̂ = id

φ

=

∆̄

C

∆̄

=

∆

=

C⊗A

B

A

B

C⊗A

B

A

B

A ⇒ B (53)

Then we check that ∆̂◦φ = id

∆̂

=

∆

=

φ

φ

φ

=

A

B

C

A ⇒ B
A

B

C⊗A

B

A

B

C

A ⇒ B
(54)
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F HOCCs have no correlations with single-state objects

The notations and terminologies used here are taken from [59].

Theorem 15. Every HOCC is a HOPT which has no correlations with single-state objects

Proof. A general state on X⊗Y is a member of the set (CX ×CY )
∗∗ where CX is the set of states on X,

CY is the set of states on CY and C∗ is the set of effects which normalise elements on C, i.e. ∀ρ ∈ c :

π ◦ρ = 1. Let Y be a single-state object, since Y is flat its unique state must be a scalar multiple of the

maximally mixed state.

α (55)

Since CX is flat it follows that a scalar multiple of the discard process exists inside C∗
X .

µ ∈ C∗
X (56)

The elements of the set (CX ×CY )
∗ are up to process-state duality the processes M in the underlying

category such that,

α

M

ρ

= 1
∀ρ ∈CX (57)

Note that any first-order causal process Ψ

α

Ψ

ρ

= 1∀ρ ∈CX

µ
α Ψ

ρ

=
µ

ρ

µ = (58)

which entails that
µ
α Ψ ∈ (CX ×CY )

∗. In turn since { µ
α Ψ | Ψ causal } ⊆ (CX ×CY )

∗ then it follows

that (CX ×CY )
∗∗ ⊆ { µ

α Ψ | Ψ causal }∗. For any w ∈ { µ
α Ψ | Ψ causal }∗ it is immediate that

µ
α w ∈

{Ψ | Ψ causal }∗ which in turn implies the following decompositions,

X Y
=

ρ ′ πw

X Y
µ
α

X Y
=

ρ ′ πw

X Y

=⇒ 1
µ α (59)

By assumption the usage of an effect of the form Y → I (which will be normalised by the right hand

side of the composition) on w produces a state on X. This in turn confirms that the left hand side of the

decomposition is indeed a state of X, and so any w ∈ (CX ×CY )
∗∗ ⊆ { µ

α Ψ | Ψ causal }∗ must decompose

as the unique state of Y in parallel with a state of X.

G Tensor product processes vs bipartite processes

Theorem 16. Let C be a deterministic HOPT with no interaction with single-state objects. If A and B

are causal and

⊗ : (A ⇒ B)⊗ (B ⇒ A)→ (A⊗B)⇒ (B⊗A) (60)

is an isomorphism, then A and B are single-state objects.
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Proof. We show that there exists some κ ′ : I → A such that for every ρ : I → A then ρ = κ ′, meaning that

there can only be one state of type I → A implying that A be a single-state object. Indeed for every ρ :

= ⊗

⊗−1

SWAP

=

⊗−1

=

SWAP SWAP

B⊗A
A

B

B

A
A⊗B

=

=
B

A

⊗−1

SWAP

A

I

B

A

◦
=

A

I

B

A

=

=:

B⊗A

A⊗B

ρ κ

κ ′

κ
κ

κ

κ
κ

ρ

ρρ
ρ κ

M̂
M̂

ρ

ˆ ˆ

ρ

(61)

it follows that every state on A is equal to κ ′ and so A is a single-state object. Almost identical steps can

be used to produce the same result for B.

H Adjoint dynamics and double duals

Theorem 17. Let C be a HOPT, the following statements are equivalent.

• Every B ∈ o(C ) is canonically equivalent to its double dual in C

• For all A,B ∈ o(C ) the HOPT C has adjoint dynamics between A and Be

• For all B ∈ o(C ) the HOPT C has adjoint dynamics between I and B

Proof. To show that the first statement implies the second, we note that each TAB may be written in the

following form

◦

◦

φA,B⇒I,I

d̂B

SWAPA,(B⇒I)

φ−1
A,B⇒I,I

TAB = (62)
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which is easily demonstrated by showing that the rhs indeed satisfies the defining condition for T

◦

◦

φ

d̂

SWAP

φ−1 =

◦

◦

φ

d̂

SWAP

=

◦

φ

d̂

=

◦

d̂

=

dB

=

B ⇒ I

A ⇒ I
B ⇒ I

I

A

I

A

(B ⇒ I)⇒ I

A

B

B ⇒ I

I

A

B

B ⇒ I

I

B ⇒ I

I

B ⇒ I

I

A A

(63)

From the above decomposition of TAB it follows that whenever dB is an isomorphism then TAB is an

isomorphism. The third statement immediately follows as a subcase of the second. To demonstrate that

the third statement implies the first we note that each dB can be written in terms of TIB and a pair of

isomorphisms,

etaB

◦

TIBˆεI⇒IdB = (64)

again demonstrated by showing that the rhs satisfies the defining equation for dB

η

◦

T
ˆεI⇒I

=

η

T

=

η

=

I

I

B

I

I

B

B

I

B ⇒ I

I

B ⇒ I

I ⇒ I

=

η

T
ˆεI⇒I

B ⇒ I

I ⇒ I

I ⇒ I

I

(65)
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I Lifting isomorphism with double dual

In this section we will use the notation f ⇒ g to mean the supermap which pre-composes with f and

post-composes with g, the formal definition of f ⇒ g is given in Appendix A. We will furthermore

regularly use the notations A ⇒ g and f ⇒ B as shorthand for idA ⇒ g and f ⇒ idB respectively.

Theorem 18 (Lifted double duals). Let C be any HOPT, if ⊗ preserves equivalence with double duals

then ⇒ preserves equivalence with double duals.

Proof. We first give a sketch proof, outlining the sequence of internal isomorphisms used to show that

((A ⇒ B) ⇒ I) ⇒ I ∼= (A ⇒ B), we then expand on this demonstrating that the above isomorphism is

actually witnessed by dA⇒B. Firstly assuming dA and dB are isomorphisms then dB ⇒ I is an isomor-

phism since the contravariant functor (−⇒ I) preserves isomorphisms. Furthermore since ⊗ preserves

equivalence with double duals

(A⊗ (B ⇒ I))∼= ((A⊗ (B ⇒ I))⇒ I)⇒ I (66)

Again using that dB is an isomorphism gives

(A ⇒ B)∼= (A ⇒ ((B ⇒ I)⇒ I))∼= (A⊗ (B ⇒ I))⇒ I (67)

again since the contravariant functor (−⇒ I) preserves isomorphisms this implies,

((A ⇒ B)⇒ I)⇒ I ∼= (((A⊗ (B ⇒ I))⇒ I)⇒ I)⇒ I) (68)

the right hand side can be simplified using the first point on ⊗.

((A ⇒ B)⇒ I)⇒ I ∼= (A⊗ (B ⇒ I))⇒ I ∼= A ⇒ B (69)

So there indeed exists an isomorphism of the form required, to move beyond a sketch proof it must

be shown that this isomorphism is in fact dA⇒B. Using φ and the invertible (by assumption) canonical

morphism d : B → (B ⇒ I)⇒ I in its static form d̂B : I → (B ⇒ ((B ⇒ I)⇒ I)) an invertible morphism

m can be built.

d̂B

◦
mAB :=

φA,B⇒I,I

◦

m−1
AB

:=

φ−1
A,B⇒I,I ˆ

d−1
B

(A⊗ (B ⇒ I))⇒ I A ⇒ B

A ⇒ B (A⊗ (B ⇒ I))⇒ I

(70)

dA⇒B can be expressed in terms of m and d(A⊗(B⇒I))⇒I in the following way,

dA⇒B

(m−1
AB

⇒ I)⇒ I

mAB

= dA⊗(B⇒I))⇒I (71)
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Where since m is an isomorphism (m ⇒ I) and (m ⇒ I)⇒ I are isomorphisms too.

(mAB ⇒ I)

(m−1
AB ⇒ I)

◦

ˆmAB

◦

ˆ
m−1

AB

=

◦

◦
=

ˆmAB

ˆ
m−1

AB

◦

◦

= = (72)

The proofs of the identities used above can be found in Appendix A. The proof that dA⇒B decomposes

as above is then given as follows.

(m−1
AB

⇒ I)⇒ I

mAB

dA⊗(B⇒I))⇒I

=

ˆ
m−1

AB
⇒ I

mAB

dA⊗(B⇒I))⇒I

=
◦

m−1
AB

⇒ I

mAB

dA⊗(B⇒I))⇒I

=

m−1
AB

⇒ I

mAB

=

ˆ
m−1

AB

mAB

◦

=
m−1

AB

mAB

= =

dA⇒B

(A ⇒ B)⇒ I

I

(A⊗ (B ⇒ I))⇒ I

I

A ⇒ B

I

(A ⇒ B)⇒ I

I

((A⊗ (B ⇒ I))⇒ I)⇒ I

I

(A ⇒ B)⇒ I

I

(A⊗ (B ⇒ I))⇒ I

I

A ⇒ B

I

(73)

By assumptions dA and dB are isomorphisms, so dB ⇒ id is an isomorphism. It can be shown that dB ⇒ id

is always the the right inverse of dB⇒I since first by expanding the definition of dB ⇒ I

dA ⇒ I =

dA⇒I

=

dA⇒I

=

dAdA⇒I

◦

dA⇒I
d̂A

d̂A

A

I
(A ⇒ I)⇒ I

I

A

(A ⇒ I)⇒ I

I
A

I

(A ⇒ I)⇒ I

(74)
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and then using the definition of any canonical morphism dX twice.

=

dA

=
dA

=

A ⇒ I

I

A ⇒ I

I

A

I

=
A

I
(75)

Since dB ⇒ id is an isomorphism and dB ⇒ id is a right inverse for dB⇒I , it follows that dB⇒I must be an

isomorphism. Since ⊗ preserves isomorphism with double dual dA⊗(B⇒I) must be an isomorphism and

by the same reasoning as for B it follows that d(A⊗(B⇒I))⇒I is an isomorphism. This completes the proof

that every part of the given decomposition of dA⇒B is then an isomorphism, entailing that dA⇒B itself

must also be an isomorphism.

J Wires with no-signalling states

Theorem 19. Let C be a deterministic HOPT with no correlations with single-state objects, then if

• ⊗ preserves equivalence with double duals

• A and A′ each have enough states and are canonically equivalent to their double duals

then the object (A ⇒ A′) has no-signalling states.

Proof. We first show that every effect Π : (A ⇒ A′) → I can be written as an application of a discard

effect and an insertion of a state. This is a consequence of the isomorphism A⊗(A′ ⇒ I)∼= (A ⇒ A′)⇒ I

constructed by the following morphisms.

αAA′ =

dA⊗(A′⇒I)

φ−1
A,A′⇒I,I ⇒ I

(id ⇒ dA′)⇒ id

(76)

Indeed one can show the following identity

= ◦

A

I

αAA′

A ⇒ A′

I

(77)
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Using the general formula

=

f ⇒ g

ĝ f̂

◦

ĝ

f̂

≡

g

f

≡ A′

B

A

A′

A′

B
A

B′

A

B′

B

B′

(78)

twice.

αAA′

= =

i ⇒ dA

=

i ⇒ dA

A ⇒ A′

I
A ⇒ A′

I

dA⊗(A′⇒I)

φ−1
A,A′⇒I,I

⇒ I

(id ⇒ dA′)⇒ id

A ⇒ ((A′ ⇒ I)⇒ I)
I

(A⊗ (A′ ⇒ I))⇒ I

I

dA⊗(A′⇒I)

φ−1
A,A′⇒I,I

⇒ i
dA⊗(A′⇒I)

φ−1
A,A′⇒I,I

(79)

Then using the defining property of d,

=

A′ ⇒ I

=

i ⇒ dA

(A⊗ (A′ ⇒ I))⇒ I

I

dA⊗(A′⇒I)

φ−1
A,A′⇒I,I

A

I

i ⇒ dA

φ−1
A,A′⇒I,I

A′ ⇒ IA

I

i ⇒ dA

φ−1
A,A′⇒I,I (80)

and the natural isomorphism φ ,

ˆdA′

◦

A′ ⇒ I

I

A

I

= A

(A′ ⇒ I)⇒ I

A′ ⇒ I

I

i ⇒ dA

= (81)
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and the defining identity of the sequential composition supermap twice we reach

= =

dA′

=A

A′
◦

A

I

A

A′

A′ ⇒ I

I

A′

I

(82)

With this identity in mind we note that for every effect Π : (A ⇒ A′)→ I

f

=

f

A ⇒ A′

A ⇒ A′

I

(A ⇒ A′)⇒ I

=

f
αA,A′

A ⇒ A′

I

αA,A′

Π

Π̂

Π̂

(83)

we then use the property of no correlations with single-state objects on the state highlighted on the bottom

left,

αA,A′

Π̂

=

ρ

A A′ ⇒ I

A A′ ⇒ I

ˆ

(84)

to reach

f

◦

A ⇒ A′

A

I

=

f

αA,A′

A ⇒ A′

I

=

ρ

ρ

ˆ
ˆ

f

A ⇒ A′

Π

(85)

This time we use no correlations with single-state objects on the bipartite state highlighted on the bottom
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right,

f

◦

A ⇒ A′

ˆ

=

f ′ˆ

A ⇒ I X

A ⇒ I X

(86)

this finally entails that there exists some state f ′ such that for every effect Π.

= =

A

I

f

f ′

f ′

ρ ˆ

Π

(87)

which is precisely the statement that A ⇒ A′ has no-signalling states.
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