
Bob Coecke and Mathew Leifer (Eds.):
Quantum Physics and Logic 2019 (QPL)
EPTCS 318, 2020, pp. 85–105, doi:10.4204/EPTCS.318.6

c© N. de Beaudrap, R. Duncan, D. Horsman, and S. Perdrix
This work is licensed under the
Creative Commons Attribution License.

Pauli Fusion: a Computational Model
to Realise Quantum Transformations from ZX Terms

Niel de Beaudrap
University of Oxford

Oxford, UK
niel.debeaudrap
@cs.ox.ac.uk

Ross Duncan
University of Strathclyde

Glasgow, UK
Cambridge Quantum

Computing Ltd.,
Cambridge, UK
ross.duncan
@strath.ac.uk

Dominic Horsman
Université Grenoble Alpes

Grenoble, France
dom.horsman
@gmail.com

Simon Perdrix
CNRS LORIA, Inria Mocqua

Université de Lorraine
Nancy, France

simon.perdrix
@loria.fr

We present an abstract model of quantum computation, the Pauli Fusion model, whose primitive
operations correspond closely to generators of the ZX calculus (a formal graphical language for
quantum computing). The fundamental operations of Pauli Fusion are also straightforward abstrac-
tions of basic processes in some leading proposed quantum technologies. These operations have
non-deterministic heralded effects, similarly to measurement-based quantum computation. We de-
scribe sufficient conditions for Pauli Fusion procedures to be deterministically realisable, so that it
performs a given transformation independently of its non-deterministic outcomes. This provides an
operational model to realise ZX terms beyond the circuit model.

1 Introduction

Quantum computing technology is now a reality, albeit not yet fault tolerant [22, 19]. These computers
need software, for algorithm design, verification, and compilation. Previously, quantum protocols have
been represented largely using circuit notation, but with actual quantum devices to now compare theory
with, the shortcomings of this model becomes clear. The circuit model in particular does not directly
represent many basic physical operations, e.g., in quantum optics [27]; it is inflexible, in that circuits
cannot easily be re-written to equivalent ones; and they are computationally hard to verify. Especially in
near-term noisy intermediate scale quantum (NISQ) devices, these properties give bloated software with
only basic optimisation tools, which cannot be verified at scales of more than a few tens of qubits.

Recent work has placed a different way of representing quantum processes at the forefront of optimi-
sation, verification, and design for NISQ devices and beyond. The ZX calculus [9, 10] is a diagrammatic
notation equipped with equational re-write rule sets, that are complete for Clifford [1, 17, 2], Clifford+T
[23], and full [20, 24, 30, 25] pure-state qubit quantum mechanics, and extensible to non pure quantum
evolutions [7]. The ZX calculus has led to optimisation strategies that out-perform all others in gate
compilation [14, 26], and in T-count reduction [3] (an important metric for fault-tolerant computing).
The generators of the calculus correspond closely to the basic operations of lattice surgery in the surface
code [4], which otherwise are awkward to describe using the circuit model; and ZX has been used to
verify and find novel error correction procedures [15, 4, 18]. It comes with a scalable notation capable
of representing repeated structures at arbitrary qubit scales [8]. The calculus also acts in the crucial role
of an intermediate representation in a new commercial quantum compiler [11].

With the success of the ZX calculus as a tool for design, verification, and optimisation of quantum
operations, the question now remains: what computational model does the ZX calculus works best with?
A computational model, in the sense we use it here, is a set of primitive operations and their composition,

http://dx.doi.org/10.4204/EPTCS.318.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

86 The Pauli Fusion Model

with which one may write algorithms and protocols, and represents the information processing capabil-
ities at the designer’s disposal. If we are to get the best out of using the ZX calculus as an intermediate
representation, then it is most efficient to use a computational model that reflects, and is reflected by,
the basic structure of the calculus. The model will be used both at the top of the compiler stack, to con-
ceptualise, design, and verify protocols, and also at the bottom to extract operational procedures from
a ZX calculus diagram. Previously, this ‘operational extraction’ was known only as ‘circuit extraction’
(e.g. as in [26]). The use of circuit-model gates at extraction is wasteful, especially if is then turned into
procedures such as lattice surgery that very closely model ZX generators. The key then, is to produce a
computational model that works efficiently and conceptually clearly with the ZX calculus.

In this paper we introduce the Pauli Fusion model of quantum computing, whose fundamental oper-
ations include the merging and splitting of logical (Pauli) operators. These fundamental elements very
closely model those found in lattice surgery [21], and in operations of optical fusion gates that have
similar effects [27] (see Appendix A). The PF model takes these operations as its primitives, from which
(if desired) elements in a circuit or MBQC model could be constructed. Complementarity, not unitarity,
is the guiding principle; and Pauli Fusion (PF) procedures are in general non-deterministic. We show
how the PF model has a direct representation in terms of generators of annotated ZX diagrams. As the
diagrams can include indeterminism, we give a definition and a procedure for finding the PF flow of
a ZX diagram, which is sufficient to describe how to deterministically realise an operator by a series
of (individually nondeterministic) PF operations. By ‘splitting the atom’ of well known logic gates,
as a composition of more fundamental operations, we give a novel approach to extracting operational
meaning from a ZX diagram, and a new computational model corresponding directly to the ZX calculus.

2 The Pauli Fusion model
We define the elements of the Pauli fusion model of computation (primitive Pauli Fusion (PF) opera-
tions) in terms of CPTP maps, not all of which are unitary. These CPTP maps are described in terms
of their Kraus operators, and may also be classically controlled. Intuitively, the basic operations can be
viewed as the splitting and merging of Pauli logical operators for qubits, and the byproducts produced
when two logical qubits merge into one (readers familiar with the procedure of lattice surgery in surface
codes will find this a straightforward abstraction). PF operations also have a representation by Pauli
Fusion (PF) diagrams, which we introduce here. PF diagrams are “annotated ZX” (or AZX) diagrams,
which incorporate the nondeterministic effects of these operations. The requirement that a PF diagram
correspond to a set of PF operations imposes a restriction which we define as runnability. We show that
this requirement is equivalent to the PF diagram having a time ordering of its elements. This adds another
layer of structure (essentially directed edges) to PF diagrams that we will see in the next section is crucial
to understanding when a ZX diagram can deterministically be implemented by a set of PF operations.

2.1 Pauli Fusion operations
We define the following linear transformations on one- or two-qubit state vectors:

AV,0 = 〈+| (1a)

AV,1 = 〈-| (1b)

KV,0 = |+〉〈++| + |-〉〈--| (1c)

KV,1 = |+〉〈+-| + |-〉〈-+| (1d)

RV = exp
(
−1

2 iZ
)

(1e)

AH,0 = 〈0| (1f)

AH,1 = 〈1| (1g)

KH,0 = |0〉〈00| + |1〉〈11| (1h)

KH,1 = |0〉〈01| + |1〉〈10| (1i)

RH = exp
(
−1

2 iX
)

(1j)

N. de Beaudrap, R. Duncan, D. Horsman, and S. Perdrix 87

We conceive of AV,s and AH,s as “annihilators” mapping one qubit to zero; we use these as Kraus maps of
destructive measurement operations in the X or Z eigenbasis respectively, with the index s representing
the outcome. (The maps A†

V,s and A†
H,s are then preparation maps of X or Z eigenstates.) The maps KV,s

and KH,s are maps from two-qubit states to single qubit states, projecting onto the (−1)s eigenstates of
X ⊗X or Z⊗ Z, and producing a single qubit which is an eigenstate of X or Z. (In the case of KV,1
and KH,1, this involves breaking the symmetry between the two qubits, in a way which is arbitrary but
ultimately unimportant.) The operations RV and RH are single-qubit Pauli Z and X rotations by one
radian: exponentiating by a real-valued angle α in radians yields a single-qubit Rz(α) or Rx(α) rotation
respectively.

We use these linear maps on state-vectors, together with the single-qubit Hadamard gate H and the
two-qubit SWAP gate, to define the (elementary) PF operations as the following CPTP maps, described
here as acting on states ρ variously on one or two qubits:

Had(ρ) = H ρH† (2a)

VInit(ρ) =
(
A†

V,0⊗1)ρ
(
AV,0⊗1) (2b)

VProj(ρ) = ∑
s∈{0,1}

AV,s ρA†
V,s (2c)

VSplit(ρ) = K†
V,0 ρKV,0 (2d)

VMerge(ρ) = ∑
s∈{0,1}

KV,s ρK†
V,s (2e)

VRotα,S,T (ρ) = RΘ(α,S,T)
V ρR−Θ(α,S,T)

V (2f)

σ(ρ) = (SWAP)ρ(SWAP)† (2g)

HInit(ρ) =
(
A†

H,0⊗1)ρ
(
AH,0⊗1) (2h)

HProj(ρ) = ∑
s∈{0,1}

AH,s ρA†
H,s (2i)

HSplit(ρ) = K†
H,0 ρKH,0 (2j)

HMerge(ρ) = ∑
s∈{0,1}

KH,s ρK†
H,s (2k)

HRotα,S,T (ρ) = RΘ(α,S,T)
H ρR−Θ(α,S,T)

H (2`)

Note that the maps VProj, HProj, VMerge, and HMerge all are non-unitary. The first two of these are in
fact measurement operations, which we suppose also produce a classical bit as a side-effect, representing
the measurement outcome (the bit s which indexes the Kraus operator). We also suppose that VMerge
and HMerge produce a classical bit s as a side-effect, indicating which of the two Kraus operators were
realised. The probability with which a given value s∈ {0,1} is realised is determined by the square of the
Euclidean norm of the state KV,s|ψ〉, KH,s|ψ〉, AV,s|ψ〉, or AH,s|ψ〉 which would result from application
of one of the Kraus operators to an input state |ψ〉.

We present VInit and HInit as maps on a system, but their effect is to prepare fresh qubits in the |+〉 or
|0〉 state. The maps VSplit and HSplit realise unitary embeddings of one qubit into two. The operations
VRotα,S,T and HRotα,S,T depend on sets S and T of labels, which indicate classical bits sx for x ∈ S or
x ∈ T which may affect the angle of rotation (some of which may be the outcomes of the maps above),
according to the function

Θ(α,S,T) =

[
∏
v∈S

(−1)sv

]
α + ∑

w∈T
sw π . (3)

The operations of Eqn. (2) may be performed in tensor product, and composed in any way which
is well-typed. For the operations VRotα,S,T and HRotα,S,T which may depend on classical bits, we also
require that the value of the bit is determined (as an input, through a probability distribution, or through
an operation which determines its value) at the time the map is performed.

88 The Pauli Fusion Model

2.2 Pauli Fusion diagrams

We may readily observe that the Kraus operations defined in Eqns. (2) have straightforward representa-
tions in the ZX calculus,

AV,0 =
q y

; AV,1 =
q

π

y
; KV,0 =

r z
; KV,1 =

r

π

z
;

AH,0 =
q y

; AH,1 =
q

π

y
; KH,0 =

r z
; KH,1 =

r

π

z
;

Rα
V =

q
α

y
; Rα

H =
q

α

y
,

(4)

where J ·K is the standard interpretation of ZX diagrams (which in this article are read from left to right).
Note that these maps, together with their adjoints, generate the ZX calculus. Considering ZX as a
potential intermediate language for quantum compilers, this close relation between the Kraus operators
of Pauli Fusion and the generators of ZX provides a tantalising prospect, of using the PF model to directly
represent ZX diagrams.

To pursue this line of investigation, we consider how we might use the ZX calculus to represent linear
superoperators, whose Kraus operators can be obtained (or more precisely, denoted) by composing the
diagrams of Eqn. (4). We may then consider when such diagrams represent an operation which can be
realised by a Pauli Fusion procedure.

Definition 1. A Pauli Fusion diagram (or PF-diagram) is an AZX diagram, with labelled vertices V (D)
and directed edges E(D) which can be generated from the set of generators below. (We label these
diagrams with the names of Pauli Fusion operations, e.g., “VMergeu”, to indicate the operation for
which the node u is intended to stand.) This diagram is accompanied by a set B of labels of bits,
su ∈ {0,1} for u ∈B, which are involved in the annotations (e.g., the sets S and T in VRotα,S,T and
HRotα,S,T .

VSplitu
u

VMergeu
suπ

u
VRotα,S,T

u Θ(α,S,T)
u

HSplitu
u

HMergeu
suπ

u
HRotα,S,T

u Θ(α,S,T)
u

VInitu
u

HInitu
u

Hadu

u

VProju suπ
u

HProju suπ
u

σ

Remark. In the case of VRotα,S,T and HRotα,S,T , we may write an explicit formula for the angle in
place of Θ(α,S,T) when that formula is simple enough: for instance, we may substitute the expression
“Θ(0, /0,{u})” with “suπ”.

Following [16], we define the semantics of the Pauli-Fusion diagrams relying on the semantics of the
ZX-calculus.

N. de Beaudrap, R. Duncan, D. Horsman, and S. Perdrix 89

Definition 2 (Denotational semantics of Pauli Fusion diagrams). Given a PF-diagram D with a set B of
index-labels for classical bits s ∈ {0,1}B :

• For a given x∈ {0,1}B , D(x) denotes the ZX-diagram where sb← xb for each b∈B . For a given
z ∈ {0,1}B\V (D), let D|z be the Pauli Fusion diagram obtained by the partial assignment sb← zb
for all b ∈B \V (D).

• If B ⊆ V (D), JDK\ denotes the superoperator ρ 7→ ∑s∈{0,1}B JD(s)Kρ JD(s)K†, where J ·K is the
standard interpretation of the ZX-diagrams.

• For a probability distribution p on {0,1}B\V (D), let JDK\p denote the superoperator

ρ 7→ ∑
s∈{0,1}B∩V (D)

z∈{0,1}B\V (D)

p(z) JD|z(s)Kρ JD|z(s)K† . (5)

As a special case, for a fixed string r ∈ {0,1}B\V (D), let JDK\r denote JDK\p for p the point-mass
distribution on r.

We define JDK\p and JDK\r above in the case B 6⊆V (D) as we anticipate that this will be useful to describe
procedures which are subject to noise or classical control. In much of what follows below, we suppose
that B ⊆V (D): when B is not taken to be a subset of V (D) we shall clearly indicate that this is the case.

Definition 3. For a given PF diagram D, a string x ∈ {0,1}B∩V (D) is called a branch (or branch string)
of the PF diagram. If B ⊆ V (D), we call JD(x)K for such a string x a branch map (and in particular,
the branch map for x) of D; if B 6⊆V (D), then for r ∈ {0,1}B\V (D), we call JD|r(x)K a branch map of D
given r (and in particular, the branch map of D for x given r).

It will be useful to analyse PF procedures entirely in terms of PF diagrams. However, because of the
simple way in which we have defined them, not all Pauli Fusion diagrams correspond to an actual Pauli
Fusion procedure. For instance, consider the diagram

D = swπ

w

vswπ
u . (6)

This is a well-formed PF diagram, and denotes a superoperator D = JDK\. D is in fact a unitary CPTP
map, with two equivalent Kraus operators indexed by the single bit sw ∈ {0,1}. However, the elements
from which the PF diagram D is composed cannot be mapped directly to a PF procedure, as the bit sw

which is generated by the VMergew operation is used at the HRotswπ
u operation acting on one of its inputs.

We wish to consider under what conditions a Pauli Fusion diagram corresponds, part by part, to a Pauli
Fusion procedure.

Definition 4. Let D be a Pauli-Fusion diagram with Kraus operators governed by bits su for u ∈B. A
time-ordering of D is a function t : V (D)→ N such that, for all u,v ∈V (D),

(i) if there is a directed edge u→ v in D, then t(u)< t(v);

(ii) if the operation at v is either VRotα,S,T
v or HRotα,S,T

v operation for some S,T ⊆B, and u ∈ S∪T ,
then t(u)< t(v).

If D has a time-ordering t, we say that D is runnable.

Lemma 1. D is a runnable Pauli Fusion diagram if and only if it is the diagram of a Pauli Fusion
procedure P.

90 The Pauli Fusion Model

Proof (sketch). It is easy to show that the diagram of any Pauli Fusion procedure has a time-ordering in
the above sense. Conversely, if D has a time-ordering, then for each τ ∈ N, recursively form the tensor
product Pτ of all operations associated with nodes v ∈ V (D) with t(v) = τ , together with the identity
operation on any qubits which are input wires of the diagram which have not yet been acted on, or qubits
which have been produced by one operation but not acted on by another. Let P=PT ◦ · · · ◦P1 ◦P0 for
T = maxv∈V t(v): then D is the diagram of P.

3 PF-diagram extraction

Considering ZX diagrams as an intermediate language, we wish to consider when such a diagram D can
be operationally realised by a Pauli Fusion procedure — specifically, one which realises D determin-
istically, in the sense that all of the Kraus operators of the procedure are proportional to JDK. To this
end, we define a “flow” condition — analogous to the flow conditions of measurement-based quantum
computation [12, 5, 13, 29] — which suffices for such a Pauli Fusion procedure to exist.

We use the following graph theoretic definitions:

Definition 5. In a graph G (possibly with self-loops) and a vertex-set C ⊆ V (G), we write Odd(C) ⊆
V (G) for the set of vertices adjacent to an odd number of elements of C (where a vertex with a loop is
counted as a neighbour to itself).

Definition 6. In a graph G and a partial order 4 on V (G), let ≺ stand for the irreflexive relation
(a4 b)& (a 6= b). For a vertex u ∈V (G), we then define the future neighbourhood N+(u)⊂V (G) of u,
and the past neighbourhood N−(u)⊂V (G) of u, by

N+(u) :=
{

v ∈ N(u)
∣∣ u≺ v

}
, N−(u) :=

{
v ∈ N(u)

∣∣ v≺ u
}
.

We further define the shorthand δ±(u) :=
∣∣N±(u)∣∣.

3.1 Signatures of ZX diagrams

In the following, in order to maintain a close connection to PF diagrams, we suppose that ZX diagrams
have distinct labels for each node, and that each open wire is explicitly indicated as either an input or an
output wire. We refer to such ZX diagrams as labelled ZX diagrams.

Definition 7. A (labelled) ZX-diagram is in a graph-like form (or is graph-like) if it is H-free, has no
connections between spiders of the same colour, and has no parallel wires or loops on any single vertex.

By rewriting all H nodes using the Euler decomposition, condensing all spiders, and removing all loops
and (pairs of) parallel edges, it is easy to show that:

Lemma 2. Any ZX-diagram can be transformed into a graph-like ZX-diagram.

To a graph-like ZX diagram D, we associate a corresponding signature (GD,I ,O,P), which will enable
us to reduce certain properties of D to combinatorial properties of its signature.

Definition 8. For a ZX diagram D, the signature graph GD is the undirected graph obtained by:

1. Adding a vertex to the open end of each input wire of D;
2. Adding a vertex to the open end of each output wire of D;
3. Adding a self-loop to each vertex of D whose phase is an odd multiple of π/2.

N. de Beaudrap, R. Duncan, D. Horsman, and S. Perdrix 91

α

π

2

β
u1

u5

u3

u2
u4

u6
u1

u5

u3

u2 u4

u6

i1

o1

o2

o3

Figure 1: A graph-like ZX-diagram D, with a corresponding signature GD. Also indicated are the added
input vertices I = {i1} and output vertices O = {o1,o2,o3}; vertices in P are black (all other vertices
are white).

Then the signature of D is a tuple (GD,I ,O,P) consisting of GD, together with the sets I ,O ⊆V (GD)\
V (D) of added end-points to input / output wires, and a set P ⊆ V (D) consisting of those vertices of D
whose phases are an integer multiple of π/2.

An example of a signature graph obtained from a ZX diagram is show in Figure 1.

3.2 Corrector sets and PF Flows

To realise a ZX diagram as a sequence of operations, one obstacle is the fact that some simple ZX
diagrams D0 — e.g., the maps AV,0, AH,0, KV,0, and KH,0 as denoted in Eqn. (4) — do not represent trace-
preserving maps on their own, and must be paired with another ZX diagram D1 as in the AZX diagrams
of Definition 1, representing the Kraus operators of a CPTP map.

In each case, D1 differs from D0 by a phase operation, which raises the question of the conditions
under which such a phase operation can be corrected by adapting operations which may be performed
later. For a partial order 4 representing a (somewhat flexible) time-ordering of operations, we may
consider the conditions under which this is possible for a single ZX generator.

Definition 9 (Correctors). Let (GD,I ,O,P) be a signature of a graph-like ZX diagram D, and 4 a
partial order on V (GD). For vertices u,v∈V (GD) and a subset C⊆V (GD), we say that C is a v-corrector
of u if u ∈ Odd(C), and also v≺ w for all w ∈

(
C \P

)
∪
(
Odd(C)\{u}

)
.

A v-corrector at u describes a way that a π-phase on some node u ≺ v in a ZX diagram D can be
propagated into the “future” through some set of nodes C. If we surround all of the nodes t ∈ C by
π-phases of the opposite colour (one on each edge to a different vertex), and if we also negate the phase
on x, this preserves the meaning of the diagram D. For a graph-like ZX diagram D, we then propagate
those π-phases to the neighbours of t, where they As u ∈ Odd(C), the overall phase contributed to u by
this process is π . Thus, a π-phase at u is equivalent to a π-phase at all nodes w ∈Odd(C)\{u}, together
with a change of sign at all nodes t ∈C.

The constraint that v ≺ w for (some of) the nodes w ∈C∪
(
Odd(C) \ {u}

)
is motivated by the idea

that the phase on u is determined by an operation (represented by the vertex v) in the immediate past,
and must be compensated for by operations which are yet to be performed. A vertex w whose phase
angle is changed by a sign, or (apart from u) by a shift of π , is represents an operation which must be
adapted to compensate for the phase on u, and must therefore occur in the future of v. The role of P in
the definition of u-correctors arises as follows:

• For a vertex w ∈V (D) whose phase is a multiple of π , changing the sign has no effect modulo 2π .
Thus, these vertices can be included in C, without requiring v ≺ w for that particular reason (we
may still require v≺ w if w ∈ Odd(C), as we must shift then its phase by π .)

92 The Pauli Fusion Model

• For a vertex w whose phase is an odd multiple of π/2, negating the phase is equivalent to shifting
the phase by π . If w ∈ C, then we may ignore the change of sign if the total phase from other
elements of C adjacent to it is equivalent to π . Using the fact that w is adjacent to itself, it suffices
to adjust its phase (thereby requiring v≺ w) only if w ∈ Odd(C) as well.

These observations motivate the condition that v ≺ w only for those vertices w which either belong to
C \P , or to Odd(C)\{u}.

We now consider conditions under which every vertex is equipped with a corrector set (using the
standard definitions given at the start of the section).

Definition 10 (PF-Flow). For (GD,I ,O,P) a signature of a graph-like ZX diagram D, a PF-flow is
a triple (4, f ,C) consisting of a partial order 4 on V (GD), a function f : V (D)→ V (GD) and a set
C⊂℘(V (GD)), such that for all v ∈V (D):

(i) If u is adjacent to v in GD, then either u4 v (and u /∈ O), or v4 u (and u /∈I), or both;

(ii) If δ+(v) = 0, there is a set Cv,v ∈ C which is a v-corrector of v;

(iii) For all u ∈ N−(v)\
{

f (v)
}

, there is a set Cu,v ∈ C which is a v-corrector of u.

That is, any pair of neighbours have some definite ordering in 4; if v is a node with no neighbours in
its future (which we model as a projection onto some state of one or more qubits), we require a strategy
to correct a π-phase on that node; and if v is a node with more than one input (which we model as a
composition of merges), we must have a strategy to correct π-phases which might accumulate on its past
neighbours, possibly apart from a single distinguished past neighbour.

3.3 Compilation of ZX diagrams to Pauli Fusion diagrams

Having defined PF-Flows as a strategy for correcting phases in a Pauli Fusion procedure, resulting from
the different Kraus maps as we attempt to realise different ZX generators as transformations, we consider
how this information can be used to deterministically realise a ZX diagram as a transformation. This
section is dedicated to the proof of the following Theorem:

Theorem 1. For any graph-like ZX-diagram D with a PF-Flow, one may construct a runnable Pauli
Fusion diagram DPF (with a set B ⊆ V (DPF) of bit-labels) which realises D in every branch: that is to
say, for which ∀x ∈ {0,1}B : JDPF(x)K ∝ JDK.

The proof involves a procedure PF-COMPILATION to construct DPF, shown in Figure 2. In the
following, we occasionally refer to u ∈ V (D) as vertex labels, as well as vertices. This is important
because the diagram DPF is constructed from D in such a way that every node-label in V (D) is also a
node-label in V (DPF), but in some cases with significantly different relationships to other vertices. In
particular, by the construction of PF-COMPILATION, any label u∈V (D) corresponds to a vertex in DPF
with degree at most two.

Lemma 3 (Runnability). Let DPF be the Pauli Fusion diagram which PF-COMPILATION produces from
graph-like ZX diagram D and a PF-Flow (4, f ,C). Then DPF is runnable.

Lemma 4 (Determinism). Let B :=
{

u ∈ V (DPF)
∣∣ u is a merge or a projection

}
. For any s ∈ {0,1}B,

JDPF(s)K =±JDK.

The proofs for these Lemmas are given in Appendix B.1 and B.2.

N. de Beaudrap, R. Duncan, D. Horsman, and S. Perdrix 93

PF-COMPILATION.

For a graph-like ZX diagram D together with a PF-Flow (4, f ,C), and given the signature
(GD,I ,O,P) for D, perform the following transformations on D:

0. Orientation, inputs, and outputs. Direct the edges of D consistently with the partial order
4. At each input and output, add a trivial node with the corresponding vertex-label i j ∈I or
o j ∈ O , with the opposite colour to the first/final node on that input/output, e.g.:

αi j
...

v
7→ α

...
vi j ; α o j

...
v

7→ α
...

v o j (7a)

1. Merge-Split Decomposition. Decompose each v ∈ V (D) of degree > 2 using merges, ro-
tations, splits, as in Eqn. (7b). If δ−(v) = 0, replace the merges with a preparation; and if
δ+(v) = 0, replace the splits with a projection.

α

v

f (v)
u1

uk

...
...
7→ α

v
v2

v3

v1

· · ·

· · ·

sv1 π

sv3 π

sv2 π

svr π

sv`π

v`

vr

...

f (v)

u1

uk

. . .

. . .

. . .

. . .

(7b)

Define Pui,v :=
{

vk
∣∣ the dot with a svk π phase is on the path from ui to v

}
.

2. Projections. Implement each projection by a rotation and a measurement, e.g.:

α

v
7→ sv′πα

v′v (7c)

3. Merge-Correction. For each v ∈ V (D), each neighbour u ∈ N−(v) \ { f (v)}, and each t ∈
Cu,v \P and w ∈ Odd(Cu,v)\{u}, modify the nodes t and w as follows:

Θ(α,S,T)
t 7→ Θ(α,S∆Pu,v ,T)

t
(7d)

Θ(β ,S′,T ′)
w
7→ Θ(β ,S′,T ′∆Pu,v)

w
(7e)

4. Projector-Correction. For each v∈V (D), each neighbour u∈N−(v)\{ f (v)}, and each t ∈
Cu,v \P and w ∈ Odd(Cu,v)\{u}, modify the nodes t and w as follows:

Θ(α,S,T)
t 7→ Θ(α,S∆{v} ,T)

t
(7f)

Θ(β ,S′,T ′)
w
7→ Θ(β ,S′,T ′∆{v})

w
(7g)

Figure 2: An illustrated procedure to transform a ZX-diagram D with a PF-Flow into a corresponding
Pauli Fusion diagram DPF.

94 The Pauli Fusion Model

4 An efficient algorithm for find PF-Flows

The PF-Flow is a sufficient condition for compiling a ZX-diagrams to a Pauli Fusion diagram. In this
section we show there exists an efficient algorithm for deciding whether an ZX-diagram has a PF-Flow.
Like for the flow condition for measurement-based quantum computing [28], the algorithm produces a
PF-Flow, when it exists, and hence a strategy for correcting phases.

Theorem 2. Given a graph-like ZX-diagram D, there is an efficient algorithm to decide whether it has a
PF-Flow, and to construct a PF-Flow if one exists.

Figure 3 presents an algorithm PF-FLOW FINDING to construct a PF-Flow, if one exists. It deter-
mines the partial order 4 and the corrector-sets Cu,v ∈ C, starting from the output, and working back to
earlier elements in 4 towards the preparations and input.

Lemma 5. PF-FLOW FINDING halts in time poly(n) for n := |V (D)|.
Lemma 6. If D is a graph-like ZX diagram with a PF-Flow, then PF-FLOW FINDING constructs such
a PF-Flow.

The proofs for these Lemmas are given in Appendix B.3 and B.4.

PF-FLOW FINDING. For the signature (GD,I ,O,P) of a graph-like ZX diagram D:

Initialise M := O , the set of marked elements;
δM := O , a set of newly marked elements;
4 :=

{
(u,u)

∣∣u ∈V (GD)
}

, a partial order relation on M;
f := /0, a function on the empty subset /0⊂V (GD);
C := /0, an empty set of corrector-sets.

Repeat until δM = /0:

1. Reset δM := /0.
2. Let R be the set of vertices u ∈V (D)\M, for which

there exists a set Cu ⊆M∪P such that Odd(Cu)\M = {u}.
3. For each v ∈V (D)\M:

a. Let Nv be a set of vertices “nearby” to v to test for correctability:
If N(v)∩M = /0, let Nv := N(v)∪{v}; otherwise let Nv := N(v)\M.

b. Let Fv := Nv \R be the set of non-correctable vertices nearby to v.
c. If |Fv| ≤ 1:

(i) Add v to the set of newly marked elements, δM := δM∪{v}.
(ii) For each u ∈ Nv∩R: let Cu,v :=Cu as constructed above,

and add it to the set of corrector sets, C := C∪{Cu,v}.
d. If Fv = {w} for some w ∈ N(v), let f := f ∪{(v,w)}.
e. If Fv = /0, pick some m ∈M and let f := f ∪{(v,m)}.

4. Update the partial order 4 :=4 ∪ (δM×M),
so that the old marked elements bound the newly marked elements from above.

5. Update the set of marked elements M := M∪δM.

Return (4, f ,C) if V (D)⊆M; otherwise return (/0, /0, /0).

Figure 3: A procedure to efficiently construct a PF-Flow, provided one exists.

N. de Beaudrap, R. Duncan, D. Horsman, and S. Perdrix 95

5 Conclusions

We have introduced the Pauli Fusion model for quantum computing, enabling us to describe the splitting
and merging of information represented by Pauli observables as fundamental information processing
operations, as observed in lattice surgery [4] and optical fusion [27]. We have given the annotated ZX
diagrams that directly represent such operations. Thus PF operations and diagrams represent the logic of
the actual physical processing operations, fulfilling the analogous role to gates in the circuit model.

The relationship between the PF model and standard ZX is an important consideration. Our de-
velopment of the Pauli Fusion model was prompted by the many potential uses of the ZX calculus in
quantum computing. The issue with using standard ZX operationally, as noted in the Introduction, was
to translate a ZX diagram into a set of operations to run on a device. This ‘circuit extraction’ problem
has proved both difficult and costly in terms of operational overheads. By introducing an operational
representation that is very closely aligned to ZX, we solved the extraction problem almost by fiat — but
with one important issue outstanding, whether the ZX diagram could be implemented deterministically
with the nondeterministic operations of Pauli Fusion. The results in this paper give our solution: when
a ZX diagram has a PF-Flow then it may be implemented deterministically, in a way which can be eas-
ily obtained by suitable transformations on the ZX diagram. Moreover, we give the polytime algorithm
PF-FLOW FINDING that finds such a PF-Flow when one exists.

The introduction of Pauli Fusion, and its position as a native operational model for ZX, allows us to
envisage using ZX to work the full stack of quantum computing — from design, through to compilation,
and then operational extraction — without passing through the conventional circuit model. We hope that
the PF model will enable full use of the power of ZX for compilation, optimisation, and verification; and
new ways of understanding how physical systems process quantum information.

Acknowledgements
We are grateful to Pieter Kok for suggesting that optical fusion gates have similar effects to lattice surgery
procedures. NB is supported by the EPSRC National Hub in Networked Quantum Information Tech-
nologies (NQIT.org). DH acknowledges financial support from the ‘Investissements d’avenir’ (ANR-15-
IDEX-02) program of the French National Research Agency. SP acknowledges support from the projects
ANR-17-CE25-0009 SoftQPro, ANR-17-CE24-0035 VanQuTe, PIA-GDN/Quantex, and LUE / UOQ.

References

[1] M. Backens (2014): The ZX-calculus is complete for stabilizer quantum mechanics. New Journal of Physics
16(9), p. 093021, doi:10.1088/1367-2630/16/9/093021. [arXiv:1307.7025].

[2] M. Backens, S. Perdrix & Q. Wang (2017): Towards a Minimal Stabilizer ZX-calculus. [arXiv:1709.08903].

[3] Niel de Beaudrap, Xiaoning Bian & Quanlong Wang (2020): Fast and effective techniques for T-count re-
duction via spider nest identities. In: Proceedings of TQC 2020 (to appear). [arXiv:2004.05164].

[4] Niel de Beaudrap & Dominic Horsman (2020): The ZX calculus is a language for surface code lattice
surgery. Quantum 4, p. 218, doi:10.22331/q-2020-01-09-218. [arXiv:1704.08670].

[5] Daniel E. Browne, Elham Kashefi, Mehdi Mhalla & Simon Perdrix (2007): Generalized flow and determin-
ism in measurement-based quantum computation. New Journal of Physics 9, doi:10.1088/1367-2630/9/8/250.
[arXiv:quant-ph/0702212].

[6] Daniel E Browne & Terry Rudolph (2005): Resource-efficient linear optical quantum computation. Physical
Review Letters 95(1), p. 010501, doi:10.1103/PhysRevLett.95.010501. [arXiv:quant-ph/0405157].

http://dx.doi.org/10.1088/1367-2630/16/9/093021
https://arxiv.org/abs/1307.7025
https://arxiv.org/abs/1709.08903
https://arxiv.org/abs/2004.05164
http://dx.doi.org/10.22331/q-2020-01-09-218
https://arxiv.org/abs/1704.08670
http://dx.doi.org/10.1088/1367-2630/9/8/250
https://arxiv.org/abs/quant-ph/0702212
http://dx.doi.org/10.1103/PhysRevLett.95.010501
https://arxiv.org/abs/quant-ph/0405157

96 The Pauli Fusion Model

[7] Titouan Carette, Emmanuel Jeandel, Simon Perdrix & Renaud Vilmart (2019): Completeness of Graphical
Languages for Mixed States Quantum Mechanics. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini
& Stefano Leonardi, editors: 46th International Colloquium on Automata, Languages, and Programming
(ICALP 2019), Leibniz International Proceedings in Informatics (LIPIcs) 132, Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, pp. 108:1–108:15, doi:10.4230/LIPIcs.ICALP.2019.108.
[arXiv:1902.07143].

[8] Nicholas Chancellor, Aleks Kissinger, Joschka Roffe, Stefan Zohren & Dominic Horsman (2016): Graphical
structures for design and verification of quantum error correction. [arXiv:1611.08012].

[9] Bob Coecke & Ross Duncan (2011): Interacting Quantum Observables: Categorical Algebra and Diagram-
matics. New Journal of Physics 13(4), p. 043016, doi:10.1088/1367-2630/13/4/043016. [arXiv:0906.4725].

[10] Bob Coecke & Aleks Kissinger (2017): Picturing Quantum Processes: A first course in quantum theory and
diagrammatic reasoning. Cambridge University Press.

[11] Alexander Cowtan, Silas Dilkes, Ross Duncan, Alexandre Krajenbrink, Will Simmons & Seyon Sivarajah
(2019): On the qubit routing problem. In: 14th Conference on the Theory of Quantum Computation, Com-
munication and Cryptography (TQC 2019), p. art. 5, doi:10.4230/LIPIcs.TQC.2019.5. [arXiv:1902.08091].

[12] Vincent Danos & Elham Kashefi (2006): Determinism in the one-way model. Physical Review A 74,
doi:10.1103/PhysRevA.74.052310. [arXiv:quant-ph/0506062].

[13] Vincent Danos, Elham Kashefi, Prakash Panangaden & Simon Perdrix (2010): Extended Measurement Cal-
culus. Semantic Techniques in Quantum Computation, pp. 235–310, doi:10.1017/CBO9781139193313.008.

[14] Ross Duncan, Aleks Kissinger, Simon Pedrix & John van de Wetering (2019): Graph-theoretic Simplification
of Quantum Circuits with the ZX-calculus. [arXiv:1902.03178].

[15] Ross Duncan & Maxime Lucas (2013): Verifying the Steane code with Quantomatic. In: QPL
2013, Electronic Proceedings in Theoretical Computer Science, pp. 33–49, doi:10.4204/EPTCS.171.4.
[arXiv:1306.4532].

[16] Ross Duncan & Simon Perdrix (2010): Rewriting Measurement-Based Quantum Computations with Gen-
eralised Flow. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide
& Paul G. Spirakis, editors: Automata, Languages and Programming, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 285–296, doi:10.1007/978-3-642-14162-1 24.

[17] Ross Duncan & Simon Perdrix (2013): Pivoting Makes the ZX-Calculus Complete for Real Stabilizers. In:
QPL 2013, Electronic Proceedings in Theoretical Computer Science, pp. 50–62, doi:10.4204/EPTCS.171.5.
[arXiv:1307.7048].

[18] Craig Gidney & Austin G Fowler (2019): Efficient magic state factories with a catalyzed |CCZ〉 to 2|T〉
transformation. Quantum 3, p. 135, doi:10.22331/q-2019-04-30-135. [arXiv:1812.01238].

[19] Google: https: // ai. googleblog. com/ 2018/ 03/ a-preview-of-bristlecone-googles-new.

html . Accessed 10/04/2019.

[20] Amar Hadzihasanovic, Kang Feng Ng & Quanlong Wang (2018): Two Complete Axiomatisations of Pure-
state Qubit Quantum Computing. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS ’18, ACM, New York, NY, USA, pp. 502–511, doi:10.1145/3209108.3209128.

[21] C. Horsman, A. G Fowler, S. Devitt & R. Van Meter (2012): Surface code quantum computing by lattice
surgery. New Journal of Physics 14(12), p. 123011, doi:10.1088/1367-2630/14/12/123011.

[22] IBM: https: // www. research. ibm. com/ ibm-q/ . Accessed 10/04/2019.

[23] Emmanuel Jeandel, Simon Perdrix & Renaud Vilmart (2018): A complete axiomatisation of the ZX-calculus
for Clifford+T quantum mechanics. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), ACM, pp. 559–568, doi:10.1145/3209108.3209131. [arXiv:1705.11151].

[24] Emmanuel Jeandel, Simon Perdrix & Renaud Vilmart (2018): Diagrammatic Reasoning Beyond Clif-
ford+T Quantum Mechanics. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in

http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.108
https://arxiv.org/abs/1902.07143
https://arxiv.org/abs/1611.08012
http://dx.doi.org/10.1088/1367-2630/13/4/043016
https://arxiv.org/abs/0906.4725
http://dx.doi.org/10.4230/LIPIcs.TQC.2019.5
https://arxiv.org/abs/1902.08091
http://dx.doi.org/10.1103/PhysRevA.74.052310
https://arxiv.org/abs/quant-ph/0506062
http://dx.doi.org/10.1017/CBO9781139193313.008
https://arxiv.org/abs/1902.03178
http://dx.doi.org/10.4204/EPTCS.171.4
https://arxiv.org/abs/1306.4532
http://dx.doi.org/10.1007/978-3-642-14162-1_24
http://dx.doi.org/10.4204/EPTCS.171.5
https://arxiv.org/abs/1307.7048
http://dx.doi.org/10.22331/q-2019-04-30-135
https://arxiv.org/abs/1812.01238
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
http://dx.doi.org/10.1145/3209108.3209128
http://dx.doi.org/10.1088/1367-2630/14/12/123011
https://www.research.ibm.com/ibm-q/
http://dx.doi.org/10.1145/3209108.3209131
https://arxiv.org/abs/1705.11151

N. de Beaudrap, R. Duncan, D. Horsman, and S. Perdrix 97

Computer Science, LICS ’18, ACM, New York, NY, USA, pp. 569–578, doi:10.1145/3209108.3209139.
[arXiv:1801.10142].

[25] Emmanuel Jeandel, Simon Perdrix & Renaud Vilmart (2019): A Generic Normal Form for ZX-Diagrams and
Application to the Rational Angle Completeness. In: Proceedings of the 34th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), doi:10.1109/LICS.2019.8785754. [arXiv:1805.05296].

[26] Aleks Kissinger & Arianne Meijer-van de Griend (2019): CNOT circuit extraction for topologically-
constrained quantum memories. [arXiv:1904.00633].

[27] Pieter Kok (2009): Five Lectures on Optical Quantum Computing. Theoretical Foundations of Quantum
Information Processing and Communication: Selected Topics 787, p. 187, doi:10.1007/978-3-642-02871-
7 7.

[28] Mehdi Mhalla & Simon Perdrix (2008): Finding Optimal Flows Efficiently. In: International Colloquium on
Automata, Languages, and Programming (ICALP’10), Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
857–868, doi:10.1007/978-3-540-70575-8 70. [arXiv:0709.2670].

[29] Simon Perdrix & Luc Sanselme (2017): Determinism and Computational Power of Real Measurement-
based Quantum Computation. In: FCT’17- 21st International Symposium on Fundamentals of Compu-
tation Theory, Bordeaux, France, pp. 395–408, doi:10.1007/978-3-662-55751-8 31. Available at https:
//hal.archives-ouvertes.fr/hal-01377339. [arXiv:1610.02824].

[30] Renaud Vilmart (2019): A Near-Optimal Axiomatisation of ZX-Calculus for Pure Qubit Quantum Mechan-
ics. In: Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
doi:10.1109/LICS.2019.8785765. [arXiv:1812.09114].

http://dx.doi.org/10.1145/3209108.3209139
https://arxiv.org/abs/1801.10142
http://dx.doi.org/10.1109/LICS.2019.8785754
https://arxiv.org/abs/1805.05296
https://arxiv.org/abs/1904.00633
http://dx.doi.org/10.1007/978-3-642-02871-7_7
http://dx.doi.org/10.1007/978-3-642-02871-7_7
http://dx.doi.org/10.1007/978-3-540-70575-8_70
https://arxiv.org/abs/0709.2670
http://dx.doi.org/10.1007/978-3-662-55751-8_31
https://hal.archives-ouvertes.fr/hal-01377339
https://hal.archives-ouvertes.fr/hal-01377339
https://arxiv.org/abs/1610.02824
http://dx.doi.org/10.1109/LICS.2019.8785765
https://arxiv.org/abs/1812.09114

98 The Pauli Fusion Model

X
(2)
LX

(1)
L

Z
(1)
L Z

(2)
L

Figure 4: A rough merge. Measuring orange plaquette operators across the join fuses the ZL operators
and outputs the result of a X (1)

L ⊗X (2)
L measurement as a classical bit.

A Lattice surgery and optical fusion gates as Pauli Fusion

In this Appendix we indicate how the basic operations of lattice surgery and optical quantum computing
are reflected in the abstract elementary Pauli Fusion operations of Section 2.

A.1 Lattice surgery

It was shown in [4] that the elementary operations of lattice surgery in the surface code [21] have the
form in terms of Krauss operators that is given here in the equations (1c), (1d) for a rough merge (fusing
the Z logical operator) and (1h), (1i) for a smooth merge (fusing the X logical operator). The adjoint
operations are that of the rough and smooth split, respectively.

In lattice surgery, the probabilistic biproduct (and hence the pairs of Krauss operators) comes about
because two surfaces supporting logical qubits are being fused into one. The additional degree of freedom
is the comparison between the logical operators that are not being fused. Figure 4 shows this process for
rough merging.

The result of this rough merge is a single qubit with fused ZL operators. If the XL operators were
identical before then no correction is needed and the operation of the merge is as (1c):

K = |+〉〈++| + |-〉〈--|. (8)

If they were different (heralded by the -1 measurement outcome) then correction is applied to half
the surface – equivalent to the correction being applied to one incoming surface before the merge. This
results in the operation being given by (1d):

K′ = |+〉〈+-| + |-〉〈-+| (9)

In plain ZX terms these two potential merge operations are written as
(

;
π

)
. These can

now both be grouped as a single elementary operation of Pauli Fusion,

HMergeu :
suπ

u

where the colour-reversed diagram gives the smooth merge.

N. de Beaudrap, R. Duncan, D. Horsman, and S. Perdrix 99

(a) Type I optical fusion gate. (b) Type II optical fusion gate.

Figure 5: The two types of optical fusion gates using a polarising beam splitter and detectors in the
polarisation |H,V 〉 basis. Both work post-selectively to entangle the inputs IN1 and IN2.

A.2 Optical quantum computing

The operations of the Type I and Type II optical fusion gates [6, 27] bear a close relationship to Pauli
Fusion. Both fusion gates are conceived of as acting on halves of separate Bell pairs and entangling them
using polarisation rotations, beam splitters, and measurement, figure 5. They were originally developed
to fuse together cluster states for one-way quantum computing. Both are probabilistic gates – that is,
there is a set of measurement outcomes that are labelled ‘failure’ and the system is thrown away. In the
Type I gate there is only one ‘success’ outcome, and we will see that corresponds to the positive Pauli
Fusion branch (biproducts = 0) of the gate viewed as a merge. The Type 2 by contrast contains both
options of a Pauli Fusion merge in the ‘success’ branch of its operation that is not post-selected out.

A.2.1 Type I fusion gate

The Type I gate, figure 5a, uses qubit states encoded in horizontal and vertical polarisation states of single
photons, |0,1〉 := |H,V 〉. Subscripts denote the port of the photon: e.g. |H1〉 is a horizontally polarised
photon in either the IN1 or OUT1 ports. The action of the polarising beam splitter is:

|H1〉 → |H1〉 |V1〉 → |V2〉
|H2〉 → |H2〉 |V2〉 → |V1〉 (10)

The π/4 polarisation rotation is the Hadamard |H,V 〉 → 1√
2
(|H〉± |V 〉). The detector in the OUT2

port is in the |H,V 〉 basis.
We can therefore track what happens to the four qubit basis states as they go through the gate. Firstly,

through the PBS:

|H1H2〉
pbs−→ |H1H2〉

|H1V2〉 −→ |H1V1〉
|V1H2〉 −→ |V2H2〉
|V1V2〉 −→ |V2V1〉 (11)

100 The Pauli Fusion Model

Note that inside the gate, not everything will made immediate sense as qubit states. The photon
polarisation states and number are, however, well defined. Now we apply the π/4 rotation (neglecting
normalisation for simplicity):

|H1H2〉
pbs−→ |H1H2〉

π/4−→ |H1H2〉+ |H1V2〉
|H1V2〉 −→ |H1V1〉 −→ |H1V1〉
|V1H2〉 −→ |V2H2〉 −→ |H2H2〉− |V2V2〉
|V1V2〉 −→ |V2V1〉 −→ |H2V1〉− |V2V1〉 (12)

The post-selection criterion for the gate is that a single photon (only) must be detected in OUT2. The
‘failure’ cases are therefore the middle two rows, as the input |H1V2〉 produces two photon in the OUT1
port and none in OUT2, and the |V1H2〉 input produces two photons in OUT2. With no loss or other error,
the post-selected ‘success’ operations (the first and last in (12)) can be represented by the operator

K = |H1〉〈H1H2| + |V1〉〈V1V2| = |0〉〈00| + |1〉〈11| (13)

which is our positive branch merge operator (1h). The post-selected action of the gate is therefore to fuse
the incoming Z operators of the photon qubits.

A.2.2 Type II fusion gate

While the Type I gate has similarities to merge operations, it is not a full Pauli Fusion operation as we
have given in this paper, because there is no negative branch outcome. The Type II fusion gate includes
this outcome (as well as its own ‘failure’ outcome that is post-selected against).

The action of the Type II gate is much more complicated. The first two π/4 rotations act on the basis
input states as

|H1H2〉
π/4−→ |H1H2〉+ |H1V2〉+ |V1H2〉+ |V1V2〉

|H1V2〉 −→ |H1H2〉− |H1V2〉+ |V1H2〉− |V1V2〉
|V1H2〉 −→ |H1H2〉+ |H1V2〉− |V1H2〉− |V1V2〉
|V1V2〉 −→ |H1H2〉− |H1V2〉− |V1H2〉+ |V1V2〉 (14)

For simplicity, we now track only the |00〉 input state in detail, as the others differ only by the ±
signs in the superposition. The action of the PBS on each element in the superposition is the same as in
(12). The result is then

|H1H2〉
π/4−→ |H1H2〉+ |H1V2〉+ |V1H2〉+ |V1V2〉

pbs−→ |H1H2〉+ |H1V1〉+ |V2H2〉+ |V2V1〉 (15)

The second pair of rotations in the output ports produces (after cancellations) the final state

|H1H2〉
π/4+pbs+π/4−−−−−−−−→ |H1H2〉+ |V1V2〉

+ |H1H1〉+2|H1V1〉+ |V1V1〉
+ |H2H2〉+2|H2V2〉+ |V2V2〉 (16)

N. de Beaudrap, R. Duncan, D. Horsman, and S. Perdrix 101

The post-selection criterion is again that one photon exactly is detected; in this case, one in each
output port. The bottom two rows of this state are therefore the ‘failure’ states, as in each case both
photons exit one port. Applying the post-selection to all the input basis states gives

|H1H2〉
π/4+pbs+π/4+post−−−−−−−−−−−→ |H1H2〉+ |V1V2〉

|H1V2〉 −−−−−−−−−−−→ |H1V2〉+ |V1H2〉
|V1H2〉 −−−−−−−−−−−→ |H1V2〉+ |V1H2〉
|V1V2〉 −−−−−−−−−−−→ |H1H2〉+ |V1V2〉 (17)

We see that, unlike in the Type I gate, there are no input basis states selected out. We can also see
that the final measurements HH,HV,V H,VV give us one piece of information: whether the inputs were
the same or different. We therefore have two operators defining the evolution of the gate, depending on
the measurement outcome parity (positive or negative):

〈H1H2|+ 〈V1V2| or 〈H1V2|+ 〈V1H2| (18)

This may not look immediately Pauli Fusion-like as there is no outcome (both photons are detected
and hence absorbed). However, recall that the gates act on Bell pairs. The operation in the positive-parity
outcome situation is therefore

= .

The negative branch is

π

=
π

.

These can now both be combined as the Pauli Fusion diagram
suπ

u .

A further consequence is that other important operations in optical quantum computing that use such
a parity projection (including entanglement swapping, entanglement distillation, and the Barrett-Kok
entanglement generation scheme) will find natural and straightforward descriptions in the Pauli Fusion
model.

102 The Pauli Fusion Model

B Proofs

B.1 Proof of runnability (Lemma 3)

Every node v ∈V (DPF) satisfies either u≺ v or v≺ u for each of its neighbours u ∈V (D). Then either v
is a preparation, adjacent to an input, or has a non-empty set of neighbours which precede it in4. Define
a function t : V (DPF)→N recursively by setting t(v) = 1 for all nodes v which are preparations or which
are adjacent to an input, and by recursively defining

t(v) = 1 + max
{

t(u)
∣∣∣ (u ∈V (GD) & u≺ v

)
or (u→ v) ∈ E(DPF)

}
(19)

for all other v ∈ V (DPF). By construction, we have t(u) < t(v) for u,v ∈ V (DPF) with an edge u→ v.
Furthermore, if for some u,v ∈ V (DPF) we have τ(v) ∈ {VRotα,S,T ,HRotα,S,T} where u ∈ S ∪ T , it
follows that one of the following two cases hold:

• δ+(u) = 0, and v∈
(
C\P)∪

(
Odd(Cu,u)\{u}

)
, from which it follows that u≺ v by the conditions

which hold of Cu,u. Then t(u)< t(v).

• v ∈
(
Cũ,ṽ \P

)
∪
(
Odd(Cũ,ṽ) \ {ũ}

)
for some vertices ũ, ṽ ∈ V (GD) such that ũ ∈ N−(ṽ), and it

happens that u is an element of Pũ,ṽ, the set of vertices which are generated in the decomposition
of a higher-degree node with label ṽ in the ZX diagram D, and which lie on a path between ũ and
ṽ. From this it follows that t(ũ)< t(u)< t(ṽ); and as ṽ≺ v from the conditions on Cũ,ṽ, it follows
that t(u)< t(ṽ)< t(v).

Then t is a time-ordering of DPF, from which Lemma 3 follows.

B.2 Proof of determinism (Lemma 4)

We show, given s ∈ {0,1}B, how to transform DPF(s) into D using transformations of the ZX-calculus
which preserve the semantics (up to a sign). We proceed by induction on the Hamming weight ‖s‖H of
s. If s = 00 · · ·0, then it is easy to see that JDPF(s)K = JDK: all π-phases depending on bits sb for b ∈B
either contribute 0 to a rotation/projection node, or are equivalent to the identity. We may then use the
ZX calculus to reverse the transformations of PF-COMPILATION, thereby obtaining the diagram D.

Suppose instead that there is some v∈B such that sv = 1. Let DPF|sv=b be the AZX diagram obtained
from DPF by setting sv← b, for any b∈ {0,1}. We show how to rewrite DPF|sv=1 to DPF|sv=0 using the ZX
calculus, accruing at most a sign of−1 in the semantics as we do so, allowing us to prove the equivalence
of DPF(s) to DPF(s̃) for a string s̃ that has fewer bits set to 1 than s does.

• If τ(v) ∈
{
HProj,VProj

}
, there is a set Cv,v ∈ C which is a v-corrector at v: denote this by C, let

ṽ := v. There is also a node in DPF with a label w ∈ Odd(C), such that δ+(w) = 0 in GD, with the
same colour as v. We rewrite the diagram DPF as an AZX diagram, by propagating the phase svπ

from v to w. Denote the resulting diagram by D′PF.

• Otherwise, if τ(v) ∈
{
HMerge,VMerge

}
, then there is an associated vertex ṽ ∈ V (DPF), corre-

sponding to a node-label ṽ ∈V (D) of degree 3 or greater, and one or more node-labels ũ1, ũ2, . . . ∈
N−(ṽ) in GD, such that v ∈ Pũ j,ṽ for each j ≥ 1. For each of these nodes ũ j , there is a ũ j-corrector
at ṽ, Cũ j,ṽ. We let C be the symmetric difference C :=Cũ1,ṽ ∆Cũ2,ṽ ∆ · · · of these (just Cũ,ṽ if there is
only one such ũ). We also rewrite the diagram DPF as an AZX diagram, by propagating the phase
svπ away from the node v, against the orientation of the edges, towards the nodes with labels ũ j ,
explicitly accumulating the phase svπ on these nodes. (This may involve one or application of the

N. de Beaudrap, R. Duncan, D. Horsman, and S. Perdrix 103

bialgebra law between svπ nodes and opposite-coloured nodes of degree 3, and applications of the
spider rule between the nodes ũ j and svπ phase nodes of the same colour.) Denote the resulting
diagram by D′PF.

In either case, we have a set C which is involved in the correction of vertices, which is involved in
annotations on other vertices involving the bit sv. Specifically, if ṽ = v is a projection, then sv governs
a π-phase contribution for all nodes w ∈ Odd(C) \ {v}, and a change in sign of the phase of all nodes
t ∈ C \P . Otherwise v is a vertex in each of a collection of paths Pũ j,v, so that sv governs (possibly
canceling) π-phase contributions for all nodes w ∈Odd(Cũ j,ṽ)\{ṽ} for each ũ j, and (possibly canceling)
sign-flips of the phase of all nodes t ∈Cũ j,ṽ \P for each ũ j.

Using the set C constructed as above, we consider the following rewrites on DPF:

1. For each vertex-label t ∈C\P , by construction the diagram DPF will contain a generator VRotα,S,T
t

or HRotα,S,T
t where v ∈ S. We thus rewrite the diagram as an AZX diagram by surrounding t with

svπ-phase nodes of the opposite colour, and remove v from the set of variables S which may govern
a change of sign of the rotation, e.g.:

Θ(α,S,T)
t 7→ Θ(α,S\{v},T)

t
svπsvπ (20a)

Denote the resulting diagram by D′′PF.

2. For each vertex-label t ∈C∩P , by construction the diagram DPF will contain a generator VRotα, /0,T
t

or HRotα, /0,T
t where α is an integer multiple of π/2 (i.e., 2α/π is an integer), and v may or may

not be an element of T .

• If 2α/π is even, then we rewrite the diagram by surrounding t with svπ-phase nodes of the
opposite colour, without any other changes, e.g.:

Θ(α, /0,T)
t 7→ Θ(α, /0,T)

t
svπsvπ (20b)

• If 2α/π is odd, then we rewrite the diagram by surrounding t with svπ-phase nodes of the
opposite colour, and “toggling” the membership of v in T , e.g.:

Θ(α, /0,T)
t 7→ Θ(α, /0,T ∆{v})

t
svπsvπ (20c)

Denote the resulting diagram by D′′′PF.

3. For any svπ phase produced in the previous steps which is adjacent to a node t ∈ C, propagate
the phase node away from t (either consistently with the orientation of the edges, or consistently
against the orientation) until it is adjacent to a node with label w ∈ Odd(C) of the same colour, or
more generally forms part of a chain of svπ phase nodes of which one end is adjacent to a node
with label w ∈Odd(C) of the same colour. To do this, it may be necessary to propagate two nodes
with phase svπ of opposite colour past one another in opposite directions: this induces at most a
change of sign due to anticommutation of X and Z. Denote the resulting diagram by D̃PF.

4. For each w ∈ Odd(C), D̃PF contains a generator HRotα,S,T
w or a generator VRotα,S,T

w .

• If α is an odd multiple of π/2 and w ∈C, then by construction there will be an even number
of svπ phase nodes, either adjacent to w it or more generally in one or two chains which are
adjacent to w, and we will have v /∈ T . We may then absorb all of these phases into w without
modifying the generator at w.

104 The Pauli Fusion Model

• If α is an odd multiple of π/2 and w /∈ C, or if α is not an odd multiple of π/2, then by
construction there will be an odd number of svπ phase nodes, either adjacent to w it or more
generally in one or two chains which are adjacent to w, and we will have v ∈ T . We may
then absorb all of these phases into w if we replace HRotα,S,T

w with HRot
α,S,T ∆{v}
w or replace

VRotα,S,T
w with VRot

α,S,T ∆{v}
w .

This sequence of rewrites has the effect of removing all instances of sv from the diagram, i.e., it removes
v from all sets which modify the phases of rotations, without affecting any other influences on the phases
and (at the end) without there being any other change to to the structure of the diagram from DPF. Thus
the diagram is equivalent to DPF|sv=0, while incurring a change in semantics by at most a sign. From this
it follows that JDPF(s)K =±JDPF(s̃)K.

By induction, it follows that JDPF(s)K =±JDPF(00 · · ·0)K for any s ∈ {0,1}B, proving Lemma 4.

B.3 Proof that PF-FLOW FINDING halts in polynomial time (Lemma 5)

As the first operation of the loop is to set δM := /0, the algorithm will terminate in any loop where
Step 3c(i) is not executed at least once, in which an element of V (D)\M is added to δM. If this step is
run, then Step 5. increases the size of M, decreasing the set of elements which may be added to δM in
subsequent loops. It follows that the loop is executed at most n times.

In each iteration, the operations performed consist largely of tests for membership in sets, or con-
structions of intersections, subtractions, unions, or products of sets, each of which can be performed in
polynomial time. The step whose cost is least obvious is the computation of the set R, whose cost we
describe below.

Given a vertex u, finding whether there is a corresponding set Cu amounts to solving a system of
equations in F2,

A[M] x = eu , (21)

where eu ∈FV (D)\M
2 is the characteristic vector of the set {u}⊆V (D)\M, and A[M] denotes the submatrix

of the adjacency matrix A of D whose rows are indexed by V (D)\M and whose columns are indexed by
M∪P . Each column of A[M] is the characteristic vector for the set of vertices which are adjacent to an
element of t ∈M∪P; and which are not yet marked. Then A[M] x represents the set of unmarked vertices
which are adjacent to an odd number of some set of vertices X ⊂M∪P , whose elements are indicated by
the non-zero coefficients of x. Determining whether Eqn. (21) has solutions can be performed efficiently,
as can producing one such solution cu, which then represents a characteristic vector of a corrector set Cu.

Thus PF-FLOW FINDING halts in polynomial time for any graph-like ZX diagram D, proving
Lemma 5.

B.4 Proof of correctness of PF-FLOW FINDING algorithm (Lemma 6)

Let (4̃, f̃ , C̃) be a PF-Flow for D. In particular, any two vertices which are adjacent in GD are comparable
in 4; there is a v-corrector at v (C̃v,v ∈ C̃) for any vertex v ∈ V (D) whose neighbours all precede it; and
there is a u-corrector at v (C̃u,v ∈ C) for any adjacent vertices u4 v from D such that u 6= f̃ (v).

Consider a maximal element ω ∈ V (D) with respect to4̃. As any t ∈ V (GD)\{ω} for which ω 4̃ t
can neither be an element of V (D) nor I , it would follow that t ∈ O . Thus for C any u-corrector set at
ω , whether u = ω or u ∈ N(ω), must have the properties that C \P ⊆ O and Odd(C) \ {w} ⊆ O . On
the first iteration of the loop, we have M = O , so that the corrector sets C̃u,ω satisfy the conditions in the
construction of the set R (though the algorithm may find different corrector sets Cu), for all u ∈N(ω)\M

N. de Beaudrap, R. Duncan, D. Horsman, and S. Perdrix 105

excepting possibly u = f̃ (ω). (If ω has no neighbours in O , a corrector set C̃ω,ω also exists, so that
ω ∈ R at this stage as well. Again, the corrector set Cω may differ from C̃ω .) In the iteration through
v ∈ V (D) \M in this first loop, we will then find |Fω | ≤ 1, and add ω to δM, so that it will become
a maximal element of the relation 4. If Fω is non-empty, it will contain f̃ (ω), so that we will have
f (ω) = f̃ (ω) in this case.

We may show by induction that PF-FLOW FINDING will construct a PF-Flow (4, f ,C), by noting
that in each iteration there will be a maximal element of4̃ in V (D) subject to not yet having been marked
in a previous iteration, which by a similar analysis will be added to δM in that iteration, and that the data
(4, f ,C) satisfy the properties of a PF-Flow by construction. This proves Lemma 6.

	1 Introduction
	2 The Pauli Fusion model
	2.1 Pauli Fusion operations
	2.2 Pauli Fusion diagrams

	3 PF-diagram extraction
	3.1 Signatures of ZX diagrams
	3.2 Corrector sets and PF Flows
	3.3 Compilation of ZX diagrams to Pauli Fusion diagrams

	4 An efficient algorithm for find PF-Flows
	5 Conclusions
	A Lattice surgery and optical fusion gates as Pauli Fusion
	A.1 Lattice surgery
	A.2 Optical quantum computing
	A.2.1 Type I fusion gate
	A.2.2 Type II fusion gate

	B Proofs
	B.1 Proof of runnability (Lemma ??)
	B.2 Proof of determinism (Lemma ??)
	B.3 Proof that PF-Flow finding halts in polynomial time (Lemma ??)
	B.4 Proof of correctness of PF-Flow finding algorithm (Lemma ??)

