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The ZX-calculus is a graphical language for reasoning about ZX-diagrams, a type of tensor networks
that can represent arbitrary linear maps between qubits. Using the ZX-calculus, we can intuitively
reason about quantum theory, and optimise and validate quantum circuits. In this paper we introduce
PyZX, an open source library for automated reasoning with large ZX-diagrams. We give a brief
introduction to the ZX-calculus, then show how PyZX implements methods for circuit optimisation,
equality validation, and visualisation and how it can be used in tandem with other software. We
end with a set of challenges that when solved would enhance the utility of automated diagrammatic
reasoning.

1 Introduction

The ZX-calculus was introduced in 2008 by Coecke and Duncan [8, 9]. Since then, much progress
has been made on understanding this language: rule-sets have been found that make the language com-
plete [19, 17, 33]; variants of the language have been developed that allow easy reasoning about different
domains, e.g. ZW for quantum entanglement [10, 16] as well as Fermionic quantum computing [31]
and ZH for Toffoli-Hadamard circuits [5]; and a diverse set of applications have been found including
measurement-based quantum computing [13, 26], surface code lattice surgery [6] and circuit optimisa-
tion [14, 25]. However, in order to bring these applications into the practical domain, we need tools that
allow us to reason with ZX-diagrams on a large scale.

PyZX (pronounced like ‘physics’ without the H) is a Python-based library designed for reasoning
with large quantum circuits and ZX-diagrams. PyZX is Free and Open Source Software, licensed under
GPLv3. The project is hosted on GitHub and available at:

https://github.com/Quantomatic/pyzx

It allows users to efficiently rewrite ZX-diagrams using built-in simplification strategies. These strategies
are powerful enough to reduce Clifford diagrams to a pseudo-normal form [14], perform highly effective
T-count optimisation [25], and to verify correctness of optimised circuits. Besides the powerful set of
rewrite strategies, PyZX offers many ways to present and visualise circuits and ZX-diagrams. It can
input and output circuits in the QASM, QC, and Quipper formats, and it can convert ZX-diagrams into
TikZ diagrams or the Quantomatic qGraph format.

PyZX is best within Jupyter Notebooks [20], a popular way to run Python interactively with rich
input and output features. In this setting ZX-diagrams can be visualised on the fly. PyZX can also be
called as a command-line tool for circuit-to-circuit optimisation, e.g. for optimising many circuits or
combining with other procedures. See Figure 1 for an overview.

As much of the theory behind PyZX has already been detailed elsewhere [14, 25], we will focus
in this paper on the PyZX tool itself. We describe the capabilities of PyZX and several ways in which
PyZX can be used, and we give some of the implementation details. We end the paper by offering several

http://dx.doi.org/10.4204/EPTCS.318.14
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
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Figure 1: An overview of the functionality of PyZX.

challenges to the community, each of which when completed would expand the power of automated
diagrammatic reasoning, or would help in understanding its limitations.

We start by giving a brief overview of the ZX-calculus in Section 2. Then, in Section 3 we describe
the core functionality of PyZX and give some details about how it is implemented. In Section 4 we detail
how PyZX interacts with TikZ and Quantomatic. We discuss the performance of PyZX in Section 5, and
finally, in Section 6 we present a series of challenges for ourselves and other potential contributors/col-
laborators.

2 The ZX-calculus

This section provides a brief overview of the ZX-calculus. For an in-depth reference see Ref. [11].
The ZX-calculus is a diagrammatic language similar to the familiar quantum circuit notation. A ZX-

diagram (or simply diagram) consists of wires and spiders. Wires entering the diagram from the left are
inputs; wires exiting to the right are outputs. Given two diagrams we can compose them by joining the
outputs of the first to the inputs of the second, or form their tensor product by simply stacking the two
diagrams.

Spiders are linear operations which can have any number of input or output wires. There are two
varieties: Z spiders depicted as green dots and X spiders depicted as red dots:1

α... ... := |0...0〉〈0...0|+ eiα |1...1〉〈1...1| α... ... := |+...+〉〈+...+|+ eiα |−...−〉〈−...−|

The diagram as a whole corresponds to a linear map built from the spiders (and SWAPs represented by
wire crossings) by the usual composition and tensor product of linear maps. As a special case, diagrams
with no inputs represent (unnormalised) state preparations.

It will be convenient to introduce a symbol – a yellow square – for the Hadamard gate. This is defined
by the equation:

= π

2
π

2
π

2 (1)

1If you are reading this document in monochrome or otherwise have difficulty distinguishing green and red, Z spiders will
appear lightly-shaded and X darkly-shaded.
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We will not view this Hadamard gate as an additional generator. Instead, we consider a Hadamard
box between two spiders as a different type of edge. We illustrate this by writing a Hadamard between
two spiders as a blue dashed edge:

:= (2)

Both the blue edge notation and the Hadamard box can always be translated back into spiders when
necessary. We will refer to the blue edge as a Hadamard edge.

Two diagrams are considered equal when one can be deformed to the other by moving the vertices
around in the plane, bending, unbending, crossing, and uncrossing wires, so long as the connectivity and
the order of the inputs and outputs is maintained.

Additionally, there is a set of equations that we call the rules of the ZX-calculus that allow us to
equate additional diagrams; these are shown in Figure 2. Equal diagrams correspond to equal linear
maps. In this paper we will ignore global scalar factors, and hence we will consider linear maps A and
B to be “equal” if they satisfy A = zB for some non-zero z ∈ C. The rules of the calculus can be made
exact with respect to scalar factors [4], but we do not consider this possibility in this paper.

Quantum circuits can be translated into ZX-diagrams in a straightforward manner. We will take as
our starting point circuits constructed from the following universal set of gates:

CNOT :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 Zα :=
(

1 0
0 eiα

)
H :=

1√
2

(
1 1
1 −1

)

This gate set allows a convenient representation in terms of spiders:

CNOT = Zα = α H = (3)

Note that the green spider is the first (i.e. control) qubit of the CNOT and the red spider is the second
(i.e. target) qubit. Other common gates can easily be expressed in terms of these gates. In particular,
S := Z π

2
, T := Z π

4
and:

Xα = αα = CZ = = = (4)

β... ...

α ...... =... ... ...α+β

( fff )

(-1)aα=
aπ

aπ

aπ α ... ...

aπ

(πππ)

aπ

...

aπ

α =...

aπ

(ccc)
aπ

α ...= α...

(hhh)

(iii111)
=

=
(iii222)

(bbb)
=

Figure 2: A convenient presentation for the ZX-calculus. These rules hold for all α,β ∈ [0,2π), and due
to (hhh) and (iii222) all rules also hold with the colours interchanged.
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When we want to write a quantum circuit as a ZX-diagram, we simply convert each of the gates of the
circuit into their equivalent ZX-diagram, and compose these per the structure of the circuit. For circuits
using gates not described above, such as the Toffoli gate, we first convert the gate into a Clifford+T
representation, and then we write it as a ZX-diagram.

3 Core functionality

In this section we detail the main features of PyZX and how they are implemented. Our intention is to
give a brief tour of the capabilities of PyZX, rather than to give a detailed tutorial. Full documentation is
available at pyzx.readthedocs.io.

PyZX is written in pure Python with the only dependencies being NumPy [3] and Matplotlib [2]. A
relatively easy way to get these dependencies (and Jupyter) is to use Anaconda [1].

3.1 ZX-diagrams and circuits

There are two main data-structures present in PyZX: Circuits and Graphs. A Circuit is basically a
wrapper around a list of gates, while a Graph represents a ZX-diagram.

The Circuit class is the entry-point for importing and exporting circuits to and from PyZX. It
also provides methods to do gate-level operations, such as converting a Toffoli-circuit into a Clifford+T
circuit or taking the adjoint of all its gates. There is also a variety of circuit optimisation schemes that
act directly on the Circuit class which can be found in the optimize sub-module.

A Circuit consists of a list of Gates, which in turn are small classes containing some information
about the gate and how to convert it into various representations, such as ZX-diagrams or the QASM [12]
format.

The Graph class is more interesting. The graphs in PyZX are simple, undirected graphs with typed
vertices and edges. Vertices come in three types: boundaries, Z-spiders and X-spiders. Each vertex can
be labelled by a phase that is stored as a fraction representing a rational multiple of π . For instance, a
label of 1

2 corresponds to a phase of π

2 .
The edges come in two types, which correspond respectively to a regular connection between spiders,

and a Hadamard-edge as shown in Eq. (2). As ZX-diagrams allow parallel edges between spiders and
self-loops, we need a way to deal with these in PyZX graphs. Adding an edge where there is already one
present (via the add edge method) will simply replace it. Often, it is more convenient to use the rules of
the ZX-calculus to resolve parallel edges and self-loops whenever a new edge is added. How this should
be done depends on the types of edges and vertices involved:

= π...... ... ...

=...... ... ... =...... ... ...

= π...... ... ...

=...... ... ...

=...... ... ... =...... ... ...

=... ...

= π... ...

In order to use this built-in functionality to resolve the edges, one can use the Graphmethod add edge table,
which takes in a list of edges and edge-types, and resolves what the ZX-diagram would look like when
all the double edges and self-loops have been resolved.

https://pyzx.readthedocs.io
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The Graph class abstracts away some of the details of the underlying representation of the graph. As
a result, a different implementation of a graph can simply subclass the BaseGraph class in order to work
with all the other functionality of PyZX.

The default, pure Python, implementation of a graph in PyZX, GraphS, stores its connectivity as
a dictionary of dictionaries, where the first level has vertices as keys (identified by an integer), with
the values being another dictionary containing all the neighbours of this vertex. The values of these
dictionaries in turn specify by which type of vertex the vertices are connected. Phases are stored in
another dictionary. We have experimented with other graph back-ends, but we found that this simple
implementation is fast enough to handle and simplify diagrams with hundreds of thousands of vertices
in a reasonable time-frame. See Section 5 for more details.

Figure 3 gives a small example of creating a ZX-diagram in PyZX and visualising it. This example
takes place inside a Jupyter Notebook [20]. A Jupyter Notebook is an interactive Python shell that runs
in a web-browser and allows one to easily rerun parts of your code, and to add interactive HTML and
Javascript widgets. We use Jupyter as a GUI to PyZX, using its integration with Matplotlib to visualise
ZX-diagrams.

Figure 3: Simple example of construction a ZX-diagram from scratch and visualising it.

Usually you will not want to manually create a ZX-diagram. There are various ways to import
ZX-diagrams into PyZX. Directly importing ZX-diagrams is possible using the Quantomatic format
(see Section 4), but PyZX can also read files describing quantum circuits in a variety of languages. It
currently supports QASM [12], the Quipper ASCII format [32] and the QC/TFC format used by the
Reversible Circuit Benchmarks page [29]. A circuit can be imported by calling for instance circ =

zx.Circuit.load("circuit.extension"). The file-format is automatically inferred. As the circuit
might contain gates that have no straightforward translation to ZX-diagrams, we do not automatically
convert the imported circuit into a ZX-diagram. The method to graph() transforms a Circuit into a
Graph by converting the circuit into a Clifford+phases representation that is easily translated to a ZX-
diagram.
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3.2 Simplification and Verification

The simplification strategies for ZX-diagrams in PyZX are built in a hierarchical manner.
At the bottom level there are rules that consist of a matcher and a rewriter. A matcher loops over all

the vertices or edges of a graph (which one depends on the rule) and tries to find as many non-overlapping
sections of the graph that are suitable for the rule to be applied. Once it finishes, it returns a list of matches
(what such a match object looks like differs per rule). The rewriter takes this list of matches and figures
out which changes to the graph need to be made. Since all the matches are non-overlapping, this can be
done for each match separately. If these changes involve adding vertices or changing phases, then this is
done immediately, but in order to reduce overhead, other changes (adding edges or removing edges and
vertices) are collected until the rewriter has processed all matches, and then implemented simultaneously.

For a simple example of a rule, let us consider identity removal:

α β..
.

..
. = α β..
.

..
. (5)

The matcher loops over vertices and tries to find those vertices that have a phase of zero, and exactly
two neighbours. When it has found such a vertex, it removes its neighbours from the list of candidates
(in order to prevent overlapping applications), and it makes it into a match that contains the vertex, its
neighbours, and the type of the edge that should be made between these neighbours in the rewritten graph
(in the case above, since both edges to the middle vertex were Hadamard edges, the resulting edge is a
regular edge, cf. (iii222)). The rewriter takes this list of matches, builds a list of vertices to be removed,
and edges to be added, and applies this all at once. As the neighbours of the removed vertex could
already have been connected in the original graph, this could lead to a self-loop that is handled in the
way described in Section 3.1.

The next stage in the hierarchy of simplification strategies are the basic simplifiers. These are built
on a single rule. A simplifier keeps applying the matcher and rewriter of a single rule, until the matcher
finds no more matches. Because a matcher only finds non-overlapping rules, and thereby might miss
possible applications for the rule the first time around, and because the rewritten diagram might produce
new sections of the graph that are suitable for application of the rule, the simplifier might need to do
the process of matching and rewriting many times before no new matches are found. In order for the
simplifier to not get stuck in an infinite loop, it is important that the rule actually simplifies the diagram
in some manner, i.e. that some kind of metric on the graph is reduced. In the case of the basic simplifiers
used in PyZX, this metric is usually that the amount of vertices in the graph is reduced, but it could also
be something more complex such as trading one type of vertex for another one.

Let us consider the identity removal simplifier (named id simp in PyZX). Its simplifier removes all
the identity spiders in the diagram as in (5). The rule never generates new arity 2 zero phase spiders,
hence the only way in which the simplifier has to run multiple times is when there were multiple identities
in a row, i.e. when the rule applications had overlap. Since every application of the rule removes a vertex,
this simplifier indeed terminates.

At the top level of the hierarchy are the compound simplifiers. These simply combine other sim-
plifiers into a more complicated simplification strategy, by applying other simplifiers in some particular
order, potentially looping over this combination until none of the simplifiers finds any more reductions.

For instance, PyZX also implements a basic simplifier that fuses spiders together (cf. ( fff )), called
spider simp. We could combine id simp and spider simp together in a compound simplifier as
follows:
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def fuse simp(g):
i = 0

while True:
i1 = id simp(g) # simplifiers return the amount of iterations

i2 = spider simp(g)

if i1 == 0 and i2 == 0: break # No more matches were found

i += 1

return i

This simplifier simply keeps removing identities and fusing spiders until this is no longer possible.
Note that removing an identity might make more possibilities for fusing spiders, and fusing spiders might
make a zero phase arity two spider. Hence, we indeed need the loop in this function to make full use of
these simplifiers.

The rewrite strategies of PyZX are included in the simplify sub-package. It includes the previ-
ously described simplification strategies, but also more complex rewrite strategies based on the local
complementation and pivoting procedures of Ref. [14]. These rewrite strategies are combined into two
top level compound rewrite strategies: zx.simplify.clifford simp implements the rewrite strat-
egy of Ref. [14] that is able to reduce Clifford circuits to GS-LC (graph-state with local Cliffords)
pseudo-normal form, while zx.simplify.full reduce builds on that by implementing the strategy
of Ref. [25] that is able to do significant T-count optimisation. For a demonstration of the usage of the
rewrite system see Figure 4.

Figure 4: Example of simplifying a circuit with PyZX. The circuit tof 4 before is from Ref. [30]. The
function g.normalise() does not change the ZX-diagram, but changes the coordinates of the vertices
in order to make it more suitable for drawing. Note that the blue wires of the bottom diagram correspond
to the Hadamard edges of (2).

It is of course essential to know whether the rewrite rules are implemented correctly and actually
preserve the semantics of the diagram. PyZX offers a straightforward way to do this by allowing ZX-
diagrams to be converted into their underlying linear maps using NumPy [3]. To test equality of diagrams



236 PyZX: Large Scale Automated Diagrammatic Reasoning

we can then simply test whether all the elements in the two tensors are equal up to a global non-zero
scalar:

t1 = g1.to tensor()

t2 = g2.to tensor()

zx.compare tensors(t1,t2)

This method uses an exponential amount of memory in terms of the qubits, or in the case of general
ZX-diagrams: some function of the amount of inputs and the maximal arity of the spiders involved. In
practice it can validate circuits up to 10 qubits on a 32-bit version of Python.

Interestingly, we can also use the rewriting engine itself to validate equality of diagrams or circuits.
Given circuits (or just any ZX-diagrams) c1 and c2 we construct the circuit c as:

c = c1.adjoint()

c.add circuit(c2)

If c1 and c2 indeed implement the same unitary, then c should implement the identity. To test the
equality of c to the identity, we try to simplify it as much as possible. If we can successfully reduce
it to the identity circuit, then we know (at least with very high likelihood) that c is indeed the iden-
tity. The function c1.verify equality(c2)implements this idea using the strategy of Ref. [25] (i.e.
zx.simplify.full reduce). This method is fast (for circuits with dozens of qubits and thousands of
gates, it finishes in seconds), and if equality is verified, it could in principle even give a certificate of this
equality in terms of a list of rewrite rules. But if this method fails to reduce the circuit to the identity,
then the answer is inconclusive, so that the utility of this method is determined by the variety of circuits
it can verify.

We have run this validation method on the original and optimised circuits of Ref. [30] and managed
to validate equality of all pairs of circuits except for one, where it turned out that the optimised circuit
contained an error. Based on the ability of full reduce to validate correctness of all these circuits, we
speculate that whenever two ZX-diagrams can be transformed into one another by a combination of the
rules of Figure 2, that full reduce should be able to verify equality of these circuits.

3.3 Circuit-to-circuit optimisation

As can be seen in Figure 4, when a circuit-like ZX-diagram is fed into the simplification procedure, the
simplified diagram might no longer resemble the structure of a circuit. If one is interested in using these
simplifications for circuit optimisation, the resulting diagram should then be converted back into a circuit
somehow. This is known as the circuit extraction problem [14]. To convert a ZX-diagram into a circuit
in PyZX one can use the function zx.extract.streaming extract. This method uses the proven re-
sults regarding circuit extraction from Ref. [14], but builds on that with a series of additional heuristics to
extract a circuit from a ZX-diagram. There is currently no results known about when these heuristics suf-
fice to extract a circuit, but when the diagram is produced from a circuit by zx.simplify.full reduce

then the extraction always seems to succeed2. Alternatively, PyZX also implements the phase telepor-
tation routine from Ref. [25] that allows one to optimise circuits ‘in place’, side-stepping the issue of
circuit extraction. This method is implemented in zx.simplify.teleport reduce.

2We have tested the extraction on thousands of randomly generated circuits of varying sizes, next to dozens of standard
benchmark circuits. In every case, our extraction heuristic successfully terminates.
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Next to these optimisation methods that use the ZX-calculus, PyZX also implements some straight
circuit-to-circuit optimisation methods. In particular, it contains an implementation of the TODD phase-
polynomial optimiser of Ref. [18].

Instead of doing these operations manually inside a Python shell, PyZX also offers a command-line
interface, e.g. by calling python -m pyzx opt input circuit.

4 TikZiT and Quantomatic integration

Besides the core functionality based on the rewrite engine, PyZX offers a couple of convenience features
for interacting with other software. Any ZX-diagram in PyZX can be exported as a TikZ figure for easy
importing into a Latex document. This is how many of the bigger diagrams in Ref. [14] were produced.
The TikZ output is compatible with the TikZ figure editing software TikZiT [21] and in fact, PyZX allows
direct export into TikZiT:

zx.tikz.tikzit location = ’path/to/tikzit.executable’

zx.tikz.tikzit(g) # This opens Tikzit with the ZX−diagram g loaded

Alternatively, a circuit can be converted to a TikZ ZX-diagram by a command-line call: python -m

pyzx tikz input circuit.
PyZX also integrates with the graphical theorem prover Quantomatic [27] in various ways. The file-

format that Quantomatic uses to store diagrams, qGraph, is supported by PyZX, allowing non-circuit
ZX-diagrams to be stored and read. Furthermore, when Quantomatic is installed, it can be used as a GUI
for editing ZX-diagrams:

zx.quantomatic.quantomatic location = ’/path/to/quantomatic.jar’

g2 = zx.quantomatic.edit graph(g) # Open Quantomatic with diagram g loaded

# The above function blocks until Quantomatic is closed

# Now g2 contains whatever changes were made to g in Quantomatic

The rewrite strategies of PyZX are also available from inside Quantomatic, by importing PyZX as a
Python module. For more details, we refer to the documentation [24].

5 Performance

PyZX is able to handle and simplify ZX-diagrams containing tens of thousands of vertices in seconds;
See Figure 5. As can be seen, reducing a 15 qubit circuit with 2500 gates takes less then 5 seconds.
Interestingly, the time it takes to bring a Clifford circuit to normal form seems to follow a power-law,
although the constant of the power-law depends on the amount of qubits in the circuit.

Let us compare this to a, on the surface, similar piece of software: Quantomatic. Like PyZX, Quan-
tomatic supports automated reasoning with ZX-diagrams [27]. There are however two important differ-
ences.

The first is that Quantomatic is designed to be agnostic concerning the particular graphical language
that is being used. As a result, particular behaviour that is ‘hard-coded’ into PyZX, such as the removal
of parallel edges between vertices, needs to be implemented as a separate rule in Quantomatic, slowing
down the way in which graphs can be simplified.

The second difference is that the rewrite engine of Quantomatic is based on bang-boxes [23]. When-
ever a rule allows a variable amount of edges or vertices to be involved, it must be implemented in
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Figure 5: Benchmark of the Clifford simplification procedure that reduces circuits to normal form, as
implemented in a Jupyter Notebook. The red-line is the least squares best-fit for a power-law. This was
run on a consumer laptop.

Quantomatic using bang-boxes. While a powerful tool, finding matches involving bang-boxes can be
slow. As every rule in PyZX is a piece of hand-written Python code, it does not have to rely on the strict
logic of bang-boxes. While this necessitates more validation to make sure the implementation is correct,
the result is that PyZX can be much faster.

In Ref. [15] Quantomatic was used to optimise Clifford circuits. Optimising a 5 qubit circuit with
less than 100 gates took upwards of half an hour. Contrast this to Figure 5 that shows PyZX doing the
similar task of bringing Clifford circuits with tens of qubits and thousands of gates to normal-form in
seconds.

Of course, simplifying a Clifford circuit to normal-form is not a standard task for most purposes,
but even for the more common use of optimising the T-count of a circuit, PyZX is fast. For instance,
the implementation of the phase teleportation routine of Ref. [25] can optimise most of the circuits used
in Ref. [30] in seconds. For example, the 9 qubit circuit nth prime6.tfc from the Reversible Circuit
Benchmark page [29] contains 1241 gates, 567 of which are T gates. PyZX optimises this to a circuit
with 279 T gates in less than a second.

6 Challenges

While PyZX is already a capable, general-purpose circuit optimiser [25], there are still many ways in
which PyZX can be improved. We list some of these as a series of challenges.

Challenge 1: Use ancillae in optimising ZX-diagrams. While progress has been made on optimising
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circuits using the ZX-calculus [14, 25], these results only concern ancilla-free optimisation. It is currently
still unknown how the ZX-calculus might be used to create optimisations that take advantage of the
presence of ancillae.

Challenge 2: Find the limitations of circuit extraction. Understanding of the circuit extraction prob-
lem is still limited [14]. Even though we have a heuristic that always seems to work in the diagrams we
produce by simplification, better understanding of the extraction problem might lead to ways to extract
smaller circuits, which would be beneficial to optimisation. We believe the general problem of circuit
extraction to be hard (in the complexity-theoretic manner), so finding specific circumstances in which
we can successfully extract a circuit is of both theoretical and practical importance.

Challenge 3: Combine circuit routing with the ZX-calculus. Circuits on physical quantum computers
(and even logical level descriptions of circuits such as the surface code) do not allow two-qubit interac-
tions to take place between any pair of qubits. If a two-qubit gate needs to take place between qubits
that are not adjacent, then some form of routing needs to happen. When extracting a circuit from a
ZX-diagram, there is a natural place for circuit routing to happen, as noted in Ref. [22]. It would be
interesting to see whether this leads to improvements over other methods.

Challenge 4: Use the ZH-calculus for circuit optimisation. The ZX-calculus is very well-suited for
describing circuits with Clifford and phase gates. It can however only indirectly reason about Toffoli
and CCZ gates. A more natural candidate for describing those gates is the ZH-calculus [5]. It stands to
reason then that the optimisation of these circuits can be improved by using the ZH-calculus.

Challenge 5: Use graphical calculi for circuit simulation. An intriguing possibility for the usage of
ZX-diagrams, is in strong simulation of quantum circuits, i.e. determining specific output probabilities
given a specific input state. Such a problem can be described by a tensor network [28], or as a scalar ZX-
diagram. Using the simplification engine of PyZX, simplifications to the diagram can potentially make
the calculation of the scalar more efficient then in other approaches (a similar approach to simplifying
tensor networks has already shown that this can make the calculation significantly more efficient [7]).

Challenge 6: Use the ZX-calculus for lattice surgery compilation. The ZX-calculus is a natural choice
for describing lattice surgery on a surface code [6]. As a result, one can imagine there being some kind
of automated way to convert a quantum circuit into a sequence of lattice surgery operations that can be
performed on a surface code.

Acknowledgements: The authors are supported in part by AFOSR grant FA2386-18-1-4028. The au-
thors wish to thank Will Zeng for supporting the development of PyZX with a Unitary Fund, and Arianne
Meijer for developing code to do circuit routing in PyZX.
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