
Bob Coecke and Mathew Leifer (Eds.):
Quantum Physics and Logic 2019 (QPL)
EPTCS 318, 2020, pp. 196–212, doi:10.4204/EPTCS.318.12

c© A. Gheorghiu & C. Heunen
This work is licensed under the
Creative Commons Attribution License.

Ontological models for quantum theory as functors

Alexandru Gheorghiu
California Institute of Technology

andrugh@caltech.edu

Chris Heunen
University of Edinburgh

chris.heunen@ed.ac.uk

We interpret ontological models for finite-dimensional quantum theory as functors from the category
of finite-dimensional Hilbert spaces and bounded linear maps to the category of measurable spaces
and Markov kernels. This uniformises several earlier results, that we analyse more closely: Pusey,
Barrett, and Rudolph’s result rules out monoidal functors; Leifer and Maroney’s result rules out
functors that preserve a duality between states and measurement; Aaronson et al’s result rules out
functors that adhere to the Schrödinger equation. We also prove that it is possible to have epistemic
functors that take values in signed Markov kernels.

1 Introduction

Is the wavefunction of quantum theory an objective property of reality, or merely a statistical quantity
associated with a probability distribution over the actual elements of reality? This question divides foun-
dations of quantum theory into two camps – the former theories are ontic, whereas the latter theories
are epistemic – and has occupied quantum foundations greatly. There are many ontic interpretations
of quantum mechanics, such as many-worlds, de Broglie-Bohm, or modal theory. But there are not
many epistemic theories that fully reproduce the predictions of quantum mechanics. One example of an
epistemic theory is Spekkens’ toy model [31], but that only considers a restricted version of quantum me-
chanics. The difficulty in having an epistemic interpretation of quantum mechanics is partly explained
by no-go theorems that constrain models attempting to reproduce quantum mechanics using classical
probability distributions. Notable such obstructions are: Bell’s theorem [4], that rules out local mod-
els; the Kochen-Specker theorem [18], that rules out noncontextual models; the Pusey-Barrett-Rudolph
(PBR) theorem [26], that rules out models in which independently prepared quantum states correspond
to independent ontic states.

Underlying all these investigations is the question: is it possible to have some translation from quan-
tum theory to probability theory? Whether such a translation preserving certain structural aspects of
quantum theory is possible explains whether quantum theory is ontic or epistemic. There is a branch
of mathematics whose entire reason for being is to translate structure between different areas, namely
category theory [21]. This suggests phrasing translation questions about possible ontological models as
functors, and that is exactly what this paper does.

In Sections 2 and 3 we recognise ontological models as functors from (the category of finite-
dimensional Hilbert spaces and bounded linear maps modelling) finite-dimensional quantum theory
to probability theory (as modelled by the category of Borel spaces and Markov kernels). The former
category contains states and measurements as morphisms, and the latter category contains probability
measures as morphisms, but both contain more morphisms, incorporating dynamics in a natural way.

We then ask the question whether such functors satisfying various properties can exist (see also [2]).
This language uniformises several earlier results, and lets us analyse their structure more closely.
• Can there be an epistemic functor that preserves tensor products? Section 4 analyses the PBR

theorem [26] in these terms to provide a negative answer.
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• Can there be an epistemic functor that preserves duality between states and measurements? Sec-
tion 5 analyses [20] categorically to rule out any such functor, never mind an epistemic one.

• Can there be an epistemic functor that preserves the Schrödinger equation? Section 6 analyses [1]
categorically to show that there can be no maximally nontrivial such functor.

Moreover, the formulation in terms of functors naturally suggests other questions.

• What if we change the target category? Section 7 shows that an epistemic model is possible when
we move from Markov kernels to signed Markov kernels.

Epistemic functors also seem possible when using quantum measures rather than signed measures, but
this runs into technical issues; see Appendix B. We also leave open the following naturally suggested
questions: Can there be a (co)limit-preserving epistemic functor? Can there be an (op)lax monoidal
epistemic functor? Can there be an epistemic functor at all? Towards the latter question: there are
epistemic models of quantum theory, e.g. those in [22, 1], but these mappings from quantum states to
probability distributions are not functorial. As far as we are aware, no such mapping is known to exist.

2 Ontological models

Interpretations of quantum mechanics that describe an objective reality (realist interpretations) do so in
the context of an ontological model. Let us recall the standard definitions [19, 1].

Definition 1. An ontological model is a Borel space1 Λ, called the ontic space. Write ΣΛ for its σ -
algebra.

Definition 2. An ontological theory of quantum mechanics is a theory satisfying the following:

1. Each finite-dimensional Hilbert space H has an associated ontological model (Λ,ΣΛ);

2. Each state |ψ〉 ∈ H has an associated probability measure µψ : ΣΛ→ [0,1] with µψ(Λ) = 1;

3. Each orthonormal measurement M = {|φ1〉 , |φ2〉 , . . . |φdim(H)〉} has a set of response functions
{ξk,M : Λ→ [0,1] | 1≤ k ≤ dim(H)} satisfying:

∀|ψ〉 ∈ H :
∫

Λ

ξk,M(λ )dµψ(λ ) = | 〈φk | ψ〉 |2

∀λ ∈ Λ :
d

∑
i=1

ξk,M(λ ) = 1

Example 3. The simplest example of an ontological theory is the following:

1. Λ = CPdim(H)−1 is the complex projective space of H under its Borel σ -algebra;

2. µψ(U) = χU(ψ), writing χU for the indicator function of the subset U ⊆ Λ;

3. ξk,M(λ ) = | 〈φk | λ 〉 |2.

Of course, this is merely a restatement of the original Hilbert space formulation.

Ontological theories (also called interpretations) of quantum mechanics come in two types: ontic
and epistemic. The wavefunction is regarded as an objective property of reality in the former, and as a
statistical quantity in the latter.

1In [19], an ontological model is defined simply as a measurable space, rather than a Borel space. However, a measurable
space by itself does not have sufficient structure for certain properties of interest regarding ontological models. In particular,
the notion of support of a measure over the space needs to be defined, see Definition 5 below. Thus we consider Borel spaces.
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Definition 4. An ontological theory of quantum mechanics is epistemic if there exist states |ψ〉 , |φ〉 ∈H,
satisfying 0 < | 〈ψ | φ〉 |< 1 and D(µψ ,µφ )< 1, where

D(µψ ,µφ ) = sup
Ω∈ΣΛ

|µψ(Ω)−µφ (Ω)|

is the variational distance between the probability measures µψ and µφ associated to |ψ〉 and |φ〉.
An ontological theory is ontic when it is not epistemic.

In essence, the previous definition says an ontological theory is epistemic when there exists a pair
of distinct but overlapping states, whose associated distributions over the ontic space have overlapping
support. Example 3 is ontic.

The motivation for considering epistemic theories is explained in detail in [19]. Briefly, epistemic
theories attempt to address the following question: to what extent can quantum uncertainty be explained
as lack of knowledge of fundamental physical degrees of freedom? The Bayesian view of probability is
that it represents a state of knowledge about a system or a process. In the case of ontological theories,
the distribution associated to a quantum state encodes the uncertainty in the underlying ontic state. This
is analogous to statistical mechanics, where a macroscopic property like the temperature or pressure of
a gas corresponds to a probability distribution over the system’s phase space (representing the space of
possible position and momenta of the gas particles). The point of epistemic theories is to then argue that
quantum states that cannot be perfectly distinguished (i.e. states with nonzero overlap) should correspond
to overlapping probability distributions. That is to say that the uncertainty in discerning which quantum
state characterises a system stems from there being ontic states compatible with multiple quantum states.

The condition for an ontological theory to be epistemic does not specify which pair of states should
have overlapping distributions; the requirement is merely that such a pair exist. It may be more natural
to require that the overlap between states be completely explained by the overlap in their associated
distributions; this is called maximally epistemic [20]. Similarly, it may be more natural to require that
whether states overlap at all is completely explained by whether their associated distributions overlap at
all; this is called maximally nontrivial [1].

Definition 5. For a state ψ ∈ H with ontic space Λ, let Λψ = {λ ∈ Λ | λ ∈U ∈ ΣΛ =⇒ µψ(U) > 0}
be the support of µψ . An ontological theory of quantum mechanics is maximally epistemic if for all
ψ,φ ∈ H:

µψ(Λφ ) = | 〈φ | ψ〉 |2 (1)

It is maximally nontrivial when 〈φ | ψ〉= 0 if and only if µψ(Λφ ) = 0.

3 Operational models

We think of a category as consisting of (models of) physical systems and processes that can be composed
in sequence and in parallel [7, 16]. We first axiomatise probabilistic measurements in such a setting.

Definition 6. An operational category consists of:

• a monoidal category C, with tensor product ⊗ and unit I;

• an object 2 in C, called the distinguishing object;

• a set Ω, whose elements are called probabilities;

• a function 〈−〉 : C(I,2)→Ω called evaluation.
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Maps X→ 2 are also called measurements, maps I→X states, and maps I→ 2 abstract probabilities.
We will often fix Ω to be the unit interval [0,1], in which case we also speak of a concrete operational
category, to justify the name ‘probabilities’ for elements of Ω. One might assume much more structure
than the above definition. For example, the set of probabilities Ω, might be taken to be a partially
ordered set, a monoid, or even a semiring. Similarly, the distinguishing object 2 might be assumed to
be a generator, or a coproduct I + I [5]. Finally, the category C might be assumed to be compact, or
dagger [7, 16]. Here we will only assume the bare minimum of the above definition.

The prototypical example of an operational category is standard quantum theory [6].

Example 7. The category FHilb of finite-dimensional Hilbert spaces and (bounded) linear maps is
operational with distinguishing object C2, abstract probabilities [0,1], and the Born rule

〈ψ〉= |a|2 if ψ(1) = (a,b)

as evaluation function for ψ : C→C2. States correspond to Hilbert space vectors, and measurements are
projective measurements with 2 outcomes. All negative results below apply equally well to the category
of all Hilbert spaces and bounded linear maps, regardless of dimension.

We will be interested in other operational settings, such as probability theory. Here, the model of a
physical system is its set of (ontic) states, and a physical processes simply evolves ontic states.

Example 8. A Markov kernel from a measurable space (X ,ΣX) to a measurable space (Y,ΣY ) is a
probability-measure-valued function f : X × ΣY → [0,1] such that f (−,V ) : X → [0,1] is a bounded
measurable function for each V ∈ ΣY , and f (x,−) : ΣY → [0,1] is a probability measure for each x ∈
X. Measurable spaces and Markov kernels form a category SRel with composition (g ◦ f )(x,W ) =∫

g(y,W ) f (x,dy), and Dirac measures idX(x,U) = 1 for X 3 x ∈U ∈ ΣX and idX(x,U) = 0 for X 3 x 6∈
U ∈ ΣX as identities [25, 24]. Here, the notation f (x,dy) is short for d f (x,−).

The category SRel is (symmetric) monoidal. In the abstract, because it is the Kleisli category of
the monoidal probability Giry monad [17]. We describe the monoidal structure concretely. The tensor
product (X ,ΣX)⊗(Y,ΣY ) of objects is carried by X×Y and furnished with the σ -algebra ΣX×Y generated
by the sets U ×V for U ∈ ΣX and V ∈ ΣY . The tensor unit is the singleton set I = {∗} with its unique
σ -algebra. The tensor product f ⊗ f ′ : X ⊗X ′→ Y ⊗Y ′ of Markov kernels f : X → Y and f ′ : X ′→ Y ′

is determined by ((x,x′),V ×V ′) 7→ f (x,V ) · f ′(x′,V ′).
States ψ : I → X in SRel correspond to probability measures ΣX → [0,1] on X. As distinguishing

object we take 2 = {0,1}, with the discrete σ -algebra Σ2 = { /0,{0},{1},2}. Measurements X → 2
correspond to Markov kernels f : X ×Σ2 → [0,1], which are completely determined by a measurable
function x 7→ f (x,0) : X → [0,1]. Probabilities f : I→ 2 thus correspond exactly with elements f (∗,0)
of [0,1]. Thus the category SRel becomes operational under Ω = [0,1] with evaluation 〈 f 〉= f (∗,0).

Write BoRel for the full subcategory of Borel spaces. It inherits all structure of SRel described
above.

As mentioned when we defined ontological models, we will be interested in ontic spaces that can be
represented as Borel spaces. For this reason, in examining realist interpretations of quantum mechanics
from this categorical perspective, we will consider the subcategory BoRel of SRel to correspond to
ontological models. Since FHilb corresponds to quantum mechanics, an interpretation (or an ontological
theory) will correspond to some sort of translation from FHilb to BoRel. This translation should preserve
the empirical predictions of the Born rule. The most natural translation from the categorical perspective is
one that preserves the categorical structure of composition: a functor. Some formulations of ontological
models also assume that unitary evolution on the quantum side, is mapped to a stochastic evolution on
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the ontological side. In fact, as noted in [19], the evolution of ontic states can be modelled through a
Markov kernel. Additionally imposing that composing unitaries is preserved at the ontological level,
recovers exactly the functorial map in question.

Definition 9. Let C and D be operational categories with the same probabilities Ω. An operational
model is a functor F : C→ D that satisfies F(IC) = ID, F(2C) = 2D and 〈F(ψ)〉D = 〈ψ〉C. 2

We are specifically interested in C = FHilb and D = BoRel. In this case, the only fundamental
difference between having an ontological theory and having an operational model is that the operational
model forces the translation from FHilb to BoRel to preserve composition.

To define when operational models are ontic or epistemic, we first need to say in terms of operational
categories when probability measures do not overlap. This leads to anti-distinguishability3.

Definition 10. Let C be a concrete operational category, and Ψ ⊆ C(I,A) a collection of states. A
measurement χ : A→ 2 anti-distinguishes a fixed state ψ ∈Ψ if

〈χ ◦ψ〉= 0, ∑
φ 6=ψ∈Ψ

〈χ ◦φ〉= 1.

A state ψ ∈Ψ is anti-distinguishable within Ψ if there is a measurement that anti-distinguishes it. Finally,
Ψ is anti-distinguishable if each ψ ∈Ψ is anti-distinguishable.

Analogously, the more familiar concept of “distinguishability” is defined in the same way, but having
0 and 1 swapped, so that 〈χ ◦ψ〉 = 1 and ∑φ 6=ψ∈Ψ〈χ ◦φ〉 = 0. Anti-distinguishability will be of more
interest to us.

Probability measures correspond to states in BoRel. According to the above definition, two probabil-
ity measures ψ and φ are anti-distinguishable precisely when there exists a measurement χ that satisfies
0 = 〈χ ◦ψ〉 = ∫

χ(∗,0)dψ and 1 = 〈χ ◦ φ〉 = ∫
χ(∗,0)dφ . Because

∫
Λ

dµ =
∫

Λµ
dµ by definition of

support, this means that χ assigns measure 0 to the support of ψ almost everywhere with respect to φ ,
and assigns measure 1 to the support of φ almost everywhere with respect to ψ . In other words, ψ and
φ are exactly non-overlapping measures. Operationally, the measurement χ can be thought of as an ex-
periment that samples from a given distribution and always rejects ψ , but always accepts φ . Notice that
if there are only two distributions, distinguishability and anti-distinguishability are equivalent.

Definition 11. An operational model F is ontic when it maps distinct states ψ 6= φ in C to (anti-)
distinguishable states F(ψ),F(φ) in BoRel; otherwise it is epistemic.

4 Monoidal operational models

This section is the first of several considering whether operational models with certain extra properties
can exist. The property under scrutiny in this section is preserving tensor products, that is, we set out to
establish a categorical version of the PBR theorem (see Appendix A for a brief discussion of the original
PBR theorem). Recall that a functor F : C→ D is monoidal when there are a natural isomorphisms
FA,B : F(A)⊗F(B)→ F(A⊗B) and a morphism F0 : I→ F(I) satisfying certain coherence requirements.
This means that if ψ : I→ A is a state in C, then F(ψ)◦F0 : I→ F(A) is a state in D; by abuse of notation
we will simply write F(ψ) for this state. We will refer to an operational model in which the functor is
monoidal as a monoidal operational model.

2We follow the categorical/logical/model-theoretic convention that terms the domain a “theory”, and the functor a “model”
or “interpretation”, rather than the physical convention where a “theory” is a class of “models”.

3In the literature, anti-distinguishability is also referred to as state discrimination [3].
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Let us start with some properties of anti-distinguishability that hold in any monoidal operational
model. We will then establish some properties of anti-distinguishability specific to BoRel.
Lemma 12. Let F : C→ D be a monoidal operational model with 0 6= 1 ∈ Ω, and Ψ ⊆ C(I,A) be
a collection of states. If a measurement χ : A→ 2 anti-distinghuishes ψ ∈ Ψ, then F(χ) : F(A)→ 2
anti-distinguishes F(Ψ) = {F(φ) | φ ∈ Ψ}. Therefore, if ψ is anti-distinguishable in Ψ, then F(ψ) is
anti-distinguishable in F(Ψ); and if Ψ is anti-distinguishable, then so is F(Ψ).

Proof. Follows directly from Definitions 9 and 10.

If F : C→D is an operational model, and ψ : I→A a state in C, then there is a state (F(ψ)⊗F(ψ))◦
λ ◦F0 : I→ F(A)⊗F(A); where λ is the left unitor of D. We will supress the coherence isomorphisms,
which the following lemma justifies, and simply write F(ψ)⊗2, and inductively define F(ψ)⊗n similarly.
Similarly, if χ : I→ 2 is a measurement in C, write F(χ) for the induced measurement I→ 2 in D.

Lemma 13. Let F : C→ D be a monoidal operational model with Ω = [0,1], and Ψ⊆ C(I,A) a collec-
tion of states. If {ψ⊗n | ψ ∈Ψ} is anti-distinguishable, then so is {F(ψ)⊗n | ψ ∈Ψ}.

Proof. Fix ψ ∈Ψ, and say χ : A⊗n→ 2 satisfies 〈χ ◦ψ⊗n〉= 0 and ∑ψ 6=φ∈Ψ〈χ ◦φ⊗n〉= 1. Now, we have
to be slightly more precise about tensor products of states under F . Because F is a monoidal functor, the
following diagram commutes.

I I⊗n

F(I) F(I)⊗n F(A)⊗n

F(I⊗n) F(A⊗n)

λ n
I

F0

λ n
F(I)

F⊗n
0

F(ψ)⊗n

Fn

F(ψ⊗n)

Fn
F(λ n)

Hence

〈F(χ)◦F(ψ⊗n ◦λ
n)◦F0〉= 〈F(χ ◦ψ

⊗n ◦λ
n)◦F0〉= 〈χ ◦ψ

⊗n〉= 0

and similarly ∑φ 6=ψ∈Ψ〈F(χ)◦F(φ)〉= 1.

The next two lemmas concern specific properties of BoRel.
Lemma 14. Let φ ,ψ ∈ BoRel(I,A) be states in BoRel. If {φ ⊗ φ ,φ ⊗ ψ,ψ ⊗ φ ,ψ ⊗ ψ} is anti-
distinguishable, then so is {φ ,ψ}.

Proof. Say χ : A⊗A→ 2 satisfies 〈χ ◦ (ψ⊗ψ)〉= 0 and

〈χ ◦ (φ ⊗φ)〉+ 〈χ ◦ (φ ⊗ψ)〉+ 〈χ ◦ (ψ⊗φ)〉= 1.

By Example 8 〈χ ◦ (ψ⊗ψ)〉= ∫A2 χ(a1,a2)dψ(a1)dψ(a2). Because χ and ψ are nonnegative, the first
equation therefore implies ∫

A
χ(a1,a2)dψ(a1) = 0 =

∫
A

χ(a1,a2)dψ(a2)
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for all a1,a2 ∈ A. Thus ψ vanishes almost everywhere and 〈χ ◦ (φ ⊗ψ)〉 = 0 = 〈χ ◦ (ψ ⊗ φ)〉. The
second equation similarly implies

1 = 〈χ ◦ (φ ⊗φ)〉+ 〈χ ◦ (φ ⊗ψ)〉+ 〈χ ◦ (ψ⊗φ)〉=
∫

A2
χ(a1,a2)dφ(a1)dφ(a2),

so that 〈χ ◦ (ψ⊗ψ)〉= 0 and 〈χ ◦ (φ ⊗φ)〉= 1.
Now define χ ′ : A→ 2 by χ ′(a) =

∫
A χ(a,a2)dψ(a2). Then 〈χ ′ ◦ψ〉 = 0 and 〈χ ′ ◦ φ〉 = 1 by con-

struction, so χ ′ anti-distinguishes φ and ψ .

Lemma 15. Let φ ,ψ ∈ BoRel(I,A) be states in BoRel, and n > 0 a natural number. If {φ⊗n,ψ⊗n} is
anti-distinguishable, then so is {φ ,ψ}.

Proof. Say χ : A⊗n→ 2 satisfies 〈χ ◦φ⊗n〉= 0 and 〈χ ◦ψ⊗n〉= 1. By Example 8:

〈χ ◦φ
⊗n〉=

∫
An

χ(a1, . . . ,an)dφ1(a1) · · ·dφn(an) = 0,

〈χ ◦ψ
⊗n〉=

∫
An

χ(a1, . . . ,an)dψ1(a1) · · ·dψn(an) = 1.

Because χ and the measures ψi and φi are positive, it follows that for any a2, . . . ,an ∈ A:∫
A

χ(a,a2, . . . ,an)dφ(a1, . . . ,an) = 0.

Define χ ′ : A→ 2 by χ ′(a) =
∫

An−1 χ(a,a2, . . . ,an)dψ2(a2) · · ·dψn(an). Then, clearly, 〈χ ◦ φ〉 = 〈χ ◦
φ⊗n〉= 0, and 〈χ ◦ψ〉= 〈χ ◦ψ⊗n〉= 1. Thus χ ′ anti-distinguishes φ and ψ .

The following lemma is the abstract content of the PBR theorem, and holds for any concrete monoidal
operational model.

Lemma 16. A concrete operational model F : C→ BoRel is ontic as soon as there are states φ ,ψ ∈
C(I,A) and a natural number n > 0 for which {φ⊗n⊗φ⊗n,φ⊗n⊗ψ⊗n,ψ⊗n⊗φ⊗n,ψ⊗n⊗ψ⊗n} is anti-
distinguishable.

Proof. By Lemmas 12 and 13, the set {F(φ)⊗n ⊗ F(φ)⊗n,F(φ)⊗n ⊗ F(ψ)⊗n,F(ψ)⊗n ⊗
F(φ)⊗n,F(ψ)⊗n ⊗ F(ψ)⊗n} is anti-distinguishable in BoRel. By Lemma 14, therefore the set
{F(φ)⊗n,F(ψ)⊗n} is anti-distinguishable. Lemma 15 now guarantees that F(φ) and F(ψ) are
anti-distinguishable. Hence F is ontic.

We can now finish the proof of our categorical analogue of the PBR theorem by constructing specific
states in FHilb.

Theorem 17. Any monoidal operational model FHilb→ BoRel is ontic.

Proof. It suffices to satisfy the hypotheses of Lemma 16 for FHilb. As explained in the proof sketch
of Theorem 27 in Appendix A, there is an anti-distinguishing measurement when ψ = |0〉 and φ = |+〉,
according to equations (7)–(10) in Appendix A. Furthermore, for any pair of states ψ,φ there exists
n > 0 such that | 〈ψ⊗n|φ⊗n〉 | ≤ 〈0|+〉 = 1/

√
2, because | 〈ψ⊗n|φ⊗n〉 | = | 〈ψ|φ〉 |n and | 〈ψ|φ〉 | < 1. By

applying a unitary if necessary, we may assume without loss of generality that 〈ψ | φ〉 is real.
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Following [19], write 〈ψ⊗n|φ⊗n〉 = γ , and consider the completely positive map E : ρ 7→ K0ρK†
0 +

K1ρK†
1 with Krauss operators

K0 = |0〉〈0|+ tanγ |1〉〈1| , K1 =

(√
1− tan2 γ

2

)
(|0〉+ |1〉)〈1| .

As is shown in [19], up to global phases:

E (|ψ⊗n〉〈ψ⊗n|) = |0〉〈0| E (|φ⊗n〉〈φ⊗n|) = |+〉〈+|

Applying E leads to a pair of states that are anti-distinguishable. Of course, being a completely positive
linear map, E is itself not a morphism in FHilb. However, by Stinespring dilation we can always obtain
a morphism in FHilb by first tensoring an ancilla system to our state. We are allowed to do this because
the functor is monoidal. Then using the measurement given by the projections (7)–(10), it follows that
{ψ⊗n⊗ψ⊗n,ψ⊗n⊗φ⊗n,φ⊗n⊗ψ⊗n,φ⊗n⊗φ⊗n} is anti-distinguishable. (A different anti-distinguishing
measurement is considered in [26].)

There are a two important differences between Theorems 17 and the original PBR theorem (The-
orem 27). First, operational models are more restrictive than ontological theories due to the mapping
between categories being a functor. Second, the cartesian product assumption of the preparation inde-
pendence postulate (Definition 26), only asks that the set of product states map to a product space in the
ontological theory. However, the requirement that a functor is monoidal forces tensor products of Hilbert
spaces to be mapped to products of measurable spaces. Dealing with product states in particular may be
modelled by precomposing with the identity functor (FHilb,⊕)→ (FHilb,⊗) that is oplax monoidal by
φ ×ψ 7→ φ ⊗ψ .

5 Duality-preserving operational models

Next we consider operational models that respect a duality between states and effects.4 In FHilb, any
state ψ : I→ A induces a measurement χ : A→C2 via the Born rule χ(a) = (p,1− p) for p = | 〈a|ψ〉 |2.5

In BoRel, any state µ on a measurable space Λ induces a measurement χ : Λ→ [0,1] via evaluation
χ(λ ) = µ{λ}. This requires singletons {λ} to be measurable sets. This holds for discrete σ -algebras
and Borel σ -algebras and hence is fine when working with probability distributions or measures on
topological spaces. Both FHilb and BoRel thus canonically preserve duality in the following sense.

Definition 18. A state-measurement duality on an operational category is a family of functions
†: C(I,A)→ C(A,2). A duality-preserving operational model is an operational model between oper-
ational categories with state-measurement duality that preserves the duality: F(ψ†) = F(ψ)†.

Proposition 19. There does not exist a duality-preserving operational model FHilb→ BoRel.

Proof. By definition, for two states ψ,ψ ′ : C → A in FHilb, their overlap is 〈ψ† ◦ψ ′〉. A duality-
preserving operational model F must satisfy 〈ψ† ◦ψ ′〉FHilb = 〈F(ψ)† ◦F(ψ ′)〉BoRel. In other words,

4The terminology “duality” is not ideal, because in general not every measurement may be induced by a state, as is the case
in quantum theory. But “state-induced-measurement-preserving operational model” is a mouthful.

5Although FHilb is a dagger category, this state and the measurement are not each other’s dagger, as their type mismatches.
However, note that the measurement is essentially derived from the effect associated by the dagger to the state. This point of
view is not uncommon in categorical quantum foundations [5, 28].
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an operational model is duality-preserving exactly when it is maximally epistemic. But any maximally
epistemic ontological theory must be noncontextual and outcome deterministic [20], which contradicts
the contextuality of quantum theory. Hence such a model cannot exist.

6 Equivariant operational models

In this section, we consider another property of operational models: symmetry. This property forces the
operational model to adhere to the Schrödinger equation. In the categorical setting, we can naturally
express this as equivariance under all quantum maps6. The simple fact of functoriality of operational
models will show that equivariance implies symmetry, and so, following Aaronson et al [1], rules out
maximally nontrivial operational models. To phrase these properties there is a price to be paid, namely
that there must be a connection between the ontic spaces and the dynamics.

Definition 20. Let F : FHilb → BoRel be a concrete operational model. An action is a map
FHilb(A,B)×ΣF(A) → ΣF(B) for each A,B ∈ FHilb, that turns a bounded linear map f : A→ B and
a measurable set U ∈ ΣF(A) into a measurable set f ·U ∈ ΣF(B), satisfying (g ◦ f ) ·U = g · ( f ·U) and
id ·U =U. The operational model is equivariant when

F( f ◦ψ)(∗,U) = F(ψ)(∗, f ·U) (2)

for all ψ : C→ A and f : A→ A in FHilb and U ∈ ΣF(A).

In general, the action U 7→ f ·U can be an arbitrary function ΣA→ ΣB, as long as it is compositional
as in the definition above. When we demand that F(A) is A itself under its discrete σ -algebra, there is a
canonical action FHilb(A,B)×ΣA→ ΣB given by f ·U = { f (λ ) | λ ∈U}. This requirement, that ontic
states are simply quantum states, is not particularly strong. The model of Example 3 satisfies it (although
it is not an operational model). Moreover, this functor is universal, in that any concrete operational model
FHilb→ BoRel must factor uniquely through the functor into the pertinent subcategory of BoRel, that
assigns the discrete σ -algebra to A itself and turns a completely positive map f : A→ B into the Markov
kernel (a,V ) 7→ χV ( f (a)).

Proposition 21. There is no maximally nontrivial equivariant operational model FHilb→ BoRel.

Proof. By considering the action on pure states ψ ∈ A and unitary evolutions f : A→ A, f (a) = ua for
some unitary u, one recovers from (2) the property of symmetry as stated in [1]:

µuψ(λ ) = µψ(uλ ),

where µψ denotes the measure F(ψ) induced by the state ψ . The result follows from [1].

7 Signed operational models

We’ve seen severe limitations on the kinds of functors FHilb→ BoRel allowed. What if we change the
target category? Ideally not too much, to retain some notion resembling probability theory. To do so,
note that, as in Section 4, one of the fundamental differences between FHilb and BoRel is that states that
are not anti-distinguishable in BoRel cannot become anti-distinguishable under finite tensor products.

6There are many categorical notions of action, a mere functor being the least structured one. We prefer to write our definition
of equivariance below explicitly, rather than phrase it as one of these notions.
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This is not the case with quantum states. What makes the two situations so different? Lemmas 14 and 15
highlight that the distinction stems from the fact that classical probability distributions must be positive
and obey the Kolmogorov sum rule. In contrast, quantum states are represented as vectors of amplitudes
that can be both positive and negative (and in general even complex). Consequently quantum states are
subject to interference, which cannot be reproduced with classical probability distributions. A natural
idea is to allow measures to take both positive and negative values, leading to a category whose objects
are still measureable spaces, while morphisms are signed Markov kernels. (An alternative solution, that
still uses positive measures, is to abandon the Kolmogorov sum rule. This approach leads to quantum
measures, but presents a number of challenges discussed in Appendix B.)

Definition 22. A signed Markov kernel from a measurable space (X ,ΣX) to a measurable space (Y,ΣY )
is a function f : X ×ΣY → [−1,1] such that f (−,V ) : X → [−1,1] is a bounded measurable function
for each V ∈ ΣY , and f (x,−) : ΣY → [−1,1] is a signed measure for each x ∈ X. Signed measures
have the same properties as unsigned measures, except that they can be both positive and negative. In
particular, they still obey the Kolmogorov sum rule for disjoint sets. We will require that a signed measure
is normalised: for all x ∈ X it should be the case that f (x,Y ) = 1.

Proposition 23. Measurable spaces and signed Markov kernels form a category QSRel with composition
(g ◦ f )(x,W ) =

∫
g(y,W ) f (x,dy), that is monoidal under f ⊗ f ′ : ((x,x′),V ×V ′) 7→ f (x,V ) · f ′(x′,V ′).

Borel spaces form a full subcategory QBoRel that inherits the monoidal structure.

The category is called QSRel because probability distributions arising from signed measures are
referred to as quasiprobability distributions.

Proof. The proof of e.g. [24, Proposition 3.2] goes through nearly verbatim. Only the very last step,
using the monotone convergence theorem, has to be amended: split the sequence into a positive part
and a negative part using Hahn decomposition, apply monotone convergence to both, and then combine
them again by subtracting the negative from the positive. Alternatively, one can realise that a Giry-like
monad [12], that assigns to a measureable space its set of signed measures, is still well-defined and
monoidal, and QSRel is its Kleisli category.

We will now show that we can have a monoidal operational model. The idea of having a quasiprob-
abilistic interpretation of quantum mechanics has been considered before, notably in [10]. One possible
construction that is physically motivated relies on Wigner functions [35]. A Wigner function of a quantum
state is a quasiprobability distribution over the phase space7 associated to that space. This construction,
particularly for the case of finite-dimensional Hilbert spaces, is described in [11, 13], whose approach we
follow. Before doing so, we consider one further strengthening of the result. Up to this point, our source
category in the operational model has been the category FHilb. For this result, we will instead consider
the category CP*[FHilb] of finite-dimensional C∗ algebras and CP maps, corresponding to “mixed-state
quantum mechanics” (in contrast to FHilb which models “pure-state quantum mechanics”). Just like
FHilb, this is still an operational category having C2 as the distinguishing object, Ω = [0,1] as the set of
abstract probabilities and the Born rule as the evaluation map.

One could ask why we haven’t used this category for the previous results. The reason is that any
operational model having CP*[FHilb] as the source category is preparation non-contextual [32]. This
means that the measure over ontic states that is assigned to a density matrix is independent of the ensem-
ble that produced that density matrix. A functor naturally enforces this condition. However, as is shown

7Loosely speaking, phase space is the space of all possible position and momenta for a quantum system. See [11] for a
description of the concept in the case of finite-dimensional systems.
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in [32], there does not exist a preparation non-contextual ontological model for quantum mechanics.
Thus, operational models CP*[FHilb]→ BoRel are implicitly ruled out. Our next result shows that if the
target category is QBoRel, then it is in fact possible to have an operational model even if this model is
preparation non-contextual8.

Theorem 24. There is an epistemic operational model CP*[FHilb]→ QBoRel. It is in fact maximally
epistemic up to a factor, in that (1) holds up to a multiplicative constant.

Proof. We may without loss of generality restrict to C*-algebras of odd dimension, by considering the
functor CP*[FHilb]→ CP*[FHilb] that maps C*-algebras of odd dimension to themselves, C*-algebras
A of even dimension to A⊕C; on morphisms, it embeds a completely map into the top-left corner of a
block matrix whose other entries are zero. Furthermore, extending by direct sums, we may restrict to
C*-algebras Mn of all n-by-n matrices for odd n.

Our construction starts with, for each odd number n, a family Λn of n2 many n-by-n matrices with
the following properties:

1. σ = σ† for each σ ∈ Λn;

2. Tr(σ) = 1 and σ2 = 1 for each σ ∈ Λn;

3. Tr(στ) = 0 for distinct σ ,τ ∈ Λn.

We will see later that such a family indeed exists. Observe that Λn is an orthonormal basis for Mn under
the Hilbert-Schmidt inner product. We may read the fact that any completely positive map f : Mm→Mn

is completely determined by its action on Λm, as saying that the effect of a quantum channel is completely
determined by how it acts on a tomographically complete set of observables. Thus it is completely
determined by its transfer matrix fi j = Tr(σn

i f (σm
j ))/m. Note that the dimension of the transfer matrix

is n2×m2.
Suppose for a minute that f : Mm →Mn implements a function f ′ : {1, . . . ,m2} → {1, . . . ,n2} via

fi j = δ f ′(i), j; we call such a map f a point channel. If g : Mn→Mp is another point channel, it follows
from properties 2 and 3 that:

(g◦ f )i j = Tr(σ p
j σ

p
g′( f ′(i)))/p = δ j,g′( f ′(i))

=
n2

∑
k=1

δ j,g′(k)δk, f ′(i) =
1

np

n2

∑
k=1

Tr(σ p
j σ

p
f ′(k))Tr(σm

k σ
m
f ′(i)) =

n2

∑
k=1

gik fk j.

Because any channel f is a normalised linear combination of point channels, it follows that the matrix of
g◦ f of a composition is the multiplication of the matrices of g and f .

Next, the fact that Λn is an orthonormal basis implies that any density matrix ρ ∈ Mn is deter-
mined by the coefficients vi(ρ) = Tr(ρσi)/n as ρ = ∑vi(ρ)σi. Because Tr(ρσi) is the expectation
value of σi when measuring the state ρ , in fact −n ≤ vi(ρ) ≤ n. We will regard the normalised vector
v(ρ) = (v1(ρ), . . . ,vn(ρ))/n as the quasiprobability distribution associated to the state ρ , and more gen-
erally the normalised matrix fi j as the stochastic map associated to the channel f . That is, the functor
F : CP*[FHilb]→ QSRel sends an object Mn to the set Λn under the discrete σ -algebra, and it sends a
morphism f : Mm→Mn to the signed Markov kernel F f : Λm×ΣΛn → [−1,1] given by

F f (σ ,W ) = ∑
k∈W

(( fi j)v(σ))k,

8A similar result was shown in [34] for the case when the target category consists of finite sets and stochastic maps.
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where for ease of notation we pretended that W contained indices of matrices from Λn rather than the
matrices themselves. Intuitively, the map F f takes an input quasiprobability vector, applies the transfer
matrix fi j, and thus obtains an output quasiprobability vector.

Observe that indeed f (−,W ) : Λm → [−1,1] is a bounded measurable function, and that indeed
f (σ ,−) : ΣΛn → [−1,1] is a signed measure. Condition 2 ensures that the quasiprobability distribu-
tions are normalised. Thus F is well-defined. It is a functor, because, as we have seen, composition is
preserved when moving from morphisms to their transfer matrices.

We interpret this functor as assigning Wigner functions to quantum states. Specifically, the
quasiprobability vector v(ρ) is the Wigner function associated to the state ρ . These quasiprobability
distributions are defined over phase space. The operators σ ∈ Λn are known as phase space point opera-
tors and are observables associated to each point in phase space. Describing them in detail is beyond the
scope of this paper, and we refer the reader to [11, 13] for the appropriate details. For our construction,
it is sufficient that such operators exist and satisfy conditions 1–3.

It remains to show that the operational model F is maximally epistemic up to a factor: that the overlap
of quantum states matches that of their Wigner functions up to a multiplicative constant. Consider two
density matrices ρ,τ ∈Mn. Their trace distance is given by

1
2

Tr(|ρ− τ|) = 1
2

n2

∑
i=1
|vi(ρ)− vi(τ)|Tr(|σi|).

Now condition 2 implies Tr(|σi|) = n, and therefore the trace distance is n
2 ∑

n2

i=1 |vi(ρ)− vi(τ)|. But this
equals the variation distance between the two Wigner functions. It follows that whenever two quantum
states have nontrivial overlap, their Wigner functions will also have nontrivial overlap.

Remark 25. The epistemic operational model of Theorem 24 is in fact monoidal when restricting to the
subcategory of CP*[FHilb] of odd-dimensional C*-algebras (and taking C3 as distinguishing object).

Proof. The tensor product of two completely positive maps f1 : Mm1 → Mn1 and f2 : Mm2 → Mn2 is
f1⊗ f2 : Mm1m2 →Mn1n2 . For odd m and n, the operators of Λm⊗Λn again satisfy properties 1–3 in the
proof of Theorem 24. Bilinearity of the tensor product thus shows that the transfer matrix of f1⊗ f2 is
the tensor product of the transfer matrices of f1 and f2.
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exists a pair of distinct quantum states that have overlapping support in their distributions over ontic
states. If |0〉 and |+〉 are two such states, then

D(µ0,µ+)< 1. (3)

Now suppose we have two agents, Alice and Bob, that independently prepare either the |0〉 or the |+〉
states and send them to a third agent, Eve. The states that Eve can possibly receive are |0〉A |0〉B,
|0〉A |+〉B, |+〉A |0〉B, and |+〉A |+〉B. By the preparation independence postulate, the ontic space asso-
ciated to these states is the product of the ontic spaces for Alice and Bob’s states and the measures will
be product measures. Using subadditivity of the variational distance, together with inequality (3) and the
fact that D(µ,ν) = D(ν ,µ), for any measures µ and ν :

D(µ00,µ0+)<1 D(µ00,µ+0)<1 (4)

D(µ++,µ0+)<1 D(µ++,µ+0)<1 (5)

What about D(µ00,µ++)? From inequality (3), we conclude that the measures associated to |0〉 and |+〉
have nontrivial overlap. But given that the measures associated to |0〉A |0〉B and |+〉A |+〉B are product
measures, this means that they will also have nontrivial overlap10:

D(µ00,µ++)< 1 (6)

Now inequalities (4)–(6) provide a subset of ontic states ∆ ∈ ΣAB, ∆ 6= /0, such that µ00(∆), µ0+(∆),
µ+0(∆), and µ++(∆) are all strictly positive. Figure 1 illustrates this fact.

⇤A
<latexit sha1_base64="oP+u5sXQ6n0r6nlM8GOl/XqAt6w=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuqGxcuKtiHtEPJZDJtaJIZkowwDP0KNy4UcevnuPNvTNtZaOuBwOGcc8m9J0g408Z1v53Syura+kZ5s7K1vbO7V90/aOs4VYS2SMxj1Q2wppxJ2jLMcNpNFMUi4LQTjG+mfueJKs1i+WCyhPoCDyWLGMHGSo/9OxsN8eBqUK25dXcGtEy8gtSgQHNQ/eqHMUkFlYZwrHXPcxPj51gZRjidVPqppgkmYzykPUslFlT7+WzhCTqxSoiiWNknDZqpvydyLLTORGCTApuRXvSm4n9eLzXRpZ8zmaSGSjL/KEo5MjGaXo9CpigxPLMEE8XsroiMsMLE2I4qtgRv8eRl0j6re27duz+vNa6LOspwBMdwCh5cQANuoQktICDgGV7hzVHOi/PufMyjJaeYOYQ/cD5/AE2vkBE=</latexit><latexit sha1_base64="oP+u5sXQ6n0r6nlM8GOl/XqAt6w=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuqGxcuKtiHtEPJZDJtaJIZkowwDP0KNy4UcevnuPNvTNtZaOuBwOGcc8m9J0g408Z1v53Syura+kZ5s7K1vbO7V90/aOs4VYS2SMxj1Q2wppxJ2jLMcNpNFMUi4LQTjG+mfueJKs1i+WCyhPoCDyWLGMHGSo/9OxsN8eBqUK25dXcGtEy8gtSgQHNQ/eqHMUkFlYZwrHXPcxPj51gZRjidVPqppgkmYzykPUslFlT7+WzhCTqxSoiiWNknDZqpvydyLLTORGCTApuRXvSm4n9eLzXRpZ8zmaSGSjL/KEo5MjGaXo9CpigxPLMEE8XsroiMsMLE2I4qtgRv8eRl0j6re27duz+vNa6LOspwBMdwCh5cQANuoQktICDgGV7hzVHOi/PufMyjJaeYOYQ/cD5/AE2vkBE=</latexit><latexit sha1_base64="oP+u5sXQ6n0r6nlM8GOl/XqAt6w=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuqGxcuKtiHtEPJZDJtaJIZkowwDP0KNy4UcevnuPNvTNtZaOuBwOGcc8m9J0g408Z1v53Syura+kZ5s7K1vbO7V90/aOs4VYS2SMxj1Q2wppxJ2jLMcNpNFMUi4LQTjG+mfueJKs1i+WCyhPoCDyWLGMHGSo/9OxsN8eBqUK25dXcGtEy8gtSgQHNQ/eqHMUkFlYZwrHXPcxPj51gZRjidVPqppgkmYzykPUslFlT7+WzhCTqxSoiiWNknDZqpvydyLLTORGCTApuRXvSm4n9eLzXRpZ8zmaSGSjL/KEo5MjGaXo9CpigxPLMEE8XsroiMsMLE2I4qtgRv8eRl0j6re27duz+vNa6LOspwBMdwCh5cQANuoQktICDgGV7hzVHOi/PufMyjJaeYOYQ/cD5/AE2vkBE=</latexit><latexit sha1_base64="oP+u5sXQ6n0r6nlM8GOl/XqAt6w=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuqGxcuKtiHtEPJZDJtaJIZkowwDP0KNy4UcevnuPNvTNtZaOuBwOGcc8m9J0g408Z1v53Syura+kZ5s7K1vbO7V90/aOs4VYS2SMxj1Q2wppxJ2jLMcNpNFMUi4LQTjG+mfueJKs1i+WCyhPoCDyWLGMHGSo/9OxsN8eBqUK25dXcGtEy8gtSgQHNQ/eqHMUkFlYZwrHXPcxPj51gZRjidVPqppgkmYzykPUslFlT7+WzhCTqxSoiiWNknDZqpvydyLLTORGCTApuRXvSm4n9eLzXRpZ8zmaSGSjL/KEo5MjGaXo9CpigxPLMEE8XsroiMsMLE2I4qtgRv8eRl0j6re27duz+vNa6LOspwBMdwCh5cQANuoQktICDgGV7hzVHOi/PufMyjJaeYOYQ/cD5/AE2vkBE=</latexit>

⇤B
<latexit sha1_base64="t0UhVmJHEYlmqHF60Gtur/hlq6M=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMtSNy5cVLAPaYeSyWTa0CQzJBmhDP0KNy4UcevnuPNvTKez0NYDgcM555J7T5Bwpo3rfjultfWNza3ydmVnd2//oHp41NFxqghtk5jHqhdgTTmTtG2Y4bSXKIpFwGk3mNzM/e4TVZrF8sFME+oLPJIsYgQbKz0O7mw0xMPmsFpz624OtEq8gtSgQGtY/RqEMUkFlYZwrHXfcxPjZ1gZRjidVQappgkmEzyifUslFlT7Wb7wDJ1ZJURRrOyTBuXq74kMC62nIrBJgc1YL3tz8T+vn5ro2s+YTFJDJVl8FKUcmRjNr0chU5QYPrUEE8XsroiMscLE2I4qtgRv+eRV0rmoe27du7+sNZpFHWU4gVM4Bw+uoAG30II2EBDwDK/w5ijnxXl3PhbRklPMHMMfOJ8/TzOQEg==</latexit><latexit sha1_base64="t0UhVmJHEYlmqHF60Gtur/hlq6M=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMtSNy5cVLAPaYeSyWTa0CQzJBmhDP0KNy4UcevnuPNvTKez0NYDgcM555J7T5Bwpo3rfjultfWNza3ydmVnd2//oHp41NFxqghtk5jHqhdgTTmTtG2Y4bSXKIpFwGk3mNzM/e4TVZrF8sFME+oLPJIsYgQbKz0O7mw0xMPmsFpz624OtEq8gtSgQGtY/RqEMUkFlYZwrHXfcxPjZ1gZRjidVQappgkmEzyifUslFlT7Wb7wDJ1ZJURRrOyTBuXq74kMC62nIrBJgc1YL3tz8T+vn5ro2s+YTFJDJVl8FKUcmRjNr0chU5QYPrUEE8XsroiMscLE2I4qtgRv+eRV0rmoe27du7+sNZpFHWU4gVM4Bw+uoAG30II2EBDwDK/w5ijnxXl3PhbRklPMHMMfOJ8/TzOQEg==</latexit><latexit sha1_base64="t0UhVmJHEYlmqHF60Gtur/hlq6M=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMtSNy5cVLAPaYeSyWTa0CQzJBmhDP0KNy4UcevnuPNvTKez0NYDgcM555J7T5Bwpo3rfjultfWNza3ydmVnd2//oHp41NFxqghtk5jHqhdgTTmTtG2Y4bSXKIpFwGk3mNzM/e4TVZrF8sFME+oLPJIsYgQbKz0O7mw0xMPmsFpz624OtEq8gtSgQGtY/RqEMUkFlYZwrHXfcxPjZ1gZRjidVQappgkmEzyifUslFlT7Wb7wDJ1ZJURRrOyTBuXq74kMC62nIrBJgc1YL3tz8T+vn5ro2s+YTFJDJVl8FKUcmRjNr0chU5QYPrUEE8XsroiMscLE2I4qtgRv+eRV0rmoe27du7+sNZpFHWU4gVM4Bw+uoAG30II2EBDwDK/w5ijnxXl3PhbRklPMHMMfOJ8/TzOQEg==</latexit><latexit sha1_base64="t0UhVmJHEYlmqHF60Gtur/hlq6M=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMtSNy5cVLAPaYeSyWTa0CQzJBmhDP0KNy4UcevnuPNvTKez0NYDgcM555J7T5Bwpo3rfjultfWNza3ydmVnd2//oHp41NFxqghtk5jHqhdgTTmTtG2Y4bSXKIpFwGk3mNzM/e4TVZrF8sFME+oLPJIsYgQbKz0O7mw0xMPmsFpz624OtEq8gtSgQGtY/RqEMUkFlYZwrHXfcxPjZ1gZRjidVQappgkmEzyifUslFlT7Wb7wDJ1ZJURRrOyTBuXq74kMC62nIrBJgc1YL3tz8T+vn5ro2s+YTFJDJVl8FKUcmRjNr0chU5QYPrUEE8XsroiMscLE2I4qtgRv+eRV0rmoe27du7+sNZpFHWU4gVM4Bw+uoAG30II2EBDwDK/w5ijnxXl3PhbRklPMHMMfOJ8/TzOQEg==</latexit>

|+iA
<latexit sha1_base64="VKXyo69PxqziMVsiw3h9c8rvBng=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBZBEEoigp6k4sVjBfsBTSib7aRdutmE3Y1Qav+GFw+KePXPePPfuG1z0NYHA4/3ZpiZF6aCa+O6305hZXVtfaO4Wdra3tndK+8fNHWSKYYNlohEtUOqUXCJDcONwHaqkMahwFY4vJ36rUdUmifywYxSDGLalzzijBor+U9nxFdU9gV2b7rlilt1ZyDLxMtJBXLUu+Uvv5ewLEZpmKBadzw3NcGYKsOZwEnJzzSmlA1pHzuWShqjDsazmyfkxCo9EiXKljRkpv6eGNNY61Ec2s6YmoFe9Kbif14nM9FVMOYyzQxKNl8UZYKYhEwDID2ukBkxsoQyxe2thA2ooszYmEo2BG/x5WXSPK96btW7v6jUrvM4inAEx3AKHlxCDe6gDg1gkMIzvMKbkzkvzrvzMW8tOPnMIfyB8/kDR1yRKg==</latexit><latexit sha1_base64="VKXyo69PxqziMVsiw3h9c8rvBng=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBZBEEoigp6k4sVjBfsBTSib7aRdutmE3Y1Qav+GFw+KePXPePPfuG1z0NYHA4/3ZpiZF6aCa+O6305hZXVtfaO4Wdra3tndK+8fNHWSKYYNlohEtUOqUXCJDcONwHaqkMahwFY4vJ36rUdUmifywYxSDGLalzzijBor+U9nxFdU9gV2b7rlilt1ZyDLxMtJBXLUu+Uvv5ewLEZpmKBadzw3NcGYKsOZwEnJzzSmlA1pHzuWShqjDsazmyfkxCo9EiXKljRkpv6eGNNY61Ec2s6YmoFe9Kbif14nM9FVMOYyzQxKNl8UZYKYhEwDID2ukBkxsoQyxe2thA2ooszYmEo2BG/x5WXSPK96btW7v6jUrvM4inAEx3AKHlxCDe6gDg1gkMIzvMKbkzkvzrvzMW8tOPnMIfyB8/kDR1yRKg==</latexit><latexit sha1_base64="VKXyo69PxqziMVsiw3h9c8rvBng=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBZBEEoigp6k4sVjBfsBTSib7aRdutmE3Y1Qav+GFw+KePXPePPfuG1z0NYHA4/3ZpiZF6aCa+O6305hZXVtfaO4Wdra3tndK+8fNHWSKYYNlohEtUOqUXCJDcONwHaqkMahwFY4vJ36rUdUmifywYxSDGLalzzijBor+U9nxFdU9gV2b7rlilt1ZyDLxMtJBXLUu+Uvv5ewLEZpmKBadzw3NcGYKsOZwEnJzzSmlA1pHzuWShqjDsazmyfkxCo9EiXKljRkpv6eGNNY61Ec2s6YmoFe9Kbif14nM9FVMOYyzQxKNl8UZYKYhEwDID2ukBkxsoQyxe2thA2ooszYmEo2BG/x5WXSPK96btW7v6jUrvM4inAEx3AKHlxCDe6gDg1gkMIzvMKbkzkvzrvzMW8tOPnMIfyB8/kDR1yRKg==</latexit><latexit sha1_base64="VKXyo69PxqziMVsiw3h9c8rvBng=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBZBEEoigp6k4sVjBfsBTSib7aRdutmE3Y1Qav+GFw+KePXPePPfuG1z0NYHA4/3ZpiZF6aCa+O6305hZXVtfaO4Wdra3tndK+8fNHWSKYYNlohEtUOqUXCJDcONwHaqkMahwFY4vJ36rUdUmifywYxSDGLalzzijBor+U9nxFdU9gV2b7rlilt1ZyDLxMtJBXLUu+Uvv5ewLEZpmKBadzw3NcGYKsOZwEnJzzSmlA1pHzuWShqjDsazmyfkxCo9EiXKljRkpv6eGNNY61Ec2s6YmoFe9Kbif14nM9FVMOYyzQxKNl8UZYKYhEwDID2ukBkxsoQyxe2thA2ooszYmEo2BG/x5WXSPK96btW7v6jUrvM4inAEx3AKHlxCDe6gDg1gkMIzvMKbkzkvzrvzMW8tOPnMIfyB8/kDR1yRKg==</latexit>

|+iB
<latexit sha1_base64="S4BzBkTRCzc9qfEgpfR+2X3C6a8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBZBEEoigp6k6MVjBfsBTSib7aRdutmE3Y1Qav+GFw+KePXPePPfuG1z0NYHA4/3ZpiZF6aCa+O6305hZXVtfaO4Wdra3tndK+8fNHWSKYYNlohEtUOqUXCJDcONwHaqkMahwFY4vJ36rUdUmifywYxSDGLalzzijBor+U9nxFdU9gV2b7rlilt1ZyDLxMtJBXLUu+Uvv5ewLEZpmKBadzw3NcGYKsOZwEnJzzSmlA1pHzuWShqjDsazmyfkxCo9EiXKljRkpv6eGNNY61Ec2s6YmoFe9Kbif14nM9FVMOYyzQxKNl8UZYKYhEwDID2ukBkxsoQyxe2thA2ooszYmEo2BG/x5WXSPK96btW7v6jUrvM4inAEx3AKHlxCDe6gDg1gkMIzvMKbkzkvzrvzMW8tOPnMIfyB8/kDSOCRKw==</latexit><latexit sha1_base64="S4BzBkTRCzc9qfEgpfR+2X3C6a8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBZBEEoigp6k6MVjBfsBTSib7aRdutmE3Y1Qav+GFw+KePXPePPfuG1z0NYHA4/3ZpiZF6aCa+O6305hZXVtfaO4Wdra3tndK+8fNHWSKYYNlohEtUOqUXCJDcONwHaqkMahwFY4vJ36rUdUmifywYxSDGLalzzijBor+U9nxFdU9gV2b7rlilt1ZyDLxMtJBXLUu+Uvv5ewLEZpmKBadzw3NcGYKsOZwEnJzzSmlA1pHzuWShqjDsazmyfkxCo9EiXKljRkpv6eGNNY61Ec2s6YmoFe9Kbif14nM9FVMOYyzQxKNl8UZYKYhEwDID2ukBkxsoQyxe2thA2ooszYmEo2BG/x5WXSPK96btW7v6jUrvM4inAEx3AKHlxCDe6gDg1gkMIzvMKbkzkvzrvzMW8tOPnMIfyB8/kDSOCRKw==</latexit><latexit sha1_base64="S4BzBkTRCzc9qfEgpfR+2X3C6a8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBZBEEoigp6k6MVjBfsBTSib7aRdutmE3Y1Qav+GFw+KePXPePPfuG1z0NYHA4/3ZpiZF6aCa+O6305hZXVtfaO4Wdra3tndK+8fNHWSKYYNlohEtUOqUXCJDcONwHaqkMahwFY4vJ36rUdUmifywYxSDGLalzzijBor+U9nxFdU9gV2b7rlilt1ZyDLxMtJBXLUu+Uvv5ewLEZpmKBadzw3NcGYKsOZwEnJzzSmlA1pHzuWShqjDsazmyfkxCo9EiXKljRkpv6eGNNY61Ec2s6YmoFe9Kbif14nM9FVMOYyzQxKNl8UZYKYhEwDID2ukBkxsoQyxe2thA2ooszYmEo2BG/x5WXSPK96btW7v6jUrvM4inAEx3AKHlxCDe6gDg1gkMIzvMKbkzkvzrvzMW8tOPnMIfyB8/kDSOCRKw==</latexit><latexit sha1_base64="S4BzBkTRCzc9qfEgpfR+2X3C6a8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBZBEEoigp6k6MVjBfsBTSib7aRdutmE3Y1Qav+GFw+KePXPePPfuG1z0NYHA4/3ZpiZF6aCa+O6305hZXVtfaO4Wdra3tndK+8fNHWSKYYNlohEtUOqUXCJDcONwHaqkMahwFY4vJ36rUdUmifywYxSDGLalzzijBor+U9nxFdU9gV2b7rlilt1ZyDLxMtJBXLUu+Uvv5ewLEZpmKBadzw3NcGYKsOZwEnJzzSmlA1pHzuWShqjDsazmyfkxCo9EiXKljRkpv6eGNNY61Ec2s6YmoFe9Kbif14nM9FVMOYyzQxKNl8UZYKYhEwDID2ukBkxsoQyxe2thA2ooszYmEo2BG/x5WXSPK96btW7v6jUrvM4inAEx3AKHlxCDe6gDg1gkMIzvMKbkzkvzrvzMW8tOPnMIfyB8/kDSOCRKw==</latexit>

|0iA
<latexit sha1_base64="hP4dmxotTARvh2arJzMEtuLsQZg=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JNUvHisYGuhCWWznbRLN5uwuxFK7N/w4kERr/4Zb/4bt20O2vpg4PHeDDPzwlRwbVz32ymtrK6tb5Q3K1vbO7t71f2Dtk4yxbDFEpGoTkg1Ci6xZbgR2EkV0jgU+BCObqb+wyMqzRN5b8YpBjEdSB5xRo2V/CeX+IrKgcDeda9ac+vuDGSZeAWpQYFmr/rl9xOWxSgNE1TrruemJsipMpwJnFT8TGNK2YgOsGuppDHqIJ/dPCEnVumTKFG2pCEz9fdETmOtx3FoO2NqhnrRm4r/ed3MRJdBzmWaGZRsvijKBDEJmQZA+lwhM2JsCWWK21sJG1JFmbExVWwI3uLLy6R9Vvfcund3XmtcFXGU4QiO4RQ8uIAG3EITWsAghWd4hTcnc16cd+dj3lpyiplD+APn8wdPIpEv</latexit><latexit sha1_base64="hP4dmxotTARvh2arJzMEtuLsQZg=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JNUvHisYGuhCWWznbRLN5uwuxFK7N/w4kERr/4Zb/4bt20O2vpg4PHeDDPzwlRwbVz32ymtrK6tb5Q3K1vbO7t71f2Dtk4yxbDFEpGoTkg1Ci6xZbgR2EkV0jgU+BCObqb+wyMqzRN5b8YpBjEdSB5xRo2V/CeX+IrKgcDeda9ac+vuDGSZeAWpQYFmr/rl9xOWxSgNE1TrruemJsipMpwJnFT8TGNK2YgOsGuppDHqIJ/dPCEnVumTKFG2pCEz9fdETmOtx3FoO2NqhnrRm4r/ed3MRJdBzmWaGZRsvijKBDEJmQZA+lwhM2JsCWWK21sJG1JFmbExVWwI3uLLy6R9Vvfcund3XmtcFXGU4QiO4RQ8uIAG3EITWsAghWd4hTcnc16cd+dj3lpyiplD+APn8wdPIpEv</latexit><latexit sha1_base64="hP4dmxotTARvh2arJzMEtuLsQZg=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JNUvHisYGuhCWWznbRLN5uwuxFK7N/w4kERr/4Zb/4bt20O2vpg4PHeDDPzwlRwbVz32ymtrK6tb5Q3K1vbO7t71f2Dtk4yxbDFEpGoTkg1Ci6xZbgR2EkV0jgU+BCObqb+wyMqzRN5b8YpBjEdSB5xRo2V/CeX+IrKgcDeda9ac+vuDGSZeAWpQYFmr/rl9xOWxSgNE1TrruemJsipMpwJnFT8TGNK2YgOsGuppDHqIJ/dPCEnVumTKFG2pCEz9fdETmOtx3FoO2NqhnrRm4r/ed3MRJdBzmWaGZRsvijKBDEJmQZA+lwhM2JsCWWK21sJG1JFmbExVWwI3uLLy6R9Vvfcund3XmtcFXGU4QiO4RQ8uIAG3EITWsAghWd4hTcnc16cd+dj3lpyiplD+APn8wdPIpEv</latexit><latexit sha1_base64="hP4dmxotTARvh2arJzMEtuLsQZg=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JNUvHisYGuhCWWznbRLN5uwuxFK7N/w4kERr/4Zb/4bt20O2vpg4PHeDDPzwlRwbVz32ymtrK6tb5Q3K1vbO7t71f2Dtk4yxbDFEpGoTkg1Ci6xZbgR2EkV0jgU+BCObqb+wyMqzRN5b8YpBjEdSB5xRo2V/CeX+IrKgcDeda9ac+vuDGSZeAWpQYFmr/rl9xOWxSgNE1TrruemJsipMpwJnFT8TGNK2YgOsGuppDHqIJ/dPCEnVumTKFG2pCEz9fdETmOtx3FoO2NqhnrRm4r/ed3MRJdBzmWaGZRsvijKBDEJmQZA+lwhM2JsCWWK21sJG1JFmbExVWwI3uLLy6R9Vvfcund3XmtcFXGU4QiO4RQ8uIAG3EITWsAghWd4hTcnc16cd+dj3lpyiplD+APn8wdPIpEv</latexit>

|0iB
<latexit sha1_base64="vpURpZnf97m8lzPBKw7LFq9vi2A=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMUvXisYGuhCWWznbRLN5uwuxFK7N/w4kERr/4Zb/4bt20O2vpg4PHeDDPzwlRwbVz32ymtrK6tb5Q3K1vbO7t71f2Dtk4yxbDFEpGoTkg1Ci6xZbgR2EkV0jgU+BCObqb+wyMqzRN5b8YpBjEdSB5xRo2V/CeX+IrKgcDeda9ac+vuDGSZeAWpQYFmr/rl9xOWxSgNE1TrruemJsipMpwJnFT8TGNK2YgOsGuppDHqIJ/dPCEnVumTKFG2pCEz9fdETmOtx3FoO2NqhnrRm4r/ed3MRJdBzmWaGZRsvijKBDEJmQZA+lwhM2JsCWWK21sJG1JFmbExVWwI3uLLy6R9Vvfcund3XmtcFXGU4QiO4RQ8uIAG3EITWsAghWd4hTcnc16cd+dj3lpyiplD+APn8wdQppEw</latexit><latexit sha1_base64="vpURpZnf97m8lzPBKw7LFq9vi2A=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMUvXisYGuhCWWznbRLN5uwuxFK7N/w4kERr/4Zb/4bt20O2vpg4PHeDDPzwlRwbVz32ymtrK6tb5Q3K1vbO7t71f2Dtk4yxbDFEpGoTkg1Ci6xZbgR2EkV0jgU+BCObqb+wyMqzRN5b8YpBjEdSB5xRo2V/CeX+IrKgcDeda9ac+vuDGSZeAWpQYFmr/rl9xOWxSgNE1TrruemJsipMpwJnFT8TGNK2YgOsGuppDHqIJ/dPCEnVumTKFG2pCEz9fdETmOtx3FoO2NqhnrRm4r/ed3MRJdBzmWaGZRsvijKBDEJmQZA+lwhM2JsCWWK21sJG1JFmbExVWwI3uLLy6R9Vvfcund3XmtcFXGU4QiO4RQ8uIAG3EITWsAghWd4hTcnc16cd+dj3lpyiplD+APn8wdQppEw</latexit><latexit sha1_base64="vpURpZnf97m8lzPBKw7LFq9vi2A=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMUvXisYGuhCWWznbRLN5uwuxFK7N/w4kERr/4Zb/4bt20O2vpg4PHeDDPzwlRwbVz32ymtrK6tb5Q3K1vbO7t71f2Dtk4yxbDFEpGoTkg1Ci6xZbgR2EkV0jgU+BCObqb+wyMqzRN5b8YpBjEdSB5xRo2V/CeX+IrKgcDeda9ac+vuDGSZeAWpQYFmr/rl9xOWxSgNE1TrruemJsipMpwJnFT8TGNK2YgOsGuppDHqIJ/dPCEnVumTKFG2pCEz9fdETmOtx3FoO2NqhnrRm4r/ed3MRJdBzmWaGZRsvijKBDEJmQZA+lwhM2JsCWWK21sJG1JFmbExVWwI3uLLy6R9Vvfcund3XmtcFXGU4QiO4RQ8uIAG3EITWsAghWd4hTcnc16cd+dj3lpyiplD+APn8wdQppEw</latexit><latexit sha1_base64="vpURpZnf97m8lzPBKw7LFq9vi2A=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMUvXisYGuhCWWznbRLN5uwuxFK7N/w4kERr/4Zb/4bt20O2vpg4PHeDDPzwlRwbVz32ymtrK6tb5Q3K1vbO7t71f2Dtk4yxbDFEpGoTkg1Ci6xZbgR2EkV0jgU+BCObqb+wyMqzRN5b8YpBjEdSB5xRo2V/CeX+IrKgcDeda9ac+vuDGSZeAWpQYFmr/rl9xOWxSgNE1TrruemJsipMpwJnFT8TGNK2YgOsGuppDHqIJ/dPCEnVumTKFG2pCEz9fdETmOtx3FoO2NqhnrRm4r/ed3MRJdBzmWaGZRsvijKBDEJmQZA+lwhM2JsCWWK21sJG1JFmbExVWwI3uLLy6R9Vvfcund3XmtcFXGU4QiO4RQ8uIAG3EITWsAghWd4hTcnc16cd+dj3lpyiplD+APn8wdQppEw</latexit>

�
<latexit sha1_base64="D5zL3xAkB1vDV+PySPDnuLiLi6U=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9CQBPXiMYB6QLGF20puMmZ1ZZmaFEPIPXjwo4tX/8ebfOEn2oIkFDUVVN91dUSq4sb7/7a2srq1vbBa2its7u3v7pYPDhlGZZlhnSijdiqhBwSXWLbcCW6lGmkQCm9HwZuo3n1AbruSDHaUYJrQvecwZtU5qdG5RWNotlf2KPwNZJkFOypCj1i19dXqKZQlKywQ1ph34qQ3HVFvOBE6KncxgStmQ9rHtqKQJmnA8u3ZCTp3SI7HSrqQlM/X3xJgmxoySyHUm1A7MojcV//PamY2vwjGXaWZRsvmiOBPEKjJ9nfS4RmbFyBHKNHe3EjagmjLrAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8ecp78d69j3nripfPHMEfeJ8/X1iO+A==</latexit><latexit sha1_base64="D5zL3xAkB1vDV+PySPDnuLiLi6U=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9CQBPXiMYB6QLGF20puMmZ1ZZmaFEPIPXjwo4tX/8ebfOEn2oIkFDUVVN91dUSq4sb7/7a2srq1vbBa2its7u3v7pYPDhlGZZlhnSijdiqhBwSXWLbcCW6lGmkQCm9HwZuo3n1AbruSDHaUYJrQvecwZtU5qdG5RWNotlf2KPwNZJkFOypCj1i19dXqKZQlKywQ1ph34qQ3HVFvOBE6KncxgStmQ9rHtqKQJmnA8u3ZCTp3SI7HSrqQlM/X3xJgmxoySyHUm1A7MojcV//PamY2vwjGXaWZRsvmiOBPEKjJ9nfS4RmbFyBHKNHe3EjagmjLrAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8ecp78d69j3nripfPHMEfeJ8/X1iO+A==</latexit><latexit sha1_base64="D5zL3xAkB1vDV+PySPDnuLiLi6U=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9CQBPXiMYB6QLGF20puMmZ1ZZmaFEPIPXjwo4tX/8ebfOEn2oIkFDUVVN91dUSq4sb7/7a2srq1vbBa2its7u3v7pYPDhlGZZlhnSijdiqhBwSXWLbcCW6lGmkQCm9HwZuo3n1AbruSDHaUYJrQvecwZtU5qdG5RWNotlf2KPwNZJkFOypCj1i19dXqKZQlKywQ1ph34qQ3HVFvOBE6KncxgStmQ9rHtqKQJmnA8u3ZCTp3SI7HSrqQlM/X3xJgmxoySyHUm1A7MojcV//PamY2vwjGXaWZRsvmiOBPEKjJ9nfS4RmbFyBHKNHe3EjagmjLrAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8ecp78d69j3nripfPHMEfeJ8/X1iO+A==</latexit><latexit sha1_base64="D5zL3xAkB1vDV+PySPDnuLiLi6U=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9CQBPXiMYB6QLGF20puMmZ1ZZmaFEPIPXjwo4tX/8ebfOEn2oIkFDUVVN91dUSq4sb7/7a2srq1vbBa2its7u3v7pYPDhlGZZlhnSijdiqhBwSXWLbcCW6lGmkQCm9HwZuo3n1AbruSDHaUYJrQvecwZtU5qdG5RWNotlf2KPwNZJkFOypCj1i19dXqKZQlKywQ1ph34qQ3HVFvOBE6KncxgStmQ9rHtqKQJmnA8u3ZCTp3SI7HSrqQlM/X3xJgmxoySyHUm1A7MojcV//PamY2vwjGXaWZRsvmiOBPEKjJ9nfS4RmbFyBHKNHe3EjagmjLrAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8ecp78d69j3nripfPHMEfeJ8/X1iO+A==</latexit>

|0iA|0iB
<latexit sha1_base64="3EkuPJji9hlXvx/Pposl4M4bgag=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEVyURQVdSdeOygn1AG8JketMOnUzCzEQosbjxV9y4UMStX+HOv3HaZlFbD1w4c869zL0nSDhT2nF+rMLS8srqWnG9tLG5tb1j7+41VJxKCnUa81i2AqKAMwF1zTSHViKBRAGHZjC4GfvNB5CKxeJeDxPwItITLGSUaCP59sGjgzuSiB4H/wrPPK59u+xUnAnwInFzUkY5ar793enGNI1AaMqJUm3XSbSXEakZ5TAqdVIFCaED0oO2oYJEoLxscsIIHxuli8NYmhIaT9TZiYxESg2jwHRGRPfVvDcW//PaqQ4vvIyJJNUg6PSjMOVYx3icB+4yCVTzoSGESmZ2xbRPJKHapFYyIbjzJy+SxmnFdSru3Vm5epnHUUSH6AidIBedoyq6RTVURxQ9oRf0ht6tZ+vV+rA+p60FK5/ZR39gff0Cnf6WRA==</latexit><latexit sha1_base64="3EkuPJji9hlXvx/Pposl4M4bgag=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEVyURQVdSdeOygn1AG8JketMOnUzCzEQosbjxV9y4UMStX+HOv3HaZlFbD1w4c869zL0nSDhT2nF+rMLS8srqWnG9tLG5tb1j7+41VJxKCnUa81i2AqKAMwF1zTSHViKBRAGHZjC4GfvNB5CKxeJeDxPwItITLGSUaCP59sGjgzuSiB4H/wrPPK59u+xUnAnwInFzUkY5ar793enGNI1AaMqJUm3XSbSXEakZ5TAqdVIFCaED0oO2oYJEoLxscsIIHxuli8NYmhIaT9TZiYxESg2jwHRGRPfVvDcW//PaqQ4vvIyJJNUg6PSjMOVYx3icB+4yCVTzoSGESmZ2xbRPJKHapFYyIbjzJy+SxmnFdSru3Vm5epnHUUSH6AidIBedoyq6RTVURxQ9oRf0ht6tZ+vV+rA+p60FK5/ZR39gff0Cnf6WRA==</latexit><latexit sha1_base64="3EkuPJji9hlXvx/Pposl4M4bgag=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEVyURQVdSdeOygn1AG8JketMOnUzCzEQosbjxV9y4UMStX+HOv3HaZlFbD1w4c869zL0nSDhT2nF+rMLS8srqWnG9tLG5tb1j7+41VJxKCnUa81i2AqKAMwF1zTSHViKBRAGHZjC4GfvNB5CKxeJeDxPwItITLGSUaCP59sGjgzuSiB4H/wrPPK59u+xUnAnwInFzUkY5ar793enGNI1AaMqJUm3XSbSXEakZ5TAqdVIFCaED0oO2oYJEoLxscsIIHxuli8NYmhIaT9TZiYxESg2jwHRGRPfVvDcW//PaqQ4vvIyJJNUg6PSjMOVYx3icB+4yCVTzoSGESmZ2xbRPJKHapFYyIbjzJy+SxmnFdSru3Vm5epnHUUSH6AidIBedoyq6RTVURxQ9oRf0ht6tZ+vV+rA+p60FK5/ZR39gff0Cnf6WRA==</latexit><latexit sha1_base64="3EkuPJji9hlXvx/Pposl4M4bgag=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEVyURQVdSdeOygn1AG8JketMOnUzCzEQosbjxV9y4UMStX+HOv3HaZlFbD1w4c869zL0nSDhT2nF+rMLS8srqWnG9tLG5tb1j7+41VJxKCnUa81i2AqKAMwF1zTSHViKBRAGHZjC4GfvNB5CKxeJeDxPwItITLGSUaCP59sGjgzuSiB4H/wrPPK59u+xUnAnwInFzUkY5ar793enGNI1AaMqJUm3XSbSXEakZ5TAqdVIFCaED0oO2oYJEoLxscsIIHxuli8NYmhIaT9TZiYxESg2jwHRGRPfVvDcW//PaqQ4vvIyJJNUg6PSjMOVYx3icB+4yCVTzoSGESmZ2xbRPJKHapFYyIbjzJy+SxmnFdSru3Vm5epnHUUSH6AidIBedoyq6RTVURxQ9oRf0ht6tZ+vV+rA+p60FK5/ZR39gff0Cnf6WRA==</latexit>

|0iA|+iB
<latexit sha1_base64="VAA1ouk8SRu08HdBv3SjD5To2jM=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEQSgzIuhKqm5cVrAPaIeSSe+0oZnMkGSEMi1u/BU3LhRx61e4829M20G09cCFk3PuJfceP+ZMacf5snILi0vLK/nVwtr6xuaWvb1TU1EiKVRpxCPZ8IkCzgRUNdMcGrEEEvoc6n7/euzX70EqFok7PYjBC0lXsIBRoo3UtveGDm5JIroc2pd4ePzzuGrbRafkTIDniZuRIspQadufrU5EkxCEppwo1XSdWHspkZpRDqNCK1EQE9onXWgaKkgIyksnJ4zwoVE6OIikKaHxRP09kZJQqUHom86Q6J6a9cbif14z0cG5lzIRJxoEnX4UJBzrCI/zwB0mgWo+MIRQycyumPaIJFSb1AomBHf25HlSOym5Tsm9PS2WL7I48mgfHaAj5KIzVEY3qIKqiKIH9IRe0Kv1aD1bb9b7tDVnZTO76A+sj2+WOJY/</latexit><latexit sha1_base64="VAA1ouk8SRu08HdBv3SjD5To2jM=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEQSgzIuhKqm5cVrAPaIeSSe+0oZnMkGSEMi1u/BU3LhRx61e4829M20G09cCFk3PuJfceP+ZMacf5snILi0vLK/nVwtr6xuaWvb1TU1EiKVRpxCPZ8IkCzgRUNdMcGrEEEvoc6n7/euzX70EqFok7PYjBC0lXsIBRoo3UtveGDm5JIroc2pd4ePzzuGrbRafkTIDniZuRIspQadufrU5EkxCEppwo1XSdWHspkZpRDqNCK1EQE9onXWgaKkgIyksnJ4zwoVE6OIikKaHxRP09kZJQqUHom86Q6J6a9cbif14z0cG5lzIRJxoEnX4UJBzrCI/zwB0mgWo+MIRQycyumPaIJFSb1AomBHf25HlSOym5Tsm9PS2WL7I48mgfHaAj5KIzVEY3qIKqiKIH9IRe0Kv1aD1bb9b7tDVnZTO76A+sj2+WOJY/</latexit><latexit sha1_base64="VAA1ouk8SRu08HdBv3SjD5To2jM=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEQSgzIuhKqm5cVrAPaIeSSe+0oZnMkGSEMi1u/BU3LhRx61e4829M20G09cCFk3PuJfceP+ZMacf5snILi0vLK/nVwtr6xuaWvb1TU1EiKVRpxCPZ8IkCzgRUNdMcGrEEEvoc6n7/euzX70EqFok7PYjBC0lXsIBRoo3UtveGDm5JIroc2pd4ePzzuGrbRafkTIDniZuRIspQadufrU5EkxCEppwo1XSdWHspkZpRDqNCK1EQE9onXWgaKkgIyksnJ4zwoVE6OIikKaHxRP09kZJQqUHom86Q6J6a9cbif14z0cG5lzIRJxoEnX4UJBzrCI/zwB0mgWo+MIRQycyumPaIJFSb1AomBHf25HlSOym5Tsm9PS2WL7I48mgfHaAj5KIzVEY3qIKqiKIH9IRe0Kv1aD1bb9b7tDVnZTO76A+sj2+WOJY/</latexit><latexit sha1_base64="VAA1ouk8SRu08HdBv3SjD5To2jM=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEQSgzIuhKqm5cVrAPaIeSSe+0oZnMkGSEMi1u/BU3LhRx61e4829M20G09cCFk3PuJfceP+ZMacf5snILi0vLK/nVwtr6xuaWvb1TU1EiKVRpxCPZ8IkCzgRUNdMcGrEEEvoc6n7/euzX70EqFok7PYjBC0lXsIBRoo3UtveGDm5JIroc2pd4ePzzuGrbRafkTIDniZuRIspQadufrU5EkxCEppwo1XSdWHspkZpRDqNCK1EQE9onXWgaKkgIyksnJ4zwoVE6OIikKaHxRP09kZJQqUHom86Q6J6a9cbif14z0cG5lzIRJxoEnX4UJBzrCI/zwB0mgWo+MIRQycyumPaIJFSb1AomBHf25HlSOym5Tsm9PS2WL7I48mgfHaAj5KIzVEY3qIKqiKIH9IRe0Kv1aD1bb9b7tDVnZTO76A+sj2+WOJY/</latexit>

|+iA|+iB
<latexit sha1_base64="+0NTSbVm99f4emVsVo6yzZRpzfw=">AAACAnicbVDLSsNAFJ34rPUVdSVuBosgCCURQVdSdeOygn1AG8JketMOnUzCzEQosbjxV9y4UMStX+HOv3HaZlFbD1w4c869zL0nSDhT2nF+rIXFpeWV1cJacX1jc2vb3tmtqziVFGo05rFsBkQBZwJqmmkOzUQCiQIOjaB/M/IbDyAVi8W9HiTgRaQrWMgo0Uby7f3HE9yWRHQ5+Fd46nHt2yWn7IyB54mbkxLKUfXt73YnpmkEQlNOlGq5TqK9jEjNKIdhsZ0qSAjtky60DBUkAuVl4xOG+MgoHRzG0pTQeKxOT2QkUmoQBaYzIrqnZr2R+J/XSnV44WVMJKkGQScfhSnHOsajPHCHSaCaDwwhVDKzK6Y9IgnVJrWiCcGdPXme1E/LrlN2785Klcs8jgI6QIfoGLnoHFXQLaqiGqLoCb2gN/RuPVuv1of1OWldsPKZPfQH1tcvjjGWOg==</latexit><latexit sha1_base64="+0NTSbVm99f4emVsVo6yzZRpzfw=">AAACAnicbVDLSsNAFJ34rPUVdSVuBosgCCURQVdSdeOygn1AG8JketMOnUzCzEQosbjxV9y4UMStX+HOv3HaZlFbD1w4c869zL0nSDhT2nF+rIXFpeWV1cJacX1jc2vb3tmtqziVFGo05rFsBkQBZwJqmmkOzUQCiQIOjaB/M/IbDyAVi8W9HiTgRaQrWMgo0Uby7f3HE9yWRHQ5+Fd46nHt2yWn7IyB54mbkxLKUfXt73YnpmkEQlNOlGq5TqK9jEjNKIdhsZ0qSAjtky60DBUkAuVl4xOG+MgoHRzG0pTQeKxOT2QkUmoQBaYzIrqnZr2R+J/XSnV44WVMJKkGQScfhSnHOsajPHCHSaCaDwwhVDKzK6Y9IgnVJrWiCcGdPXme1E/LrlN2785Klcs8jgI6QIfoGLnoHFXQLaqiGqLoCb2gN/RuPVuv1of1OWldsPKZPfQH1tcvjjGWOg==</latexit><latexit sha1_base64="+0NTSbVm99f4emVsVo6yzZRpzfw=">AAACAnicbVDLSsNAFJ34rPUVdSVuBosgCCURQVdSdeOygn1AG8JketMOnUzCzEQosbjxV9y4UMStX+HOv3HaZlFbD1w4c869zL0nSDhT2nF+rIXFpeWV1cJacX1jc2vb3tmtqziVFGo05rFsBkQBZwJqmmkOzUQCiQIOjaB/M/IbDyAVi8W9HiTgRaQrWMgo0Uby7f3HE9yWRHQ5+Fd46nHt2yWn7IyB54mbkxLKUfXt73YnpmkEQlNOlGq5TqK9jEjNKIdhsZ0qSAjtky60DBUkAuVl4xOG+MgoHRzG0pTQeKxOT2QkUmoQBaYzIrqnZr2R+J/XSnV44WVMJKkGQScfhSnHOsajPHCHSaCaDwwhVDKzK6Y9IgnVJrWiCcGdPXme1E/LrlN2785Klcs8jgI6QIfoGLnoHFXQLaqiGqLoCb2gN/RuPVuv1of1OWldsPKZPfQH1tcvjjGWOg==</latexit><latexit sha1_base64="+0NTSbVm99f4emVsVo6yzZRpzfw=">AAACAnicbVDLSsNAFJ34rPUVdSVuBosgCCURQVdSdeOygn1AG8JketMOnUzCzEQosbjxV9y4UMStX+HOv3HaZlFbD1w4c869zL0nSDhT2nF+rIXFpeWV1cJacX1jc2vb3tmtqziVFGo05rFsBkQBZwJqmmkOzUQCiQIOjaB/M/IbDyAVi8W9HiTgRaQrWMgo0Uby7f3HE9yWRHQ5+Fd46nHt2yWn7IyB54mbkxLKUfXt73YnpmkEQlNOlGq5TqK9jEjNKIdhsZ0qSAjtky60DBUkAuVl4xOG+MgoHRzG0pTQeKxOT2QkUmoQBaYzIrqnZr2R+J/XSnV44WVMJKkGQScfhSnHOsajPHCHSaCaDwwhVDKzK6Y9IgnVJrWiCcGdPXme1E/LrlN2785Klcs8jgI6QIfoGLnoHFXQLaqiGqLoCb2gN/RuPVuv1of1OWldsPKZPfQH1tcvjjGWOg==</latexit>

|+iA|0iB
<latexit sha1_base64="vgnK3Y7+GgIUUkxfIrLI+61XREA=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEQSgzIuhKqm5cVrAPaIeSSe+0oZnMkGSEMi1u/BU3LhRx61e4829M20G09cCFk3PuJfceP+ZMacf5snILi0vLK/nVwtr6xuaWvb1TU1EiKVRpxCPZ8IkCzgRUNdMcGrEEEvoc6n7/euzX70EqFok7PYjBC0lXsIBRoo3UtveGx7gliehyaF/iofPzuGrbRafkTIDniZuRIspQadufrU5EkxCEppwo1XSdWHspkZpRDqNCK1EQE9onXWgaKkgIyksnJ4zwoVE6OIikKaHxRP09kZJQqUHom86Q6J6a9cbif14z0cG5lzIRJxoEnX4UJBzrCI/zwB0mgWo+MIRQycyumPaIJFSb1AomBHf25HlSOym5Tsm9PS2WL7I48mgfHaAj5KIzVEY3qIKqiKIH9IRe0Kv1aD1bb9b7tDVnZTO76A+sj2+V95Y/</latexit><latexit sha1_base64="vgnK3Y7+GgIUUkxfIrLI+61XREA=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEQSgzIuhKqm5cVrAPaIeSSe+0oZnMkGSEMi1u/BU3LhRx61e4829M20G09cCFk3PuJfceP+ZMacf5snILi0vLK/nVwtr6xuaWvb1TU1EiKVRpxCPZ8IkCzgRUNdMcGrEEEvoc6n7/euzX70EqFok7PYjBC0lXsIBRoo3UtveGx7gliehyaF/iofPzuGrbRafkTIDniZuRIspQadufrU5EkxCEppwo1XSdWHspkZpRDqNCK1EQE9onXWgaKkgIyksnJ4zwoVE6OIikKaHxRP09kZJQqUHom86Q6J6a9cbif14z0cG5lzIRJxoEnX4UJBzrCI/zwB0mgWo+MIRQycyumPaIJFSb1AomBHf25HlSOym5Tsm9PS2WL7I48mgfHaAj5KIzVEY3qIKqiKIH9IRe0Kv1aD1bb9b7tDVnZTO76A+sj2+V95Y/</latexit><latexit sha1_base64="vgnK3Y7+GgIUUkxfIrLI+61XREA=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEQSgzIuhKqm5cVrAPaIeSSe+0oZnMkGSEMi1u/BU3LhRx61e4829M20G09cCFk3PuJfceP+ZMacf5snILi0vLK/nVwtr6xuaWvb1TU1EiKVRpxCPZ8IkCzgRUNdMcGrEEEvoc6n7/euzX70EqFok7PYjBC0lXsIBRoo3UtveGx7gliehyaF/iofPzuGrbRafkTIDniZuRIspQadufrU5EkxCEppwo1XSdWHspkZpRDqNCK1EQE9onXWgaKkgIyksnJ4zwoVE6OIikKaHxRP09kZJQqUHom86Q6J6a9cbif14z0cG5lzIRJxoEnX4UJBzrCI/zwB0mgWo+MIRQycyumPaIJFSb1AomBHf25HlSOym5Tsm9PS2WL7I48mgfHaAj5KIzVEY3qIKqiKIH9IRe0Kv1aD1bb9b7tDVnZTO76A+sj2+V95Y/</latexit><latexit sha1_base64="vgnK3Y7+GgIUUkxfIrLI+61XREA=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEQSgzIuhKqm5cVrAPaIeSSe+0oZnMkGSEMi1u/BU3LhRx61e4829M20G09cCFk3PuJfceP+ZMacf5snILi0vLK/nVwtr6xuaWvb1TU1EiKVRpxCPZ8IkCzgRUNdMcGrEEEvoc6n7/euzX70EqFok7PYjBC0lXsIBRoo3UtveGx7gliehyaF/iofPzuGrbRafkTIDniZuRIspQadufrU5EkxCEppwo1XSdWHspkZpRDqNCK1EQE9onXWgaKkgIyksnJ4zwoVE6OIikKaHxRP09kZJQqUHom86Q6J6a9cbif14z0cG5lzIRJxoEnX4UJBzrCI/zwB0mgWo+MIRQycyumPaIJFSb1AomBHf25HlSOym5Tsm9PS2WL7I48mgfHaAj5KIzVEY3qIKqiKIH9IRe0Kv1aD1bb9b7tDVnZTO76A+sj2+V95Y/</latexit>

Figure 1: Schematic illustration of the ontic space. The coloured regions represent sets in ontic space on
which the distributions have non-zero support. For instance, the blue region corresponds to those ontic
states on which µ00 has non-zero support. Notice that all four states overlap in the middle region, ∆.

Suppose now that Eve performs a projective measurement on her two qubits, defined by the following

10Another way of saying this is that if D(µ,ν)< 1 then D(µ×µ,ν×ν)< 1, for any two measures µ and ν .
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two-qubit basis vectors:

|χ1〉=
1√
2
(|0〉A |1〉B + |1〉A |0〉B) (7)

|χ2〉=
1√
2
(|0〉A |−〉B + |1〉A |+〉B) (8)

|χ3〉=
1√
2
(|+〉A |1〉B + |−〉A |0〉B) (9)

|χ4〉=
1√
2
(|+〉A |−〉B + |−〉A |+〉B) (10)

Because we are considering an epistemic model, we will associate a response function to each of these
outcomes and denote them ξ1,ξ2,ξ3,ξ4 : ΛAB→ [0,1]. Now

〈00|χ1〉= 〈0+ |χ2〉= 〈+0|χ3〉= 〈++ |χ4〉= 0.

In other words, whatever outcome Eve obtains from her measurement, it will certainly rule out one of
the four possible states that she received. But then:∫

ΛAB

ξ1(λ )dµ00(λ ) = 0
∫

ΛAB

ξ2(λ )dµ0+(λ ) = 0∫
ΛAB

ξ3(λ )dµ+0(λ ) = 0
∫

ΛAB

ξ4(λ )dµ++(λ ) = 0

Since there exists a non-trivial ∆ such that µ00(∆),µ0+(∆),µ+0(∆),µ++(∆)> 0, it must be the case that
for all k ∈ {1,2,3,4} and for all λ ∈ ∆, ξk(λ ) = 0. However, this contradicts the fact that

4

∑
k=1

ξk(λ ) = 1

for all λ ∈ ΛAB.
This argument assumed that the states having non-trivial overlap in ontic space are |0〉 and |+〉.

PBR showed that the above argument can be generalized for any pair of states |ψ〉 and |φ〉 with 0 <
| 〈ψ | φ〉 | < 1. In fact, in the simple proof given above, the only place that explicitly used |0〉 and |+〉
was to define Eve’s entangled measurement. The generalization of PBR consists in showing that Eve
can always construct such an entangled measurement for n-fold tensor products of |ψ〉 and |φ〉 if n is
sufficiently large. The intuition for this, as explained in [19], is the following. Suppose one considers two
states |ψ〉 and |φ〉 such that | 〈ψ | φ〉 |< 1. Clearly, there exists an n > 0 such that | 〈ψ⊗n | φ⊗n〉 | ≤ 1/

√
2.

We also know that 〈0 |+〉= 1/
√

2. If the inner product between |ψ〉⊗n and |φ〉⊗n is at most that between
|0〉 and |+〉, that is, if |ψ〉⊗n, |φ〉⊗n are at least “as distinguishable” as |0〉 and |+〉, then there exists a
mapping from |ψ〉⊗n to |0〉 and from |φ〉⊗n to |+〉. Eve can then perform the previously described
anti-distinguishing measurement.

B Quantum measures

Section 7 showed one way to evade the PBR obstruction: replace ordinary probability measures with
signed measures. Another option is to allow positive measures that can violate the Kolmogorov sum
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rule. These measures should not be completely unconstrained, and should still reproduce the Hilbert
space inner product. There is a natural candidate that satisfies these properties, namely quantum measures
(sometimes also called quantal measures) [29, 30, 27, 23, 33, 9]. We give two equivalent definitions of
quantum measures, taken from [9]:
Definition 28. Let Λ be a measurable space with associated σ -algebra ΣΛ. A quantum measure over ΣΛ

is a function µ : ΣΛ→ [0,1] satisfying the following properties:
• Positivity. For all U ∈ ΣΛ, µ(U)≥ 0;

• Normalisation. µ(Λ) = 1;

• Quantum sum rule. For all pairwise disjoint sets U,V,W ∈ ΣΛ:

µ(U ∪V ∪W ) = µ(U ∪V )+µ(U ∪W )+µ(V ∪W )−µ(U)−µ(V )−µ(W ).

An equivalent characterization uses decoherence functionals, first considered in [8], which yields a
natural notion of inner product over a σ -algebra.
Definition 29. Let Λ be a measurable space with associated σ -algebra ΣΛ. A decoherence functional is
a function D : ΣΛ×ΣΛ→ C satisfying the following properties:
• Hermitian. For all U,V ∈ ΣΛ, D(U,V ) = D(V,U)∗;

• Normalisation. D(Λ,Λ) = 1;

• Finite bi-additivity. For all U ∈ ΣΛ and all mutually disjoint sets V1, . . . ,Vn ∈ ΣΛ:

D(U,
n⋃

i=1

Vi) =
m

∑
i=1

D(U,Vi)

Similarly, for all V ∈ ΣΛ and all mutually disjoint sets U1, . . . ,Un ∈ ΣΛ:

D(
n⋃

i=1

Ui,V ) =
m

∑
i=1

D(Ui,V )

• Strong positivity. For any U1, . . . ,Un ∈ ΣΛ, the n×n matrix D(Ui,U j) is positive semidefinite.
As shown in [8], the decoherence functional allows for an alternative definition of the quantum

measure: if D is a decoherence functional on a measurable space Λ with σ -algebra ΣΛ, then µ : ΣΛ→
[0,1] given by µ(U) = D(U,U) is a quantum measure over ΣΛ.

Instead of the functor taking values in SRel, one might envision a receiving category whose states are
quantum measures rather than probability measures. Objects would still be measurable spaces, as before.
But morphisms, instead of being Markov kernels, would now be functions f : X ×ΣY → [0,1] such that
f (−,V ) : X→ [0,1] is a measurable function for each V , and f (x,−) : ΣY → [0,1] is a quantum measure.
This seems to be monoidal as before. The problem is that it is unclear how to define composition of such
morphisms. We would like to say that (g ◦ f )(x,W ) =

∫
g(y,W ) f (x,dy). But that needs a good notion

of integration against quantum measures, as it is unclear whether (g ◦ f )(x,−) is again a well-defined
quantum measure. Moreover, associativity of this composition seems to come down to a Fubini-type
theorem. Such a theory of quantum integration seems only to be embryonic as of yet [15, 14], presumably
because so far quantum measures have mostly been used to model causal sets, in which context integrals
do not naturally fit.

Trying to define the desired category as the Kleisli category of a Giry-like monad, that takes a mea-
surable space X to the set Q(X) of quantum measures on it, runs into similar issues. The unit, given by
Dirac delta functions, is still well-defined because probability measures are certainly quantum measures.
But it is unclear whether the natural candidate for the multiplication, that sends Φ ∈ Q(Q(X)) to the
function that assigns to U ∈ ΣX the number

∫
Φ({φ ∈ Q(X) | φ(U)> t})dt, is well-defined at all.


	1 Introduction
	2 Ontological models
	3 Operational models
	4 Monoidal operational models
	5 Duality-preserving operational models
	6 Equivariant operational models
	7 Signed operational models
	A The PBR theorem
	B Quantum measures

