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We use tools from non-standard analysis to formulate the building blocks of quantum field theory
within the framework of categorical quantum mechanics. Building upon previous work, we construct
an object of ?Hilb having quantum fields as states and we show that the usual ladder and field operators
can be defined as suitable endomorphisms. We deal with relativistic normalisation and we obtain
the Lorentz invariant Heisenberg picture operators. By moving to a coherent perspective—where
the classical time and momentum parameters are replaced by wavefunctions over the parameter
spaces—we show that ladder operators and field operators can be obtained by applying the same
morphism to plane waves and delta functions respectively. Finally, we formulate the commutation
relations diagrammatically and we use them to derive the propagator.

1 Introduction

One of the very first obstacles in the passage from quantum theory to quantum field theory is the lack
of a suitable Hilbert space having quantum fields as vectors. In the simplest of cases—that of the scalar
quantum fields—this is due to the commutation relations between ladder operators, that imply that the
vectors for single-particle states would have infinite square norm. In order to deal with this obstacle,
presentations of quantum field theory (we will broadly follow [12, 14]) typically work with operators and
operator-valued distributions in place of vectors, obtaining amplitudes by sandwiching operators with the
vacuum vector and jumping through hoops to avoid infinities.

When using non-standard analysis [13], those infinities are no longer an issue and it is perfectly
sensible to treat quantum fields as vectors in the infinite tensor product of simple harmonic oscillators
over momentum space. That is the approach taken here, building upon previous work on the non-standard
approach [7, 8] to infinite dimensional categorical quantum mechanics [1, 2, 4, 9].

In Section 2, we open with a brief summary of the non-standard approach to infinite dimensional
categorical quantum mechanics, including the construction of the infinite tensor product of Hilbert spaces
over momentum space, home to our formulation of quantum fields.

In Section 3, we introduce the basic ingredients of quantum field theory within our framework. We
quantise the Klein-Gordon equation by considering a field of simple harmonic oscillators over momentum
space, over which we define ladder operators, quantum field states and field operators. We tackle the issue
of relativistic normalisation of on-shell states and we define Lorentz-invariant operators in the Heisenberg
picture. We interpret ladder/field operators as classically controlled by momentum, position and time
parameters: we turn them into a single operator coherently controlled by wavefunctions over the parameter
spaces, and we show that the original operators can be recovered by application to momentum, position
and time eigenstates. Finally, we provide a diagrammatic formulation of the commutation relations in the
Schrödinger picture, and we use them to derive the commutation relations for the Heisenberg picture and
a diagrammatic expression for the propagator.
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2 Brief recap of the story so far

2.1 The dagger compact category ?Hilb

The objects of ?Hilb take the form of pairs H := (|H |,PH ), where |H | is a non-standard Hilbert space
(the underlying Hilbert space) and PH : |H | → |H | is an internal non-standard ?C-linear map, its
truncating projector:

PH =
D

∑
n=1
|en〉〈en| (2.1)

where |en〉Dn=1 is some family of orthonormal vectors in |H |, for some D ∈ ?N. The number D is
independent of the choice of family by Transfer Theorem, and can be used to consistently define the
dimension of H to be dimH := D ∈ ?N. The morphisms of ?Hilb are internal non-standard ?C-linear
maps taking the following form, with the truncating projectors acting as identities:

Hom?Hilb [H ,G ] := { PG ◦F ◦PH | F : |H | → |G | internal linear map} . (2.2)

The category ?Hilb is a full subcategory of the Karoubi envelope for the category of non-standard
Hilbert spaces and non-standard ?C-linear maps. Morphisms can be represented as matrices by choosing
orthonormal families of vectors which diagonalise the relevant truncating projectors:

F̄ := PG ◦F ◦PH =
dimG

∑
m=1

dimH

∑
n=1
| fm〉

(
〈 fm|F |en〉

)
〈en|. (2.3)

The tensor product, the symmetry isomorphisms, the dagger, the compact closed structure and the dagger
biproducts can be defined as usual by looking at the matrix decomposition, and by Transfer Theorem
they are invariant under different choices of diagonalising orthonormal sets. Similarly, unital special
commutative †-Frobenius algebras can be constructed for all orthonormal bases of an object H (i.e. for
all orthonormal families diagonalising the truncating projector PH ).

2.2 Relation to standard separable Hilbert spaces

Let sHilb be the †-SMC of standard separable Hilbert spaces and bounded linear maps. Let ? sHilb be
the full subcategory of ?Hilb given by those objects H such that |H |= ?V for some separable standard
Hilbert space V and such that the truncating projector spans all near-standard vectors. Let ? sHilb(std) be
the sub-†-SMC of ? sHilb given by only considering near-standard morphisms.

We can define a standard part functor st : ? sHilb(std)→ sHilb, which acts as H 7→ |H | on objects
and as F̄ 7→ st(F̄) on morphisms. The standard part functor is C-linear, and identifies two near-standard
maps F̄ , Ḡ : H →K if and only if F̄− Ḡ has infinitesimal operator norm; this defines an equivalence
relation on morphisms in ? sHilb(std), which we denote by∼ and refer to as infinitesimal equivalence. For
each infinite natural ω , we can define a weak truncation functor liftω : sHilb→ ? sHilb(std), which acts
as V 7→ (V,P(V )) on objects and sends the standard morphism f : V →W to the non-standard morphism
F̄ := P(W ) ◦F ◦P(V ) (here F := ? f is the non-standard extension of f ).

Theorem 2.1 from [8] states that st and liftω define a weak equivalence between sHilb and ? sHilb(std)ω ,
the full subcategory of ? sHilb(std) spanned by those objects H having dimension dimH ∈ ?N which is
either a finite natural or the infinite natural ω . The essence of Theorem 2.1 is that sHilb is equivalent to
the subcategory ? sHilb(std)ω , as long as we take care to equate morphisms which are infinitesimally close.
The equivalence allows one to prove results about sHilb by working in ?Hilb and taking advantage of the
full CQM machinery, according to the following general recipe:
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(i) start from a morphism in sHilb;

(ii) lift to ? sHilb(std)ω via the lifting functor;
(iii) work in ?Hilb, obtain a result in ? sHilb(std)ω ;
(iv) descend to sHilb via the standard part functor.

2.3 The non-standard cyclic group ?Z2ω+1

The abelian group ?Z2ω+1 is defined to be the internal set of non-standard integers {−ω, ...,+ω} endowed
with 0 as unit and with addition ⊕ modulo 2ω +1 as group operation. The group ?Z2ω+1 has the integers
as a subgroup: if k,h ∈ Z are standard integers, then certainly−ω ≤ k+h≤+ω , and hence k⊕h = k+h.
In this work, we will be interested in using the group ( ?Zn

2ω+1,⊕,0) to approximate n-dimensional real
space Rn, by using a non-standard lattice of infinitesimal mesh and working up to infinitesimal equivalence.
Concretely, this is done by considering the embedding of ?Zn

2ω+1 into ?Rn as the lattice 1
ωir

?Zn
2ω+1, where

we assume that the infinite natural ω has been chosen in such a way that we can write 2ω +1 = ωirωuv

for some odd infinite naturals ωir,ωuv ∈ ?N+ 1 2 3 and we send k ∈ ?Zn
2ω+1 to p := k/ωir ∈ ?Rn. The

standard n-dimensional real space Rn is recovered from the non-standard lattice 1
ωir

?Zn
2ω+1 by restricting

our attention to the subgroup of those k ∈ ?Zn
2ω+1 such that p := k/ωir is a near-standard vector 4 in

?Rn, and then quotienting by infinitesimal equivalence of vectors to obtain the group Rn. In this sense,
the non-standard lattice 1

ωir
?Zn

2ω+1 in ?Rn approximates the real n-dimensional space Rn to infinitesimal
mesh 1

ωir
, covering it all the way up to some infinity ωuv where the lattice circles around.

By using the non-standard complex group algebra for the abelian group 1
ωir

?Zn
2ω+1, we can construct

an object of ?Hilb that can be used to deal with quantum particles living in n-dimensional real space,
corresponding to the standard Hilbert space L2[Rn]. We consider the following orthogonal family of
vectors in ?Rn→ ?C, indexed by p ∈ 1

ωir
?Zn

2ω+1 and having square norm ωn
ir:

|χ p〉 := x 7→ ei2π p·x (2.4)

We use this family to define a
(
(2ω + 1)n

)
-dim object ?C[ 1

ωir
?Zn

2ω+1] := ( ? L2[Rn],P?C[ 1
ωir

?Zn
2ω+1]

) of
?Hilb, by considering the following truncating projector:

P?C[ 1
ωir

?Zn
2ω+1]

:= ∑
p∈ 1

ωir
?Zn

2ω+1

1
ωn

ir
|χ p〉〈χ p| (2.5)

We refer to the orthogonal basis |χ p〉p∈ 1
ωir

?Zn
2ω+1

as the momentum eigenstates for ?C[ 1
ωir

?Zn
2ω+1], and

we can use it to construct a basis of position eigenstates as the following orthogonal family, indexed by
x ∈ 1

ωuv
?Zn

2ω+1 and with square norm ωn
uv:

|δx〉 := ∑
p∈ 1

ωir
?Zn

2ω+1

1
ωn

ir
e−i2π p·x|χ p〉 (2.6)

We can check that these truly behave as position/momentum eigenstates by computing their inner product:

〈δx|χ p〉=
1

ωn
ir

ei2π (p·x)〈χ p|χ p〉= ei2π p·x = χ p(x) (2.7)

1Note that the convention here is different from the ω = ωuvωir originally adopted in [8].
2The subscripts “ir” and “uv” stand for “infrared” and “ultraviolet” respectively. They are a reference to the infrared and

ultraviolet cut-offs used as part of certain renormalisation techniques in QFT.
3Alternatively, we can first choose odd infinite naturals ωir,ωuv and subsequently define ω := ωirωuv−1

2 .
4One has to be careful to impose this restriction externally to the non-standard model—by hand, if you will—because the

aforementioned subgroup does not correspond to an internal subset of ?Zn
2ω+1.
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It is shown in [6, 8] that these bases correspond to a strongly complementary pair ( , ) of quasi-special
commutative dagger Frobenius algebras [3]—the momentum observable and the position observable

—with strong complementarity playing the role of position-momentum duality in the CQM framework.

2.4 Quantum fields in real space

Consider an object H := (|H |,PH ) of ?Hilb, with truncating projector PH decomposed as PH =

∑
D
d=1 |ed〉〈ed | for some orthonormal family |ed〉Dd=1 in |H |. We wish to construct the infinite tensor

product H
⊗ 1

ωir
?Zn

2ω+1 , which will allow us to model H -valued quantum fields living on the lattice
1

ωir
?Zn

2ω+1. Upon near-standard restriction and quotient by infinitesimal equivalence, this allows us to
deal with standard quantum fields on n-dimensional real space Rn.

Define the shorthands D := dimH and µ := (2ω + 1)n, and consider the following orthonormal
family |es〉 of non-standard states in |H |⊗µ , indexed by strings s ∈ {1, ...,D}µ :

|es〉 :=
+ω⊗

k1=−ω

...
+ω⊗

kn=−ω

|es(k)〉 (2.8)

The definition in terms of k ∈ ?Zn
2ω+1 is the clearest from a mathematical standpoint, but a definition in

terms of p := k/ωir ∈ 1
ωir

?Zn
2ω+1 carries more immediate physical significance. As a consequence, this

work will use the notations ⊗+ωuv
p=−ωuv

and ∑
+ωuv
p=−ωuv

in place of ⊗+ω

k=−ω
and ∑

+ω

k=−ω
respectively, as well as

s(p) in place of s(k) for k := ωir p. Hence the orthonormal family chosen above equivalently reads:

|ep〉 :=
+ωuv⊗

p1=−ωuv

...
+ωuv⊗

pn=−ωuv

|es(p)〉 (2.9)

To model H -valued quantum fields on the lattice 1
ωir

?Zn
2ω+1 within our framework, we define the object

H
⊗ 1

ωir
?Zn

2ω+1 := (|H |⊗µ ,P
H
⊗ 1

ωir
?Zn

2ω+1
) of ?Hilb, where the truncating projector is defined by:

P
H
⊗ 1

ωir
?Zn

2ω+1
= ∑

s
|es〉〈es| (2.10)

In [8], it is shown that the H
⊗ 1

ωir
?Zn

2ω+1 behaves as a genuine tensor product—at least in the case, of
interest here, where H = ?V arises from a separable standard Hilbert space V —in the sense that it satisfies
a universal property that allows multilinear maps F̃ : ∏p∈ 1

ωir
?Zn

2ω+1
H −→K —where K with |K |= ?W

for some separable standard Hilbert space W—to be lifted uniquely to linear maps F : H
⊗ 1

ωir
?Zn

2ω+1 −→
K . It is also shown that ∏p∈ 1

ωir
?Zn

2ω+1
H is related to the direct integral

∫ ⊕
Rn V d p [10, 11] by restriction

and quotient: any continuous ϕ : Rn→V can be lifted to the near-standard ?ϕ : 1
ωir

?Zn
2ω+1→ ?V , and

any such ϕ can vice-versa be reconstructed from ?ϕ by setting ϕ(q) := st( ?ϕ(p)) for any p ∈ 1
ωir

?Zn
2ω+1

such that st(p) = q ∈ Rn. The relationship to
∫ ⊕

Rn V d p together with the universal property shows how

H
⊗ 1

ωir
?Zn

2ω+1 can be used to work with standard quantum fields.
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3 Quantum Field Theory

As part of canonical quantisation, classical fields from the Lagrangian formalism are translated into
certain operator-valued distributions, also known as field operators, acting upon quantum states living
in a Fock space. Using the field operators, the classical Lagrangian can be translated into the dynamics
and interactions of the quantum field theory, so it is no surprise that they occupy the vast majority of the
literature dedicated to the subject.

It is worth noting, however, that the field operators play a very different role from the classical fields
that they originally quantised: classical fields are states of a classical system, while field operators act
upon states of a quantum system (e.g. the vacuum). In this sense, the closest correspondents in quantum
field theory to the fields of classical field theory or the wavefunctions of quantum mechanics are, in fact,
the quantum states in the Fock space. Just as C2 is the space of quantum states for a qubit, so the Fock
space is the space of quantum states for a quantum field. And just as we freely refer to the object C2 as
a qubit, so we take the liberty to refer to the Fock space as a quantum field. We will use the term field
operator when talking about the operator-valued distributions obtained by canonical quantisation.

3.1 Simple Harmonic Oscillator

Picking things up from the very last section of [8], let’s consider the textbook example of the real scalar
field, a relativistic classical field φ(x, t) satisfying the Klein-Gordon equation:

∂µ∂
µ

φ +
(mc

h̄

)2
φ = 0 (3.1)

When looking at the field in momentum space φ(p, t), the Klein-Gordon equation becomes:(
h̄2 ∂ 2

∂ t2 +(|p|c)2 +(mc2)2
)

φ(p, t) = 0 (3.2)

Hence a momentum space solution φ(p, t) to the Klein-Gordon equation can be thought of as a field of
simple harmonic oscillators, each oscillator vibrating with its own amplitude and at a frequency νp =

1
h̄ Ep

for each point p ∈ R3 of momentum space, where the energy Ep is given by the relativistic dispersion
relation:

Ep :=
√

(|p|c)2 +(mc2)2 (3.3)

In order to quantise the real scalar field φ , we simply need to quantise the simple harmonic oscillators.
We do so in our non-standard framework.

Consider the object H of ?Hilb defined as follows, where τ is some infinite non-standard natural and
|n〉n∈?N is the chosen orthonormal basis for ? L2[N]:

H :=
(
? L2[N],

τ

∑
n=0
|n〉〈n|

)
(3.4)

We will think of H as the non-standard counterpart for a quantum harmonic oscillator: the states |n〉
correspond to energy eigenstates for the oscillator, and we extended our range of energy values all the
way up to some infinite natural τ . We define the ladder operators a and a† on H as follows:

a|n〉=

{
0 if n = 0
√

n|n−1〉 otherwise
a†|n〉=

{
0 if n = τ
√

n+1|n+1〉 otherwise
(3.5)
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It is easy to check that these operators satisfy the usual canonical commutation relations, up to a correction
factor accounting for the truncation of energy above the infinite τ:

[a,a†] = id− (τ +1)|τ〉〈τ| (3.6)

When restricting ourselves to finite energy states, these operators are exactly the ladder operators for the
quantum harmonic oscillator. In fact, the commutator above differs from the usual expression only up to a
scalar multiple of the |τ〉〈τ| rank-1 projector, which will be sent to a (scalar multiple of) itself by most
operators of interest in this work. As a consequence, we define the following equivalence relation =τ on
operators H →H , which we read “equal up to τ”:

f =τ g if and only if f −g ∝ |τ〉〈τ| (3.7)

In particular, the commutation relation for the ladder operators can be re-written as:

[a,a†] =τ id (3.8)

We will also extend the equivalence relation =τ to maps which we have explicitly decomposed in the
form f ,g : H ⊗X ⊗G →H ⊗X ⊗K by setting:

f =τ g if and only if f −g = (|τ〉〈τ|)⊗X ⊗h for some h : G →K (3.9)

We then proceed to define the number operator N := a†a, and we obtain the usual property and
commutators for it (exact equalities this time):

N|n〉= n|n〉 [N,a†] = a† [N,a] =−a (3.10)

The number operator is associated to a †-SCFA on H , the number observable, with |n〉 as classical
states. For a quantum harmonic oscillator of energy Ep, the Hamiltonian can finally be defined as:

H := EpN (3.11)

Aside perhaps for the correction term in the canonical commutation relation, this is exactly what we
would expect the non-standard version of the quantum harmonic oscillator to look like, and the traditional
quantum harmonic oscillator is recovered by restricting to states of finite energy.

3.2 Quantum fields

We saw before that a solution to the Klein-Gordon can be interpreted to describe a field of simple harmonic
oscillators at each point p ∈ R3 of momentum space, vibrating independently with energies given by

the relativistic dispersion relation Ep =
√

(|p|c)2 +(mc2)2. The natural quantisation of such a scenario

involves considering independent quantum harmonic oscillators at each point p ∈ R3 of momentum space,
i.e. an infinite direct product of separable Hilbert spaces over the 3-dimensional continuum. Because
such a space would be mathematically unwieldy, and because only finite energy states are deemed to be
physically interesting, the infinite direct product of quantum harmonic oscillators is never constructed, and
the Fock space is considered instead. The Fock space is the Hilbert space of joint states for the quantum
harmonic oscillators which is spanned by those separable states involving only finitely many oscillators
not in their ground state: the state |n〉 for the oscillator at point p ∈ R3 is considered to count the number
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of quantum particles with definite momentum p, and the Fock space is spanned by all states containing
finitely many particles.

Within our non-standard framework, we don’t have to worry about infinite tensor products, and we
don’t have to restrict ourselves to finite energy states or finite number of particles: as a consequence, we
quantise the real scalar field φ by constructing the field of quantum harmonic oscillators in all its glory.
This can be done by considering the space H

⊗ 1
ωir

?Z3
2ω+1 defined above: we discretise momentum space to

an infinite lattice 1
ωir

?Z3
2ω+1 of infinitesimal mesh 1/ωir, and we place an independent quantum harmonic

oscillator H at each point of the lattice (with varying frequency νp).
For each p ∈ 1

ωir
?Z3

2ω+1, we write ap and a†
p for the ladder operators acting on the quantum Harmonic

oscillator at p (tensored with the identity on all other oscillators), and |n@p〉τn=0 for the orthonormal basis

of the oscillator at p. We define the rescaled versions a(p) :=
√

ω3
ir ap and a†(p) :=

√
ω3

ir a†
p, which

satisfy the following commutation relations:

[a(p),a†(q)] =τ ω
3
irδp,qid

[a(p),a(q)] = 0

[a†(p),a†(q)] = 0 (3.12)

where δp,q is a symbol, defined to be equal to 1 if p = q and equal to 0 otherwise.
The usual field operators φ(x) and π(x) for a real scalar field can be defined from a(p) and a†(p)

through the following discretised integral, for all points x ∈ 1
ωuv

?Z3
2ω+1 in space: 5 6

φ(x) := ∑
p

1
ω3

ir

1√
2Ep

[
a(p)ei2π p·x +a†(p)e−i2π p·x

]

π(x) := ∑
p

1
ω3

ir
(−i)

√
Ep

2

[
a(p)ei2π p·x−a†(p)e−i2π p·x

]
(3.13)

The field operators satisfy commutation relations similar to the ones of the rescaled ladder operators:

[φ(x),π(y)] =τ ω
3
uvδx,yid

[φ(x),φ(y)] = 0

[π(x),π(y)] = 0 (3.14)

Operators for the complex fields can be defined similarly, using a pair of harmonic oscillators (one for
particles, one for anti-particles).

For every n : 1
ωir

?Z3
2ω+1→{0, ...,τ}, we can define the state |n〉 :=⊗p|n(p)@p〉. In particular, the

state |0〉 is the vacuum, and the single-particle states can be defined as usual by:

|p〉 := a†(p)|0〉 (3.15)

5Note that in going from momentum p to position x we have swapped the UV infinity ωir and the IR infinite ωuv, so that the
lattice for position has infinitesimal mesh 1

ωuv
instead of 1

ωir
. See [8] for further details about this effect.

6The factor 1
ωir

is the discretised non-standard counterpart of the differential d p in the standard formulation.
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The discretised integral of the (rescaled) number observables for all quantum harmonic oscillators at all
points p ∈ 1

ωir
?Z3

2ω+1 of momentum space gives rise to the number operator N on H
⊗ 1

ωir
?Z3

2ω+1 :

N := ∑
p

1
ω3

ir
a†(p)a(p) = ∑

p
a†

pap = ∑
n

(
∑
p

n(p)
)
|n〉〈n| (3.16)

The Hamiltonian for the quantum field is similarly obtained as a discretised integral:

H := ∑
p

1
ω3

ir
Epa†(p)a(p) = ∑

p
Epa†

pap = ∑
n

(
∑
p

Epn(p)
)
|n〉〈n| (3.17)

The traditional Fock space is recovered by considering the states |n〉 with finite energy 〈n|H|n〉 (i.e. those
with a finite number of particles, all having finite momenta). The corresponding number of particles at a
standard point q ∈ R3 of standard momentum space, which we will denote by st(n)(q), is then given by
the following expression:

st(n)(q) := ∑
p∈ 1

ωir
?Z3

2ω+1

such that st(p)=q

n(p) (3.18)

3.3 Relativistic quantum fields

Because we are only interested in on-shell physical states satisfying the relativistic dispersion relation, we
have defined our fields directly on 3-momentum values p ∈ 1

ωir
?Z3

2ω+1, since the p0 = Ep values can be
uniquely determined from them. Unfortunately, however, the volume element d3p = 1

ω3
ir

which we have
used in our integrals is not Lorentz-invariant, so we need to fix it. The Lorentz-invariant volume element
for 3-momenta is d3p 1

2Ep
= 1

ω3
ir

1
2Ep

7 and we re-normalise our states and operators to make the extra factor
1

2Ep
apparent in our integrals. We define the relativistically normalised ladder operators and one-particle

states by:

a(p) :=
√

2Ep a(p) a†(p) :=
√

2Ep a†(p) |p〉 := a†(p)|0〉=
√

2Ep|p〉
(3.19)

This means that the identity on one-particle states is the self-evidently Lorentz-invariant discretised
integral ∑p

1
ω3

ir

1
2Ep
|p〉〈p|, and that the field operator φ(x) can be re-written in terms of Lorentz-invariant

volume element and Lorentz-invariant ladder operators as follows:

φ(x) = ∑
p

1
ω3

ir

1
2Ep

[
a(p)ei2π p·x +a†(p)e−i2π p·x

]
(3.20)

Unfortunately, the expression for the field operator is not yet Lorentz-invariant, because of the imaginary
exponential factors. This will soon be fixed when we start working in the Heisenberg picture.

7 To see this, note that the 4-momentum volume element d4p is Lorentz-invariant, and that so is the on-shell 4-momentum
volume element d4p δ (p0−Ep)|p0>0. A quick differentiation yields:

d4p δ (p0−Ep)|p0>0 = d3p
1

2p0
|p0=Ep

.
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3.4 Coherently-controlled creation/destruction operators

Before moving on to the Heisenberg picture, we take a brief detour to talk about position-momentum
duality in our setting. We move away from the traditional approach to ladder/field operators—seen
as families of operators classically parametrised by position/momentum values—and we switch to the
coherent approach of [6], working within the object ?C[ 1

ωir
?Z3

2ω+1] of ?Hilb. From a process-theoretic
perspective, working with the parameters x and p corresponds to thinking of processes which are classically
controlled by points in the position and momentum spaces (or, more generally, by probability distributions
over them); working in ?C[ 1

ωir
?Z3

2ω+1], on the other hand, corresponds to thinking of processes which
are ‘coherently’ controlled by wavefunctions over the position and momentum spaces. Because of (non-
standard) Pontryagin duality, this has the advantage that the same parameter space can be used for both
position and momentum, allowing a number of useful duality results to be easily formulated.

Recall that in ?C[ 1
ωir

?Z3
2ω+1] we have an orthogonal basis of momentum eigenstates (|χ p〉)p∈ 1

ωir
?Z3

2ω+1
,

and an associated quasi-special commutative dagger Frobenius algebra. In the context of quantum field
theory, we need to take relativistic normalisation into account, so we consider the orthogonal basis of
relativistically normalised momentum eigenstates instead:

|χ p〉 :=
√

2Ep|χ p〉 (3.21)

This is associated to a commutative dagger Frobenius algebra , which is no longer quasi-special (because
the states have different square norms [5]). To take relativistic normalisation into account, we re-define the
orthogonal basis of position eigenstates (|δx〉)x∈ 1

ωuv
?Z3

2ω+1
using the relativistically normalised momentum

eigenstates in place of the original ones:

|δx〉 := ∑
p∈ 1

ωir
?Zn

2ω+1

1
ω3

ir

1
2Ep

e−i2π p·x|χ p〉 (3.22)

The position eigenstates have an associated commutative dagger Frobenius algebra , and the pair ( , )
is strongly complementary (capturing features of position-momentum duality such as the Weyl CCRs [6]).

Instead of working with the p-parametrised ladder operators and the x-parametrised field operator, we

define the following morphism γ† : H
⊗ 1

ωir
?Z3

2ω+1⊗ ?C[ 1
ωir

?Z3
2ω+1]−→H

⊗ 1
ωir

?Z3
2ω+1 , which we refer to

as the coherently controlled creation operator:

γ† := ∑
p

1
ω3

ir

1
2Ep

a†(p)
χ p

(3.23)

The (relativistically normalised) ladder operators can be recovered by applying the coherently controlled
creation/destruction operators γ† and γ to the (relativistically normalised) momentum eigenstates8:

γ

χ p

= a(p) γ

χ p

= a(p)

γ†
χ p

= a†(p) γ†
χ p

= a†(p) (3.24)

8We used light gray lines/borders in place of black lines/borders to distinguish between the field space H
⊗ 1

ωir
?Z3

2ω+1 and the
controlling parameter space ?C[ 1

ωir
?Z3

2ω+1].
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The commutation relations for the ladder operators can be written graphically in terms of γ† and γ:

γ† γ − γ γ† =τ (3.25)

We can use the additional degrees of freedom granted by the coherent approach to obtain the positive
and negative frequency parts φ+(x),φ−(x), of the field operator φ(x), by evaluating the γ and γ† map on
the position eigenstates |δx〉 instead of the momentum eigenstates |χ p〉:

γ

δx

= φ
+(x) := ∑

p

1
ω3

ir

1
2Ep

a(p)ei2π p·x

γ†
δx

= φ
−(x) := ∑

p

1
ω3

ir

1
2Ep

a†(p)e−i2π p·x

(3.26)

Finally, we can use the coherently-controlled operators to write the number operator diagrammatically as
follows:

N = γ† γ (3.27)

3.5 The Heisenberg picture

So far, we have not taken time into consideration. Just as 3-dimensional space was discretised by the
3-dimensional non-standard lattice 1

ωuv
?Z3

2ω+1, so we take time to be discretised by the 1-dimensional non-
standard lattice 1

ωuv
?Z2ω+1. The action of time-translation on relativistically normalised momentum eigen-

states |χ p〉 ∈ ?C[ 1
ωir

?Z3
2ω+1] should be captured by the following unitary representation

(
Ut
)

t∈ 1
ωuv

?Z2ω+1
:

Ut := ∑
p

1
ω3

ir

1
2Ep

ei2πEpt |χ p〉〈χ p| (3.28)

Unfortunately, there is a snag: the one above is not a well-defined unitary representation! This is because,
in general, the energy Ep =

√
(|p|c)2 +(mc2)2 defined by the relativistic dispersion relation will not take

values Ep ∈ 1
ωir

?Z2ω+1 in the Pontryagin dual of the discretised time-translation group. We ensure that
the energy takes suitable values by applying an infinitesimal correction. Specifically, we take natural units
in which c = 1, we assume that m ∈ 1

ωir
?Z3

2ω+1 and we redefine Ep to be:

Ep :=
1

ωir

⌊
ωir

√
|p|2 +m2

⌋
(3.29)

This makes the unitary representation
(
Ut
)

t∈ 1
ωuv

?Z2ω+1
above well-defined, at the cost of introducing some

energy level degeneracy between some infinitesimally close momentum values. 9

9The exact infinitesimal extent of this degeneracy depends, rather interestingly, on both m and the ratio ωuv/ωir.
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Just as positions and momenta were associated to a strongly complementary pair ( , ) of quasi-special
commutative dagger Frobenius algebras on ?C[ 1

ωir
?Z3

2ω+1], so time and energy are associated to a strongly
complementary pair ( , ) on ?C[ 1

ωuv
?Z3

2ω+1]. Time states |t〉 are chosen to have square norm ωuv, and
energy states |E〉 are chosen to have square norm ωir. Having said this, we define the following unitary
module for , a coherent version of the unitary representation from above:

U := ∑
t

1
ωuv

Ut

δt
(3.30)

The unitary module above is diagonalised by , in the following sense:

U† =
U†

(3.31)

The reason why we can work on the controlling parameter space ?C[ 1
ωir

?Z3
2ω+1], rather than the full

field space H
⊗ 1

ωir
?Z3

2ω+1 , is that the ladder operators take the following form in the Heisenberg picture:

ei 2π

h Ht a†(p)e−i 2π

h Ht = e+iEpta†(p) ei 2π

h Ht a(p)e−i 2π

h Ht = e−iEpta(p) (3.32)

This means that the Heisenberg picture version of the coherently controlled creation operator can be
written as follows:

γ̄†
p
t

= γ†

U
p
t

(3.33)

By applying this to position x and time t, we obtain the Lorentz invariant field operator φ(x, t) in the
Heisenberg picture (writing p · x for Ept− p · x):

φ(x, t) := φ
+(x, t)+φ

−(x, t)

φ
+(x, t) := γ̄

δx

δt

= ∑
p

1
ω3

ir

1
2Ep

a(p)e−i2π p·x

φ
−(x, t) := γ̄†

δx

δt

= ∑
p

1
ω3

ir

1
2Ep

a†(p)e+i2π p·x

(3.34)

In the appendix, we provide a diagrammatic proof that the following commutation relation holds between
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the coherently controlled creation/destruction operators in the Heisenberg picture:

γ̄† γ̄ − γ̄†γ̄ =τ

U

(3.35)
By evaluating the commutation relation on two 4-position states, we finally see that the propagator
D(x− y) = [φ+(x),φ−(y)] takes the following form:

D(x− y) =τ

δy

δy0

δx

δx0

U
= ∑

p

1
ω3

ir

1
2Ep

e−i2π p·(x−y)id (3.36)

4 Conclusions and Future Work

We have shown how the fundamental building blocks of quantum field theory can be formulated within
the framework of categorical quantum mechanics, by using well understood structures such as Frobenius
algebras and modules. Unfortunately, the space available here is only enough to barely scratch the surface,
and a number of interesting applications must be deferred to future work: these include the formulation of
the interaction picture, Feynman diagrams and renormalisation, as well as the working out of interesting
concrete examples such as φ 4 theory and Yukawa theory. Somewhat further down the line, we foresee
applications of the framework introduced here to a categorical formulation of spinors and Gauge boson,
and subsequent tackling of interesting real-world theories such as QED.
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A Graphical derivation of the propagator

Here is a fully graphical derivation of the commutation relation between the coherently controlled
constructor/destructor operators in the Heisenberg picture:

γ̄† γ̄ − γ̄†γ̄ =

=
U

γ† γ γ γ†

U†

− =τ

=τ U U† = U U† =

= U U = U =

= U =

U
(A.1)

The first equation uses the definition of the Heisenberg picture operator γ̄†. The second equation (up to τ)
uses the commutation relation for the operator γ . The third equation uses the snake equation for . The
fourth equation uses the unitariety condition for the module U . The fifth equation uses the multiplicativity
condition for the module U . The sixth equation changes to by introducing an antipode. The seventh
and last equation uses the fact that the unitary module is diagonalised by (and associativity of ).
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We also do a step-by-step check that the propagator takes the form claimed in the body.

D(x− y) =τ

δy

δy0

δx

δx0

U
=

=

(
∑p

1
ω3

ir

1
2Ep
〈δx−y|U

(
|χ p〉⊗ |δy0−x0〉

))
id =

(
∑p

1
ω3

ir

1
2Ep

ei2πEp·(y0−x0)〈δx−y|χ p〉

)
id

=

(
∑p

1
ω3

ir

1
2Ep

e−i2π

[
Ep·(x0−y0)−p·(x−y)

]
〈δx−y|χ p〉

)
id =

(
∑p

1
ω3

ir

1
2Ep

e−i2π p·(x−y)

)
id

(A.2)
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