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In this work, we analyse Petri nets where places are allowed to have a negative number of tokens.
For each net we build its correspondent category of executions, which is compact closed, and prove
that this procedure is functorial. We moreover exhibit a procedure to recover the original net from
its category of executions, show that it is again functorial, and that this gives rise to an adjoint pair.
Finally, we use compact closeness to infer that allowing negative tokens in a Petri net makes the causal
relations between transition firings non-trivial, and we use this to model interesting phenomena in
economics and computer science.

1 Introduction

Petri nets are a well known tool to study concurrent systems, and have been around for decades [14].
Intuitively, a Petri net consists of a set of places, pictorially depicted as circles, and a set of transitions,
represented as grey squares, that are connected to places via directed edges, decorated with natural
numbers (see Figure 1a). To avoid clutter, we omit the decoration when it is equal to 1. Places can
contain tokens, that are represented as black dots. An assignment of tokens for a given net is called a state
(Figure 1b). We interpret places as types, tokens as resources of the type corresponding to the place they
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(a) A Petri net.
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(b) A state, before firing.
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(c) Marked transition has fired.

Figure 1

are in, and transitions as processes that convert resources into other resources. In more detail, when a
transition converts resources into other resources we say that it fires. When firing, a transition consumes
tokens in the places connected to it via an inbound edge, and produces tokens in places connected to it via
an outbound edge. The number of tokens consumed/produced for each place is specified by the weighting
on the edges. Firing is denoted with the symbol H (see Figures 1b and 1c).

Petri nets were originally invented to study chemical reactions [14], but quickly found a place in
computer science as models for concurrency [13,15]. This is motivated by the idea that transitions sharing
some input places have to compete for tokens to fire, and can then be thought of as concurrent processes.
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Petri nets, as presented above, are good models for concurrency but difficult to implement: Tokens
represent resources, but the model itself offers no way of “tracking” their history (i.e. all the proccesses
by which a given token was consumed/produced), which is fundamental to turning a Petri net into actual
code. We have then to distinguish a Petri net, representing a process in the abstract, from its executions
(sometimes also called computations), representing all the possible ways to run it.

In [2, 11, 17, 18] Petri nets have been characterized categorically. An outcome of this line of work has
been linking Petri nets to their executions in terms of functorial relationships between categories [16]. In
this work we carry on along the same lines, as follows: In Section 2 we generalize the notion of Petri net
allowing for negative tokens, and explain why this is desirable; in Section 3 we reshape the categorical
characterization of net executions, such that the functorial relationship is preserved; in Section 4, we
will exploit some categorical properties of our model (mainly compact closedness) to show how our
generalized nets have non-trivial behavior, and will provide examples of why this is useful; in Section 5
we will sketch future directions of research.

Interestingly, our approach to Petri nets will have striking similarities with the one used in categorical
quantum mechanics, both from a structural point of view – our categories will be compact closed, and we
will make great use of string diagrams throughout the paper – and from a conceptual one – causality flow
in (semi-)integer nets will be non-trivial and similar in flavor to quantum teleportation.

2 Integer and semi-integer Petri nets

There are many definitions of Petri net, not always equivalent. We follow an approach similar to the one
used in [16]. In the remainder of this work, we will adopt the following notations: Categorical composition

A
f−→ B

g−→C will be denoted with f ;g. Given a set S, M N
S will denote the set of all finite multisets on

S, that is, the set of all functions S→ N that are non-zero only on a finite subset of S. Similarly, M Z
S

will denote the set of all finite signed multisets on S, viz. the set of all functions S→ Z that are non-zero
only on a finite subset of S. It is worth recalling the well-known fact that for each S, M N

S is the free
commutative monoid generated by S under the operation of multiset union [16], while M Z

S is the free
abelian group generated by S under multiset union and subtraction [9, 45-46].

Definition 2.1. A Petri net N is a 4-tuple (PN ,TN ,
◦(−)N ,(−)◦N), where:

• PN is a set, called the set of places;

• TN is a set, called the set of transitions;

• ◦(−)N ,(−)◦N are functions TN →M N
PN

, called input and output, respectively.

A state for the net N is an element of M N
PN

, representing how many tokens are in each place.
Given nets N := (PN ,TN ,

◦(−)N ,(−)◦N) and M := (PM,TM, ◦(−)M,(−)◦M), a morphism from N to
M is a pair 〈 f ,g〉 where f is a function TN → TM, g is a monoid homomorphism M N

PN
→M N

PM
, and the

following conditions hold:

f ; ◦(−)M = ◦(−)N ;g f ;(−)◦M = (−)◦N ;g

It is straightforward to check that Petri nets and Petri net morphisms form a category, called PetriN.

A morphism of nets N→M expresses the fact that N can be simulated by M, as thoroughly explained
in [11]. We are now ready to define the main objects of our investigation, generalizing the previous
definition:
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Definition 2.2. A semi-integer Petri net is a Petri net where states are elements of M Z
PN

. An integer Petri
net is a semi-integer Petri net where ◦(−)N ,(−)◦N are functions TN →M Z

PN
. A morphism of semi-integer

nets is defined exactly as in 2.1, while a morphism N→M of integer nets is defined taking g in the pair
〈 f ,g〉 to be a group homomorphism M Z

PN
→M Z

PM
.

Semi-integer nets and their morphisms form again a category, and so do integer nets and their morphisms.
We denote them as PetriZstate and PetriZ, respectively.

All in all, semi-integer Petri nets are just ordinary nets where states are allowed to have negative tokens,
but transitions can only produce/consume positive ones. Integer nets, instead, also allow for transitions to
consume and produce negative tokens.

Furthermore, some readers may have noticed that the category PetriN is defined exactly as in [16], and
that PetriN and PetriZstate are the same thing. This should not surprise, since the categories just defined
do not capture any information about the net states, and only account for the underlying topology. This
is part of a bigger problem, precisely that the role of states for a net has always been ambiguous. States
represent the “dynamical part” of the net (resources produced/consumed) and are often not considered to
be part of it. The impact that this ambiguity has on the definition of net executions will be evident and
thoroughly discussed at the end of Section 3.

Now we recast our graphical formalism to deal with (semi-)integer nets. We represent a negative
number of tokens in a place using red dots. For instance, the transition in Figure 2a has −2 tokens in its
input place and 3 tokens in its output place. Note that Z being a group, we can always “produce” an equal
number of positive and negative tokens in each place (see Figure 2b). This has dramatic consequences on
the behaviour of our nets: Now each transition can fire at will “borrowing” tokens from a place, that is left
with an equal number of tokens of the opposite sign (see Figures 2c and 2d).

-4

(a) An integer Petri net.

=

(b) Integer tokens.
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(c) Before firing.

H2

(d) After firing.

Figure 2

Semi-integer nets can be useful to model conflict resolution in concurrent behaviour. Petri nets are, in
fact, good models for concurrent computation, but do not take into account what happens when the
computation is shared by multiple agents over a non-ideal network. Consider, for instance, the net in
Figure 3a: Transitions t1 and t2 have to compete for the token in p1 and they cannot both fire. Now
suppose that there are two users, say U1 and U2, that can operate on the net, deciding which transition to
fire. When a user takes a decision, it is broadcast over the network to the other user, and the overall state
of the net is updated. In a realistic scenario, though, broadcasting over the network takes time: User U1
could decide to fire t1 and user U2 could decide to fire t2 while the broadcast choice of U1 has still to be
received, putting the overall net into an illegal state (Figure 3b).
In such a situation we need a way to re-establish consensus, that is, decide unambiguously in which legal
state the net is. There are multiple ways to do this, but our main concern here is that the usual Petri net
formalism does not have a way to represent illegal states, which is fundamental to attacking the problem.
With integer states we are able to easily represent such a situation using negative tokens, as in Figure 3c.
Re-establishing consensus from an illegal state then amounts to getting back to a state where the number
of tokens in each place is non-negative.

Integer nets can instead be useful to model economic phenomena: Places can be seen as actors (or
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Figure 3

accounts) and tokens as entries in these accounts. Negative tokens then represent debit while positive
tokens are credits, and transitions are bookkeeping events that convert between credits and debits. The
characterization of economic phenomena in terms of process theories is object of a broader research that
the Statebox team is carrying on along with multiple partners, and that also involves open games [5],
macroeconomics [22] and open systems [20].

3 The category of executions of (semi-)integer Petri nets

Now we focus on defining executions for our nets. A suitable category of executions for PetriN has
already been defined in [16], of which the work carried out in this section is a direct generalization. Most
notably, the right categories of executions for PetriZstate and PetriZ will turn out to be compact closed,
while the category of executions for PetriN is not. This is striking considering that PetriN and PetriZstate

are the same category, and further highlights how the same category can be thought of in completely
different ways.

The plan is as follows: We want to represent places as “basic types”, states as monoidal products of
these types (so, for instance, A⊗B⊗A means “a state with two tokens in A and one in B”) and transitions
as morphisms between states. This tells us that our category has to be monoidal. Moreover, we want to
represent negative tokens and the fact that they annihilate with positive ones, and to do so we resort to
duals (A? stands for “−1 tokens in A”), cups and caps (representing creation/annihilation of tokens of
the opposite sign). Thus, we realize that a compact closed category would be a good model to represent
(semi-)integer net computations.

Counter-intuitively, we cannot require the monoidal product to be commutative, because doing so
would disrupt the functorial relationship between Petri nets and their executions, as proven in [16, Thm.
2.2]. This will force us to do quite a lot of bookkeeping, such as keeping track of permutations in a state.

Definition 3.1. Let S be a set. S can be seen as a discrete category, and one can build the free strict1

compact closed category generated by S, as shown in [10]. Denote this category with S . We define the
strict compact closed category GS as S modulo the axioms

εu−1 = σu−1,u;εu ηu;σu−1,u;εu−1 = idI ∀u.(u ∈ obj GS) (3.1)

Where σ denotes symmetries and η ,ε units and co-units, respectively (also called cups and caps).

Given a set S, we will denote with SZ the set of finite strings of elements of S∪S−1, where S−1 is the set
of formal expressions

{
s−1
∣∣ s ∈ S

}
. It is easy to check that objects of GS are just elements of SZ, that the

monoidal product (denoted with ⊗) is just a concatenation of strings (with unit I being the empty string),

1Following the notation given in [10], by strict compact closed category we mean a category that is strict as a symmetric
monoidal category, and for which the isomorphisms (A⊗B)? ' B?⊗A?, I? ' I and A?? ' A are all identities.
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and that the dual of a string is its inverse when SZ is seen as the underlining set of the free group generated
by S. Morphisms of GS are obtained as finite compositions/monoidal products of identities, binary swaps,
cups and caps on elements.

Remark 3.2. Using the freeness of S one can moreover check that, for every strict compact closed
category C for which the axioms in 3.1 hold, and for each function f : S→ obj C , there is a unique strict
symmetric monoidal functor f : GS→ C , carrying the cups and caps of GS to the cups and caps of C ,
extending f .

Definition 3.3. An integer Petri category is a strict compact closed category whose monoid of objects is
the monoid SZ for some set S such that, for each object, A? = A−1 and the axioms in 3.1 hold.

Definition 3.4. Given an integer Petri category C , we call an arrow τ of C structural if

τ =
m1⊗

i1=1

α
1
i1 ; . . . ;

mn⊗
in=1

α
n
in

With each α
j

i j
being an identity, a symmetry, a cup or a cap.

Intuitively, structural arrows are needed for the above-mentioned bookkeeping in modelling a net execution.
We want to represent the fact that transitions consume tokens produced by other transitions by composing
processes, but to do this we need symmetries to reorder the way we present tokens if needed, and cups/caps
to represent the creation/annihilation of tokens of the opposite sign when they are in the same place.

Definition 3.5. Given an integer Petri category C , an arrow τ of C is primitive if:

• τ is not structural;

• If τ = α;β then α is structural and β is primitive, or vice-versa;

• If τ = α⊗β then α = idI and β is primitive, or vice-versa.

We would like primitive arrows to represent “the actual transitions of the net”. To accomplish this we
think of an arrow τ in C as primitive when it’s not in the image of the functor GS→ C obtained lifting the
obvious inclusion S ↪→ obj C . This is the best way to say that “a primitive arrow is the smallest arrow that
is not structural”, since structural arrows in C can be seen as “always coming from GS”.

As we will see shortly, this is not enough to reliably identify what stands for a transition in a Petri
category, and we will have to refine this idea further to make it work.

Lemma 3.6. There is an obvious mapping M : SZ→M Z
S that associates to each string s ∈ SZ an integer

multiset S→ Z:

M(s)(p) := Occurrences of p in s − Occurrences of p−1 in s

Lemma 3.7. Let C be an integer Petri category and let SZ be its monoid of objects. Given an integer
multiset ν : S→ Z, consider the set of objects of C such that their image through M is ν , along with
structural arrows between them. This gives a subcategory of C , denoted with GC ,ν .

If M Z
S can be seen as the free abelian group on S, SZ clearly stands for the free group on S. M acts

identifying all the objects of SZ that would end up being identified if we were to quotient it by introducing
commutativity. GC ,ν then is the category of all possible operations that we can make on an element in
SZ without changing the equivalence class it is sent to, viz. all the possible bookkeeping we can do on a
object without altering the net state it corresponds to.

The following definitions are a direct generalization of the ones given in [16].



132 Executions in (Semi-)Integer Petri Nets are Compact Closed Categories

Definition 3.8. Let C be an integer Petri category and let SZ be its monoid of objects. Given integer
multisets ν ,ν ′ : S→ Z, a transition2 of C is a natural transformation τ : πC ,ν → πC ,ν ′ whose components
are all primitive, where πC ,ν and πC ,ν ′ are the obvious compositions of projection and inclusion functors:

πC ,ν : GC ,ν ′×GC ,ν
π1−→ GC ,ν ↪→ C πC ,ν ′ : GC ,ν ′×GC ,ν

π2−→ GC ,ν ′ ↪→ C

We say that a strong monoidal functor between Petri categories F : C → D preserves transitions if F
carries structural arrows to structural arrows and for each transition τ of C there is a transition θ of D
such that Fτu,v = θFu,Fv, where by τu,v we denote the components of τ (similarly for θ ).

As one can imagine, transitions in the previous definition represent the actual transitions of a given Petri
net in its category of executions. To see this note that if we want to represent a transition as a process,
then clearly we do not want to consider it as a different one if we permute the objects in its input or output.
This is because in a Petri net a transition only cares about the number of tokens it consumes (produces)
from (in) a place, and not about the order in which these tokens are received (sent). Similarly, we want
to “ignore” all the pairs of type s,s−1 showing up in the process input and output, since these couples
correspond to a 0 when translated to multisets, meaning that again in the Petri net formalism these pairs
are “not seen” by any transition.

Clearly in the world of categories things are different, since morphisms of a category are sensitive to
object order and/or presence of object+dual pairs. Requiring a morphism to be indifferent to this amounts
exactly to asking that it commutes with swaps, cups and caps. In categorical terms it means requiring
that the morphism is the component of a natural transformation between functors expressing the action of
commuting and introducing/removing such pairs.

Finally, we see that if transitions in a net become natural transformations in the corresponding category
of executions, then we want a notion of morphism between these categories that corresponds, functorially,
to the notion of morphism we have between nets. Since a morphism between nets sends transitions to
transitions, the natural requirement in the category of executions is that morphisms (viz. functors) preserve
the natural transformations that are transitions.

Definition 3.9. Given two integer Petri categories C ,D we define the relation RC ,D on transition-
preserving functors F,G : C →D saying that F,G ∈RC ,D if there are natural transformations τ : F→G
and τ ′ : G→ F such that their components are all structural arrows. For each couple C ,D , RC ,D is an
equivalence relation. Moreover,

(F,G) ∈RC ,D ∧ (F ′,G′) ∈RD ,E =⇒ (F ;F ′,G;G′) ∈RC ,E

This definition is, again, in line with the idea that we want to characterize functors only by looking at
what they do to transitions. If they differ only in the way they handle the bookkeeping morphisms, then
they should be regarded as the same. It is easy to check that identity functors preserve transitions, as does
composition of transition-preserving functors. We moreover have:
Lemma 3.10. R is a congruence. If F : C →D preserves transitions and θFu,Fv = Fτu,v = θ ′Fu,Fv, then
θ ′ = θ ′ . Moreover, if (F,G) ∈RC ,D and F,G preserve transitions, Fτu,v = θFu,Fv iff Gτu,v = θGu,Gv.
This is enough to ensure that the following definition is correct:

Definition 3.11. We define the category of generalized Petri executions, GExPetri, as having integer Petri
categories as objects and transition-preserving functors modulo R as morphisms. Note that objects of
GExPetri are compact closed categories, but GExPetri is not compact closed itself.

2To be unambiguous, we will distinguish transitions in the net context from transitions in the categorical context by
underlining.
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Now we are finally ready to prove the main theorem of this work, that functorially associates, to each
integer Petri net, a semantics representing its computations.

Theorem 3.12. Consider a net N := (PN ,TN ,
◦(−)N ,(−)◦N) ∈ obj PetriZ. We can associate to N the

strict compact closed category including GPN as a subcategory, plus the arrows defined by the following
inference rules:

t ∈ TN

tu,v ∈ HomF(N) [u,v]
∀u,v.(M(u) = ◦(t)∧M(v) = (t)◦)

α ∈ HomF(N) [u,v] , β ∈ HomF(N) [u′,v′]
α⊗β ∈ HomF(N) [u⊗u′,v⊗ v′]

α ∈ HomF(N) [u,v] , β ∈ HomF(N) [v,w]
α;β ∈ HomF(N) [u,w]

in which the following family of axioms holds:

p; tu′,v′ = tu,v;q ∀p,q.(p ∈ HomGPN

[
u,u′

]
∧q ∈ HomGPN

[
v,v′
]
) (3.2)

This correspondence can be extended to a functor F(−) : PetriZ→ GExPetri.
Similarly, to each category C ∈ obj PetriZ we can associate the net (PN ,TN ,

◦(−)N ,(−)◦N), where:

• PN is the generating set of obj C .

• TN :=
⋃

ν ,ν ′∈M Z
PN

{
τ ∈ Nat[πC ,ν ,πC ,ν ′ ]

∣∣ τ is a transition
}

• ◦(τ : πC ,ν → πC ,ν ′) = ν

• (τ : πC ,ν → πC ,ν ′)
◦ = ν ′

This correspondence can again be extended to a functor U(−) : GExPetri → PetriZ, producing an
adjunction F(−) ` U(−).

Finally, we can restrict the category GExPetri and the functor U(−) to get the following:

Corollary 3.13. Call ExPetriZ the full subcategory of GExPetri consisting of integer Petri categories
whose morphisms are generated only from compositions and monoidal products of symmetries, cups,
caps and transition components, modulo the compact closed categories axioms, the axioms in 3.1 and the
axioms in 3.2. Then PetriZ ≈ ExPetriZ.

We found a suitable category to represent executions of integer Petri nets. Now we want to find a
subcategory of ExPetriZ that can represent executions of semi-integer nets. This is indeed easy, and
amounts to putting an obvious requirement on what transitions look like:

Definition 3.14. We call an object C of ExPetriZ positive if each transition in C is of type τ : πC ,ν→ πC ,ν ′

with all the elements in the images of ν ,ν ′ being≥ 0. Positive objects of ExPetriZ and morphisms between
them form a full subcategory, denoted with ExPetriZstate.

Theorem 3.15. There is an equivalence PetriZstate ≈ ExPetriZstate, and thus an equivalence

ExPetriN ≈ PetriN = PetriZstate ≈ ExPetriZstate (3.3)

Where ExPetriN and PetriN are the categories denoted as PSSMC and Petri, respectively, in [16].
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This result says that the category of executions for Petri nets defined in [16], whose objects are monoidal
but not compact closed categories, is equivalent to ExPetriZstate, that is a category of compact closed
categories. This should not surprise: PetriN and PetriZstate are the same category, but represent different
things: The fact is that they are different in the definition of what a state is, which is not accounted for in
their categorical structure. Different definitions of state are then embedded in the structure of the objects
of ExPetriN and ExPetriZstate, while the morphism structure of ExPetriN and ExPetriZstate models how
different nets interact with each other. This result then says that semi-integer nets simulate and interact
with each other exactly as normal nets do: Different types of objects, representing different types of
executions, are connected to each other in the same way, that only depends on the underlying topology.

4 The causal structure of net computations

Now we want to use the properties of compact closed categories to gain a better insight into how the
executions of (semi-)integer Petri nets work, that is, we want to look inside the objects of ExPetriZ

and ExPetriZstate. Compact closed categories admit a well-known graphical calculus [4, 19], that we
will extensively use to represent what occurs. This calculus has been extensively used in the study of
categorical quantum mechanics and the reader familiar with this topic should consider carefully such
conceptual links while reading the following. First of all, a quick recap: In the graphical calculus for
compact closed categories we express categorical facts as diagrams, that are read left to right. Objects
are drawn as wires and arrows as boxes. The wire standing for the monoidal unit I is not drawn, or it is
drawn as dashed when its presence needs to be emphasized (Figure 4a). Composition of arrows f ;g is just
wiring the outputs of f into the inputs of g, while monoidal products are depicted putting boxes and wires
next to each other (Figure 4b). Swaps, cups and caps are represented as in Figure 4c.

f

u u

u v

I I

(a) Object, morphism,
monoidal unit.

h

f gu′′u u′

v v′

(b) u⊗v
( f ;g)⊗h−−−−→ u′⊗v′

u v

v u

u u−1

u−1 u

(c) Swap (top), cap (b.
left), cup (b. right).

u−1

u

u−1

u

=

=

= u−1

u

u−1

u

(d) Axioms 3.1 and a
consequence (bottom).

Figure 4: Graphical calculus for compact closed categories.

In a integer Petri category, moreover, the axioms in 3.1 hold, and can be represented graphically as in
Figure 4d (note that the third line in Figure 4d is a consequence of the first, and has been added explicitly
to give a sense of symmetry). The axioms, now that they are shown graphically, have a clear interpretation:
The first and the third line in Figure 4d are interpreted as “it does not matter how you deform and twist
them, in the end they are still a cap and a cup”. The axiom in the second line represents the fact that we are
not interested in registering events when “nothing happens”: The symbol on the left represents the creation
of a pair of type u⊗u−1 followed by its annihilation, while the one on the right is the monoidal unit. The
axiom just says that if no element of the created couple undergoes any sort of process/transformation
before the annihilation, then we may as well forget that the event happened.
The first thing that we want to do is to see what a transition looks like graphically. Given a category in
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τ

u1 v1
u2 v2
u3 v3
u4 v4

u−1
4 v−1

4u5 v5

= τ

u1 v1
u2 v2
u3 v3
u5 v5

Figure 5: Transitions can be depicted as boxes with the property above, for suitable ui and vi.

ExPetriZ, we know that the only generating morphisms are transition components. The morphisms τu,v

are all “avatars” of the same transition τ , to be used in different contexts depending on the bookkeeping
we have to do. Since these components all stand for the same transition in the net U(N), the only data
that matters is the transition they are part of, and in diagrams we can safely omit the component indexes,
as in Figure 5: Here the two boxes are clearly representing different components of the transition τ ,
and the equality, holding for any suitable choice of domain/co-domain (viz. objects that differ only by
structural arrows, and get sent to the same multiset) is the exact graphical embodiment of τ being a natural
transformation commuting with structural arrows.

X τ Y X τ Y X τ

N

Y

τ
X

X−1 X−1

Y

(a) Turning a legal state into an illegal one.

X τ Y X τ

N

Y X τ Y

τ
X Y

Y−1Y−1

(b) Turning an illegal state into a legal one.

Using cups and caps, we can see how we are now able to represent executions of Petri nets that weren’t
representable before. Look, for instance, at Figure 6a: Above, we are representing what happens from
the point of view of Petri nets, while below we depict how the execution is built as the transition fires
and couples of positive/negative tokens are produced/deleted. Vertical dashed lines separate consecutive
instants in time. In the context of semi-integer nets, the net in Figure [6a] depicts an execution that turns a
legal state into an illegal one. This represents well the situation detailed in Section 2, where we deduced
that a net could always fire “borrowing” some tokens from a place. In the context of integer nets, the
same figure may represent the idea of moving money from a given account (the first place) to another (the
second place) without having it. Negative tokens then represent the necessary debt one has to make in
order to take that money out of the account.

On the contrary, again in the context of semi-integer nets, the net in Figure 6b turns an illegal state
into a legal one, literally “deleting” a negative token. From the point of view of integer Petri nets, this can
be interpreted as the act of extinguishing a debt.
Combining the concepts considered above, we can take the transpose of any transition, as shown in
Figure 7. This is demonstrates a duality that is ubiquitous when working with compact closed categories:
Each transition can naturally be seen as a “forward-acting” process or as a “backward-acting” one on the
dual entities. If a transition in a semi-integer net is thought of as “taking positive tokens from some place
X to some place Y ”, Figure 7 shows how the same transition can be thought of as “taking negative tokens
from Y to X”. This means that if we are in an illegal state represented by a negative token in some place,
we can shift that token backwards by firing transitions pointing at that place. This makes indeed sense:
Firing a transition t from X to Y , with a negative token in Y , amounts to saying “If I have any way to
produce a positive token in X , then I can automatically fix my problem in Y by firing t. So I might as well
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X τ Y X τ Y X τ

N

Y X τ Y

Y−1 Y−1 Y−1

τ
YX

X−1 X−1 X−1

Figure 7: The transpose of a transition acts in the opposite direction on tokens of opposite sign.

say that t shifts my problem in Y to a problem in X”.
In integer Petri nets, the transpose can be seen as switching from thinking in terms of credit to thinking in
terms of debit: Paying someone could either mean “giving money” or “acquiring debt”.

1 -1

Figure 8: The Inversion transition

In integer nets we can also have mixed transitions,
like the inversion transition depicted in Figure 8.
We think of it as a process consuming money and
producing debt. The transpose, in this case, is
again a process that consumes money and produces
debt, but flowing in the other direction.

Now we can use this machinery to tackle the conflict resolution problem exposed in Section 2. The
chain of events is represented in Figure 9: First, a user U1 fires τ , consuming the only token present in
X . Then user U2, unaware of U1’s action, fires ν , putting the net into an illegal state. Finally, U1 puts the
net back to a legal state, “giving back” to X the resource used before, by firing µ . We clearly see how
cups and caps already give us the solution for our conflict problem: If we apply the yanking equations
and straighten the line, we get a sequence of legal states, namely the sequence of firings “τ , then µ , then
ν”. We witness how the graphical formalism for executions makes the solution to our problem easy to
understand: If the vertical bars separate instants in time as it flows in the real word, the wire in the string
diagram represents the flow of time according to the net itself : Eliminating negative tokens previously
produced amounts to reshuffling the order of events in the net.
One downside of this approach is that U1 is acting on a token that “was already there”, while U2 is acting
on a token produced on the fly by a cup. Clearly these two tokens are different, since the first may have
a complex history (e.g. it was consumed/produced by other transitions before) while the second one is
created “on the fly”. The whole point is obviously that U2 does not know this: He is unaware of U1’s
action, and believes to be using U1’s token!

Clearly, to solve this issue we need a way to decide who acted first between U1 and U2. This is a
typical consensus problem, meaning that we need a way to establish an objective case (namely who acted
first between U1 and U2) among a group of agents that may have different points of view. The advantage
of our approach is that the amount of consensus required is small: Instead of having to converge on what
is the best way to solve the conflict (i.e. by merging transitions in some strange way, or dropping the
execution of one of the two transitions altogether etc.), the agents have to agree on a very simple fact that
for instance could be solved, implementation-wise, just using timestamps. The execution structure of the
net will take care of the rest.

As usual, Figure 9 has an interpretation also in the context of integer nets: In this case we again embrace
the economics-oriented perspective. Places X ,Y,Z represent accounts (more specifically portfolios),
belonging to different agents, that will be denoted with the same names X ,Y,Z to avoid clutter. Imagine
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Figure 9: In ExPetriZstate, Conflict resolution. In ExPetriZ, business strategy involving short-selling.

that X holds some financial instrument, and X predicts that prices will fall sharply in the future: Figure 9
may represent a possible business strategy. First, X sells the instrument to Y . To capitalize further on
his prediction, he also short sells 3 the financial instrument to Z, for instance via going long 4 on a put
option 5. When prices go down, X buys back the financial instrument from Y and exercises the put option
(effectively selling to Z), making a double profit.

In this example cups and caps are helpful to represent the idea that a financial operation can be
executed at a different time from its purchase. Note also how we can infer, from this diagram, that Y ’s
strategy consists in going long on the financial instrument owned by X : Y hopes to sell the instrument
back to X at a profit, which is possible only if it acquires value in the short future.

5 Conclusion and Future work

In this work we generalized the notion of Petri nets in two different ways: We built their categories
of executions and demonstrated the power of our formalism graphically. We were driven by practical
applications, namely a way to represent conflict resolution in Petri nets and a way to represent economic
phenomena and accounting. Both areas of research are deeply entangled in the Statebox project. State-
box [21] is a programming language for complex infrastructure entirely based on Petri nets, and runs in a
decentralized way using Blockchain-based solutions. The Blockchain [12] is needed exactly to establish
consensus when the net is run by multiple users.

3In finance, going short means buying a financial instrument with the expectation that it will decrease in value [8]. Short
selling is the act of selling an asset that the seller does not own, and includes borrowing the instrument from a broker.

4Going long is the opposite of going short, and means buying a financial instrument with the expectation that it will acquire
value [6].

5A put option is a contract giving the owner the right, but not the obligation, to sell a specified amount of the instrument at a
specified price and time [7]. Note that in this case X is going long on the put option, because the more prices go down with
regard to the selling value specified in the contract, the more the contract will acquire value.
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Blockchain-based consensus deals with conflicts by accepting only one state and discarding conflicting
others. Semi-integer nets provide an alternative way to preserve consensus by merging conflicting states
in a net. This is achieved reshuffling the causality flow of the executed transitions. The practical use and
hopefully implementation of the concepts presented here will surely be object of future work. We will
also work to expand the categorical machinery to deal with more sophisticated conflicting scenarios.

On the other hand, integer nets are useful to model economic flows. This is very interesting from a
Blockchain perspective, where the usual way of representing resources (computations included) is by
monetizing them [3]. An operative account of economics is then very useful to design the best way to
represent a given asset on the Blockchain, and to create high-level tools to solve long-standing open
problems, such as smart contract analysis [1]. Future work will include investigating applications of
integer Petri nets to real economic phenomena, and how they relate to other established tools in the field,
such as Open Games [5].

Finally, from a genuinely academic point of view, the structural similarities with the categorical
framework for quantum mechanics – namely compact closed categories – are worth studying in depth,
since the possibility of describing quantum phenomena by means of Petri nets cannot be excluded a priori.
If our intellectual resources allow it, this will surely be another future direction of research.
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A Proofs

Lemma 3.7. Let C be an integer Petri category and let SZ be its monoid of objects. Given an integer
multiset ν : S→ Z, consider the set of objects of C such that their image through M is ν , along with
structural arrows between them. This gives a subcategory of C , denoted with GC ,ν .

Proof. Suppose that u is an object of C such that M(u) = ν . Moreover, recall that by definition u has the
form

⊗n
i=1 ui with each ui ∈ S. The claim is obvious from the following considerations:

• Identities do not change anything, so clearly iduu = u;

• M is insensitive to ordering, all it does is counting. Hence applying a symmetry to u doesn’t change
its image through M, meaning: M(σ(u)) =M(u);

• Given an element ui of S, couples of the form (u−1
i ,ui) do not change M(u), since M is evaluated

as 1 on ui and as −1 on u−1
i . This means that such couples can be added and subtracted at will

anywhere in/from u;

• All the cups/caps in C can be obtained composing symmetries and cups/caps on the elements of S,
and their inverses. This means that cups/caps always add/remove elements from u in pairs as in the
previous point, leaving M(u) unaltered;

• A structural arrow is a composition of monoidal products of identities, symmetries and cups/caps.
Since all these things do not alter M(u), applying a structural arrow to u ∈ GC ,ν gives us an object
v ∈ GC ,ν .

Being u a generic element of GC ,ν this proves that composition is well defined in GC ,ν . Associativity of
morphisms is inherited from C and the existence of identities from the fact that identities are trivially
structural arrows.

Lemma 3.10. R is a congruence. If F : C →D preserves transitions and θFu,Fv = Fτu,v = θ ′Fu,Fv, then
θ ′ = θ ′ . Moreover, if (F,G) ∈RC ,D and F,G preserve transitions, Fτu,v = θFu,Fv iff Gτu,v = θGu,Gv.

Proof. We start proving that RC ,D is an equivalence relation for each couple of integer Petri categories
C ,D . Clearly for any functor F : C → D it is (F,F) ∈RC ,D since there is always an identity natural
transformation idF : F → F . Moreover, if (F,G) ∈ RC ,D , then (G,F) ∈ RC ,D since the definition of
RC ,D is totally symmetric (just invert the roles of τ and τ ′ in the definition). Now suppose that (F,G) and
(G,H) are in RC ,D . Then there are natural transformations

τ : F → G τ
′ : G→ F τ̄ : G→ H τ̄

′ : H→ G

With components all structural arrows. But then the componentwise compositions τ; τ̄ : F → H and
τ̄ ′τ ′ : H→ F have all components structural arrows (since composition of structural arrows is a structural
arrow), proving that (F,H) ∈RC ,D .

Now let’s prove that R defines a congruence. This means that it respects compositions. Consider
(F,G) ∈RC ,D and (F ′,G′) ∈RD ,E . As usual we have:

τ : F → G τ
′ : G→ F τ̄ : F ′→ G′ τ̄

′ : G′→ F



F. Genovese & J. Herold 141

So, the naturality conditions guarantee that, for each couple of objects u,v ∈ C and morphism f : u→ v,

(F ;F ′)u (F ;F ′)v

(G;F ′)u (G;F ′)v

(G;G′)u (G;G′)v

(F ;F ′) f

F ′τu F ′τv

(G;F ′) f

τ̄Gu τ̄Gv

(G;G′) f

(G;G′)u (G;G′)v

(F ;G′)u (F ;G′)v

(F ;F ′)u (F ;F ′)v

(G;G′) f

G′τ ′u G′τ ′v

(F ;G′) f

τ̄ ′Fu τ̄ ′Fv

(F ;F ′) f

Commute. Since both F ′ and G′ are transition-preserving they carry structural arrows to structural arrows,
and hence the diagram on the left (resp. on the right) defines a natural transformation F ;F ′→ G;G′ (resp.
G;G′→ F ;F ′) whose components are all structural arrows, proving (F ;F ′,G;G′) ∈RC ,E .

Now we prove the second claim. Consider a transition component θx,y, and structural arrows γ : x′→ x,
γ ′ : y→ y′, with x,x′ ∈ GC ,ν and y,y′ ∈ GC ,ν ′ . Then, being θ a natural transformation, the following
diagrams commute:

x′ y

x y

θx′,y

γ

θx,y

x′ y

x′ y′

θx′,y

γ ′

θx′,y′

Proving γ;θx,y;γ ′ = θx′,y;γ ′ = θx′,y′ . From this it is easy to see that if θFu,Fv = θ ′Fu,Fv, then θ = θ ′. This is
because given any two elements in GC ,ν (in GC ,ν ′ , respectively) there is always a structural morphism in
GC ,ν (in GC ,ν ′ , respectively) connecting them, since each element can be obtained from another permuting
it and adding/erasing pairs of elements u and u−1 using cups and caps.

The last claim is obvious.

Theorem 3.12. Consider a net N := (PN ,TN ,
◦(−)N ,(−)◦N) ∈ obj PetriZ. We can associate to N the

strict compact closed category including GPN as a subcategory, plus the arrows defined by the following
inference rules:

t ∈ TN

tu,v ∈ HomF(N) [u,v]
∀u,v.(M(u) = ◦(t)∧M(v) = (t)◦)

α ∈ HomF(N) [u,v] , β ∈ HomF(N) [u′,v′]
α⊗β ∈ HomF(N) [u⊗u′,v⊗ v′]

α ∈ HomF(N) [u,v] , β ∈ HomF(N) [v,w]
α;β ∈ HomF(N) [u,w]
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in which the following family of axioms holds:

p; tu′,v′ = tu,v;q ∀p,q.(p ∈ HomGPN

[
u,u′

]
∧q ∈ HomGPN

[
v,v′
]
) (3.2)

This correspondence can be extended to a functor F(−) : PetriZ→ GExPetri.
Similarly, to each category C ∈ obj PetriZ we can associate the net (PN ,TN ,

◦(−)N ,(−)◦N), where:

• PN is the generating set of obj C .

• TN :=
⋃

ν ,ν ′∈M Z
PN

{
τ ∈ Nat[πC ,ν ,πC ,ν ′ ]

∣∣ τ is a transition
}

• ◦(τ : πC ,ν → πC ,ν ′) = ν

• (τ : πC ,ν → πC ,ν ′)
◦ = ν ′

This correspondence can again be extended to a functor U(−) : GExPetri → PetriZ, producing an
adjunction F(−) ` U(−).

Proof. First of all, note that the category F(N) is isomorphic to the category C having PZ
N as objects, and

whose arrows are generated by the rules:

u ∈ PZ
N

idu ∈ HomC [u,u]
u ∈ PZ

N

εu ∈ HomC [u⊗u−1, I]
u ∈ PZ

N

ηu ∈ HomC [I,u⊗u−1]

u,v ∈ PZ
N

σu,v ∈ HomC [u⊗ v,v⊗u]

t ∈ TN

tu,v ∈ HomC [u,v]
∀u,v.(M(u) = ◦(t)∧M(v) = (t)◦)

α ∈ HomC [u,v] , β ∈ HomC [u′,v′]
α⊗β ∈ HomC [u⊗u′,v⊗ v′]

α ∈ HomC [u,v] , β ∈ HomC [v,w]
α;β ∈ HomC [u,w]

Modulo the axioms that make it into a strict compact closed category:

α; idv =α = idu;α (α;β );γ = α;(β ;γ)

I⊗α =α = α⊗ I (α⊗β )⊗ γ = α⊗ (β ⊗ γ)

idu⊗ idv = idu⊗v (α⊗α
′);(β ⊗β

′) = (α;β )⊗ (α ′;β
′)

σu,v⊗w = (σu,v⊗ idw);(idv⊗σu,w) σu,v;σv,u = idu⊗v

σu,u′ ;(β ⊗α) = (α⊗β );σv,v′ ∀α,β .(α ∈ HomC [u,v]∧β ∈ HomC

[
u′,v′

]
(idv⊗ηv);(εv⊗ idv) = idv (ηv⊗ idv−1);(idv−1⊗ εv) = idv−1

εu−1 = σu−1,u;εu ηu−1 = ηu;σu−1,u

And the axioms:

εu−1 = σu−1,u;εu ηu;σu−1,u;εu−1 = idI

p; tu′,v′ = tu,v;q ∀p,q.(p ∈ HomGPN

[
u,u′

]
∧q ∈ HomGPN

[
v,v′
]
)

This is not difficult to prove using the freeness of GPN .
We now prove that F(−) is a functor. Let N :=(PN ,TN ,

◦(−)N ,(−)◦N) and M :=(PM,TM, ◦(−)M,(−)◦M)
be nets, and 〈 f ,g〉 a morphism N→M. We want to use the information given by f and g to build a functor
between the categories F(N) and F(M). We sketch this procedure as follows:
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• We note that g is an homomorphism M Z
PN
→M Z

PM
of free abelian groups, and hence corresponds

uniquely to a function g′ : PN →M Z
PM

because of the freeness of M Z
PN

.

• We need a way to lift g to an equivalence class of transition-preserving functors F(N)→ F(M). As
an intermediate step, we start lifting g′ to a functor GPN → F(M).

• To do this, note that for each right inverse of M, viz. some α : M Z
PM
→ PZ

M such that M(α(u)) = u,
the composition g′;α : PN → PZ

M is a function from PN to obj F(M).

• F(M) is clearly strict compact closed and by definition respects the axiom ηu;σu−1,u;εu−1 = idI ,
hence we can use Remark 3.2 to obtain a functor F : GPN → F(M).

• We extend the functor F : GPN → F(M) to a functor F(〈 f ,g〉) : F(N)→ F(M), mapping tu,v to
f (t)F(u),F(v) and coinciding with F on cups, caps and symmetries.

• Using the equivalent axiomatization for F(N) presented above, we note that the tu,v are the compo-
nents of a transition in F(N), and that all transitions in F(N) have components of type tu,v for some
t ∈ TN and objects u,v. On the other hand, f (t)Fu,Fv are the components of a transition in F(M),
and hence F(〈 f ,g〉) preserves transitions.

• For each suitable choice of α , we get functors that are identified by the relation RF(N),F(M),
hence this construction is independent from the choice of α . Moreover, if F,G are two functors
F(N)→ F(M) and (F,G) ∈RF(N),F(M) then both F,G are obtained using the procedure sketched
above, with different choices of α .

This ensures that what we are doing is well defined , and that to each 〈 f ,g〉 corresponds a morphism
F(〈 f ,g〉) in the category GExPetri. Proving functoriality of F(−) is easy noting that the identity
morphism 〈idTN , idM Z

PN
〉 is mapped in the equivalence class of the identity functor F(N)→ F(N), and

hence to the identity functor on F(N) in GExPetri. Composition is preserved noting that F(〈 f ; f ′,g;g′〉)
sends a transition t to ( f ; f ′)(t), that is a transition since composition of transition-preserving functors is
transition-preserving, and R is a congruence with respect to this.

Next step is to prove functoriality of U(−). First of all we have to determine how U(−) acts on morphisms.
Let C and D be integer Petri categories. We denote their monoids of objects as CZ and DZ, respectively.
If F : C →D is a representative of a morphism in GExPetri, then by definition it preserves structural
arrows, meaning that if u,v ∈ GC ,ν then M(Fu) =M(Fv). But then the action of F on objects induces an
obvious homomorphism of free abelian groups Fpl : M Z

C →M Z
D , which is clearly independent from the

choice of representative F .
Since F is also transition-preserving, then it induces an obvious function Ftr : TU(C )→ TU(D): Each

transition t of the net U(C ) comes by definition from a transition τ in C . Ftr then maps each t to the
transition of U(D) coming from the transition in D having components FτFu,Fv. This is again clearly
independent from the choice of F . We then set U(F) := 〈Ftr,Fpl〉. Functoriality at this point follows
trivially from the definitions.

Now we have to prove the adjunction. We define the co-unit ε : F(U(−))→ (−) specifying its components.
For each C ∈ obj GExPetri, the functor εC : F(U(C ))→ C is identity on objects and structural arrows.
Given a transition τ : πC ,ν → πC ,ν ′ in the category C , this will correspond to a transition [τ] in the net
U(C ), and this transition will be again mapped to a family of morphisms [[τ]]u,v in F(U(C )), with

M(u) = ◦([τ]) = ν M(v) = ([τ])◦ = ν
′
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Thanks to the axioms in 3.2, the [[τ]]u,v define a transition in the category F(U(C )), and we can define
εC as mapping each morphism [[τ]]u,v to τu,v. This obviously makes εC transition-preserving, and thus
a representative of a morphism in GExPetri. Then each [εC ]RC ,C

(here [−] denotes an equivalence
class) defines the components of a natrual transformation ε : F(U(−))→ (−), and proving that ε has the
co-universal property is just a straightforward check.

The unit η : (−)→ U(F(−)) is much easier to define: For each net N := (PN ,TN ,
◦(−)N ,(−)◦N), ηN

it is the isomorphism 〈ϕ, idM Z
PN
〉, where ϕ is the bijection sending each transition t of N to the transition

[t] of U(F(N)) coming from the transition in F(N) having components tu,v.

Corollary 3.13. Call ExPetriZ the full subcategory of GExPetri consisting of integer Petri categories
whose morphisms are generated only from compositions and monoidal products of symmetries, cups,
caps and transition components, modulo the compact closed categories axioms, the axioms in 3.1 and the
axioms in 3.2. Then PetriZ ≈ ExPetriZ.

Proof. We just have to show that the counit εC of the adjunction F(−) ` U(−) is an iso if and only if
C ∈ PetriZ, which is obvious from the definitions.

Theorem 3.15. There is an equivalence PetriZstate ≈ ExPetriZstate, and thus an equivalence

ExPetriN ≈ PetriN = PetriZstate ≈ ExPetriZstate (3.3)

Where ExPetriN and PetriN are the categories denoted as PSSMC and Petri, respectively, in [16].

Proof. This is quite easy. First of all we note that PetriZstate can obviously be considered a full subcategory
of PetriZ. This is clear since any multiset can also be considered as a signed multiset, and homomorphisms
of free commutative monoids M N

S →M N
S′ can be lifted to a homomorphisms of free abelian groups

M Z
S →M Z

S′ via the usual free properties. The equivalence then follows trivially that:

• The image through F(−) of a net in PetriZstate is a positive object in ExPetriZ, which is obvious
from the definition;

• The image through U(−) of a positive object in ExPetriZ is a net in PetriZstate, which is again
obvious from the definition.
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