
Bob Coecke and Aleks Kissinger (Eds.):
14th International Conference on Quantum Physics and Logic (QPL)
EPTCS 266, 2018, pp. 119–132, doi:10.4204/EPTCS.266.8

© Rand, Paykin & Zdancewic
This work is licensed under the
Creative Commons Attribution License.

QWIRE Practice:
Formal Verification of Quantum Circuits in Coq

Robert Rand
rrand@seas.upenn.edu

Jennifer Paykin
jpaykin@seas.upenn.edu

University of Pennsylvania

Steve Zdancewic
stevez@cis.upenn.edu

We describe an embedding of the QWIRE quantum circuit language in the Coq proof assistant. This
allows programmers to write quantum circuits using high-level abstractions and to prove properties of
those circuits using Coq’s theorem proving features. The implementation uses higher-order abstract
syntax to represent variable binding and provides a type-checking algorithm for linear wire types,
ensuring that quantum circuits are well-formed. We formalize a denotational semantics that interprets
QWIRE circuits as superoperators on density matrices, and prove the correctness of some simple
quantum programs.

1 Introduction

The last few years have witnessed the emergence of lightweight, scalable, and expressive quantum cir-
cuit languages such as Quipper [10] and LIQUi∣⟩ [22]. These languages adopt the QRAM model of
quantum computation, in which a classical computer sends instructions to a quantum computer and re-
ceives back measurement results. Quipper and LIQUi∣⟩ programs classically produce circuits that can be
executed on a quantum computer, simulated on a classical computer, or compiled using classical tech-
niques to smaller, faster circuits. Since both languages are embedded inside general-purpose classical
host languages (Haskell and F#), they can be used to build useful abstractions on top of quantum circuits,
allowing for general purpose quantum programming.

As is the case with classical programs, however, quantum programs in these languages will invariably
have bugs. Since quantum circuits are inherently expensive to run (either simulated or on a real quantum
computer) and are difficult or impossible to debug at runtime, numerous techniques have been developed
to verify properties of quantum programs.

The first step towards guaranteeing bug-free quantum programs is ensuring that every program cor-
responds to a valid quantum computation, meaning that a simulator or quantum computer running that
program will not crash. In many cases this property can be enforced using type systems, as in the
quantum lambda calculus, which uses linear types and guarantees type safety [20]. Along these lines,
Proto-Quipper [19] adds linear types to a subset of Quipper, though this approach has not been extended
to the full Quipper language.

Beyond simply ensuring quantum mechanical soundness, we might wish to statically analyze specific
programs or families of programs and prove that their semantics matches a formal specification. Doing
so requires a formal semantics for programs, such as unit vectors or density matrices. The specification
can then be verified using model-checking [9], Hoare logic [23], proof assistants [3], or other techniques.

This work is supported in part by ONR MURI No. FA9550-16-1-0082 and NSF Grant No. CCF- 1421193.

http://dx.doi.org/10.4204/EPTCS.266.8
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

120 QWIRE Practice

Finally, one may wish to verify that two particular programs (or program fragments) have the same
semantics. LIQUi∣⟩, in particular, has focused on efficient compilation of quantum circuits; similar
projects have explored verified compilation passes in the case of reversible circuits [1].

TheQWIRE programming language [14] is a small quantum circuit language embedded in a classical
host language, which provides three core features: (1) a platform for high level quantum computing, with
the expressiveness of embedded languages like Quipper [10] and LIQUi∣⟩[22]; (2) a linear type system
that guarantees that generated circuits are well-formed and respect the laws of quantum mechanics; and
(3) a concrete denotational semantics, specified in terms of density matrices, for proving properties and
equivalences of quantum circuits.

In this paper we report on a ongoing effort to implement QWIRE in the Coq theorem prover [6] and
formalize its denotational semantics, thereby providing a framework to formally verify the correctness
of quantum programs and quantum program transformations.1 We include two forms of the language,
one using Coq variables and higher-order abstract syntax for ease of programming, and a simpler version
without these features, for verification purposes, along with a simple translation from the former to
the latter. We then use this bridge to prove properties about higher-order programs using QWIRE’s
denotational semantics.

The paper makes the following contributions:

• We implement the QWIRE programming language in the Coq proof assistant, incorporating fea-
tures such as dependently-typed circuits and proof-carrying code;

• We present a type checking algorithm for the linear type system of QWIRE using a representation
of linear contexts based on the Linearity Monad [15];

• We formalize a denotational semantics forQWIRE circuits, interpreting them as superoperators on
density matrices [13]; and

• We show how these semantics can be used to verify quantum programs, including a quantum coin
flip, a protocol with dynamic lifting, and a simple unitary circuit.

Throughout the paper, we will assume some level of familiarity with both functional programming
and proof assistants in the style of Coq or Agda. Readers unfamiliar with either of these concepts should
consult the the introductory chapter of Software Foundations [17], which introduces the Coq language
and theorem prover [6] used here.

2 Introduction to QWIRE programming

We start with some examples of QWIRE circuits implemented in Coq. The following circuit implements
a quantum coin flip:2

Definition coin_flip : Box One Bit.

box_ () ⇒

gate_ x ← init0 @();

gate_ y ← H @x;

gate_ z ← meas @y;

output z.

∣0⟩ H

1The Coq development for this paper is available at: https://github.com/jpaykin/QWIRE/tree/QPL2017.
2Unless otherwise indicated, allQWIRE circuit definitions end in an implicit Defined.

https://github.com/jpaykin/QWIRE/tree/QPL2017

Rand, Paykin & Zdancewic 121

The type Box One Bit is the high-level interface to QWIRE circuits, representing a “boxed” circuit
with no input wires (represented by the unit type One) and a Bit-valued output wire. We use Coq no-
tations and tactics to construct the circuit. The box_ tactic creates a boxed circuit from a function that
takes an input pattern of wires and produces a circuit that uses those wires; box_ also calls the linear
type-checker on the result, to ensure that the circuit is well formed. In this example, the coin_flip

circuit has no inputs, so the input pattern to the box is the empty pattern ().
The body of the circuit is made up of a sequence of gate applications, where init0, H, and meas are

all gates. These gates are applied to input patterns, whose types are determined by the gate being applied.
In coin_flip, the pattern () has type One, x and y have type Qubit, and z has type Bit. The output of
each gate is bound in the remainder of the circuit, and the circuit is terminated by an output statement.
QWIRE ensures that wires in a circuit are treated linearly, meaning that every wire is used exactly

once as input and once as output. For example, the linear type system enforces the no-cloning property,
rejecting the following bogus circuit.

Definition clone W : Box W (W ⊗ W).

box_ w ⇒ output (w,w). (* Linear type checker cannot be satisfied. *) Abort.

QWIRE is compositional, meaning that a boxed circuit can be reused inside another circuit. Notice
that only wires are treated linearly in QWIRE; a boxed circuit is a first-class Coq expression, and can
be used as many times as necessary. Consider the following circuit, which flips a coin up to n times,
returning 1 if and only if the coin always lands on heads, which occurs with probability 1

2n .

Fixpoint coin_flips (n : N) : Box One Bit.

box_ () ⇒ match n with (* n:N is either 0 or the successor of some n' *)

| 0 ⇒ gate_ x ← new1 @(); output x

| S n' ⇒ let_ c ← unbox (coin_flips n') ();

gate_ q ← init0 @();

gate_ (c,q) ← bit_ctrl H @(c,q);

gate_ () ← discard @c;

gate_ b ← meas @q;

output b

end.

coin flips n' ●

∣0⟩ H

The unbox operator feeds the input pattern () into the boxed circuit coin_flips n', and the let_

operation binds the output of the recursive call in the rest of the circuit. The let_ and unbox operations
are separate constructs; for example, box_ w⇒ unbox b w is just the η-expansion of a boxed circuit b.
QWIRE also allows for dynamic lifting [14], in which measurement results from the quantum circuit

are dynamically processed as classical data inside of Coq. This lift operation measures a qubit (or any
collection of wires) and produces a boolean (or a tuple of booleans). We use the result of the measurement
to decide which gates to apply in the remainder of the circuit. The following variation on coin_flips

uses dynamic lifting and calls the unary coin_flip circuit from the start of this section.

Fixpoint coin_flips' (n : N) : Box One Bit.

box_ () ⇒ match n with

| 0 ⇒ gate_ q ← new1 @(); output q

| S n' ⇒ let_ q ← unbox (coin_flips' n') ();

lift_ x ← q;

if x then unbox coin_flip ()

else gate_ q ← new0 @(); output q

end.

Further examples can be found in the online development, as well as in the original QWIRE paper [14].

122 QWIRE Practice

3 Implementing QWIRE in Coq

At its core, aQWIRE circuit is a sequence of gates applied to wires. Each wire is described by a wire type
W, which is either the unit type (has no data), a bit or qubit, or a tuple of wire types. In Coq we represent
wire types as an inductively defined data type WType as follows:

Inductive WType := One | Bit | Qubit | Tensor : WType → WType → WType.

We use the Coq notation ``W1 ⊗ W2'' for Tensor W1 W2.
Gates are indexed by a pair of wire types—a gate of type Gate W1 W2 takes an input wire of type W1

and outputs a wire of type W2. In our setting, gates will include a universal set of unitary gates, as well as
initialization, measurement, and control.3

Inductive Unitary : WType → Set := (* other unitary gates omitted *)

| H : Unitary Qubit (* Hadamard gate *)

| control : ∀ {W} (U : Unitary W), Unitary (Qubit ⊗ W)

| transpose : ∀ {W} (U : Unitary W), Unitary W.

Inductive Gate : WType → WType → Set :=

| U : ∀ {W} (u : Unitary W), Gate W W

| init : Gate One Qubit

| meas : Gate Qubit Bit

| discard : Gate Bit One.

The curly braces surrounding the type argument W indicate that W is an implicit argument, meaning that
it can be automatically inferred from the other arguments. We further define U to be a coercion from
unitaries to gates, meaning that for u : Unitary W, we can simply write u for U u : Gate W W.

An open circuit (one with free input wires) has Coq type Circuit Γ W, where Γ is a typing context of
input wires and W is an output wire type. As an example, the circuit

gate_ w1'← H @w1; gate_ w2' ← meas @w2; output (w2',w1')

has type Circuit (w1:Qubit, w2:Qubit) (Bit ⊗ Qubit).
A typing context of type Ctx is a partial map from variables (represented concretely as natural num-

bers) to wire types, which is represented as list (option WType). In this representation, the variable i is
mapped to W if the ith element in the list is Some W , and is undefined if the ith element is None.

The disjoint merge operation ⋓ ensures that the same wire cannot be used in two separate parts of a
circuit. Mathematically, it is defined on two typing contexts as follows:

[] ⋓ Γ2 = Γ2
Γ1 ⋓ [] = Γ1
None :: Γ1 ⋓ None :: Γ2 = None :: (Γ1 ⋓ Γ2)

Some W :: Γ1 ⋓ None :: Γ2 = Some W :: (Γ1 ⋓ Γ2)

None :: Γ1 ⋓ Some W :: Γ2 = Some W :: (Γ1 ⋓ Γ2)

Since disjoint merge is a partial function we represent it in Coq as a relation on possibly invalid contexts,
OCtx = Invalid | Valid Ctx. For convenience, most operations on contexts are lifted to work with OCtx

values, and so the type signature of the merge operation ⋓ is OCtx → OCtx → OCtx.
Wires in a context Γ can be collected into a pattern Pat Γ W to construct the wire type W. A pattern is

just a tuple of wires of base types, meaning that all variables in a pattern have type Bit or Qubit. We use
Coq’s dependent types to express logical predicates that constrain how patterns can be constructed.

3The set of gates need not be fixed; Rennela and Staton [18] explore how to use gates to extendQWIRE with recursive types.

Rand, Paykin & Zdancewic 123

Inductive Circuit' : OCtx → WType → Set :=

| output' : ∀ {Γ W}, Pat Γ W → Circuit' Γ W

| gate' : ∀ {Γ Γ1 Γ2 W1 W2 W},

is_valid (Γ1 ⋓ Γ) → is_valid (Γ2 ⋓ Γ) → Gate W1 W2 →

Pat Γ1 W1 → Pat Γ2 W2 → Circuit' (Γ2 ⋓ Γ) W → Circuit' (Γ1 ⋓ Γ) W

| lift' : ∀ {Γ1 Γ2 W W'}, is_valid (Γ1 ⋓ Γ2) →

Pat Γ1 W → (interpret W → Circuit' Γ2 W') → Circuit' (Γ1 ⋓ Γ2) W'.

Figure 1: Definition of QWIRE circuits using an explicit representation of variable binding. We call this
type Circuit’, reserving the name Circuit for the higher-order abstract syntax representation (Figure 2).

Inductive Pat : OCtx → WType → Set :=

| unit : Pat (Valid []) One

| qubit : ∀ (x : N) (Γ : Ctx), SingletonCtx x Qubit Γ → Pat (Valid Γ) Qubit

| bit : ∀ (x : N) (Γ : Ctx), SingletonCtx x Bit Γ → Pat (Valid Γ) Bit

| pair : ∀ Γ1 Γ2 W1 W2, is_valid(Γ1 ⋓ Γ2)→Pat Γ1 W1→Pat Γ2 W2→Pat (Γ1 ⋓ Γ2) (W1⊗W2).

The pair constructor (for which we use notation (p1,p2)) ensures that the wires in p1 are disjoint from
those in p2 by calling out to the is_valid predicate, which checks whether the result of the merge is
well-defined. The qubit and bit patterns are variable constructors that are only valid in contexts that
contain the exact variable being introduced. The predicate SingletonCtx x W Γ ensures that the context
Γ contains only the single wire x of type W .

Circuits Like patterns, circuits are indexed by an input context and an output type. There are only
three syntactic forms for circuits: output, gate application, and dynamic lifting. Figure 1 defines circuits
as an inductive data type indexed by the input typing context and the output wire type.

An output circuit output p is just a pattern. A gate application, which we write with syntactic sugar
as gate_ p2 ← g @p1; C, is made up of a gate g : Gate W1 W2, an input pattern p1 : Pat Γ1 W1, an output
pattern p2 : Pat Γ2 W2, and a circuit C : Circuit' (Γ1 ⋓ Γ2) W'. The intended meaning is that p1 is the input
to the gate g, and its output is bound to p2 in the continuation C. Thus the variables Γ2 that made up p2

are also free in C, whereas the variables Γ1 in p1 are no longer available in C, enforcing linearity. The
is_valid predicates enforce that all of the context arguments to circuits must be well-defined.

The lift operation, which we write lift_ x ← p; C takes as input a pattern p : Pat Γ1 W and a function
fun x⇒ C that takes the classical interpretation of that data and produces another circuit. The intended
semantics is that the circuit will measure the wires p (if they are not already bit-valued) and pass the
result as ordinary Coq data to the function. In particular, both bits and qubits will result in boolean
values being provided to the continuation, and tensors will be interpreted as pairs.

A boxed circuit, written box_ p⇒ C is a pair of a pattern and a circuit.

Inductive Box' : WType → WType → Set :=

| box' : ∀ {W1 W2 Γ}, Pat Γ W1 → Circuit' Γ W2 → Box' W1 W2.

Composition and Higher-Order Abstract Syntax The minimal embedding of QWIRE in Figure 1
lacks a number of features of the language, including composition and unboxing. The unbox operator
takes in a boxed circuit and an input pattern and produces a circuit. It has the following signature:

Definition unbox {Γ W1 W2} (b : Box' W1 W2) (p : Pat Γ W1) : Circuit' Γ W2.

124 QWIRE Practice

Inductive Circuit : OCtx → WType → Set :=

| output : ∀ {Γ Γ' w}, (Γ = Γ') → Pat Γ w → Circuit Γ' w

| gate : ∀ {Γ Γ1 Γ1' w1 w2 w}, is_valid Γ1' → (Γ1' = Γ1 ⋓ Γ)

→ Gate w1 w2 → Pat Γ1 w1

→ (∀ {Γ2 Γ2'}, is_valid Γ2' → (Γ2' = Γ2 ⋓ Γ) → Pat Γ2 w2 → Circuit Γ2' w)

→ Circuit Γ1' w

| lift : ∀ {Γ1 Γ2 Γ w w'}, is_valid Γ → (Γ = Γ1 ⋓ Γ2)

→ Pat Γ1 w → (interpret w → Circuit Γ2 w')
→ Circuit Γ w'.

Figure 2: A definition of QWIRE circuits using higher-order abstract syntax.

The intended β -reduction rule should have the form unbox (box_ p⇒ C) p' = C[p'/p] where C[p'/p] is a
substitution of the variables in p' for those in p in the circuit C.

The traditional solution to this problem involves defining a number of substitution functions and
proving appropriate typing relations for each operation. Although this approach is viable, it is often te-
dious and introduces a large amount of complexity, especially in linear systems. An alternative approach
is the technique of higher-order abstract syntax (HOAS) [16], in which variable bindings in an embedded
language are represented as functions in the host language. This means that the language designer does
not have to define substitution functions and prove their correctness, and that variables in the embedded
language have the same weight as variables in the host language.

The HOAS approach to boxed circuits treats a box as a function from patterns to circuits:

Inductive Box : WType → WType → Set :=

| box : (∀ {Γ}, Pat Γ W1 → Circuit Γ W2) → Box W1 W2.

The unbox operation then simply destructs the box and applies the function appropriately.

Definition unbox {Γ W1 W2} (b : Box W1 W2) (p : Pat Γ W1) : Circuit Γ W2 :=

match b with box f ⇒ f p end.

We can take a similar approach for the binding pattern in gate application, as shown in Figure 2. In
this setting, output of a gate application is represented by a function from the output pattern to a new
circuit. The other difference between the HOAS presentation of circuits and the “flat” representation
Circuit' in the previous section is that in addition to proofs of validity about merged contexts, we intro-
duce fresh arguments for the output context of each circuit. This is due to a technical limitation of Coq
pattern matching, and the result makes it possible for us to write the examples in Section 2.

With this machinery in place, we can define composition as a meta-operation on circuits. For con-
ciseness, we give its definition as a sequence of β -reduction rules, omitting the proof arguments.

Fixpoint compose {Γ1 Γ1' W Γ W'} (c : Circuit Γ1 W)

(f : ∀ {Γ2 Γ2'}, (Γ2' = Γ2 ⋓ Γ) → is_valid Γ2' → Pat Γ2 W → Circuit Γ2' W')
: is_valid Γ1' → (Γ1' = Γ1 ⋓ Γ) → Circuit Γ1' W'.

compose (output p) f = f p

compose (gate g p1 h) f = gate g p1 (fun p2 ⇒ compose (h p2) f)

compose (lift p h) f = lift p (fun x ⇒ compose (h x) f)

The QWIRE type checker In type-checking QWIRE circuits, we are asked to solve equations of the
form Γ1 ⋓ ⋯ ⋓ Γn = Γ1' ⋓ ⋯ ⋓ Γm' and is_valid (Γ1 ⋓ ⋯ ⋓ Γn), in order to enforce the linearity of wires.

Rand, Paykin & Zdancewic 125

The first of these goals can be discharged with a automated proof tactic for solving systems of commu-
tative monoids. In the higher-order abstract syntax version of circuits, these predicates may also contain
evars, existentially quantified Coq variables. By starting at the leaves of the typing derivation, we can
ensure that every equation of the form Γ1 ⋓ ⋯ ⋓ Γn = Γ1' ⋓ ⋯ ⋓ Γm' has at most one evar. We can then
cancel out all variables that appear on both sides of the equation, and unify the evar with what remains
on the opposite side.

Once repeated applications of monoid have replaced all existential variables with regular Coq vari-
ables, we can prove goals of the form is_valid (Γ1 ⋓ ⋯ ⋓ Γn). We take advantage of the fact that a set
of finite contexts is disjoint if and only if the contexts are all pairwise disjoint. Our custom tactic for
solving these goals extracts all proofs of pairwise disjointness from hypotheses and then reduces the goal
to a conjunction of pairwise disjointness claims is_valid(Γi ⋓ Γj). It then applies proofs of these claim,
where available, from the hypotheses.

4 Denotational Semantics

4.1 The Matrix Library

The denotational semantics ofQWIRE is implemented using a matrix library created specifically for this
purpose. Matrices are simply functions from pairs of natural numbers to complex numbers.4

Definition Matrix (m n : N) := N → N → C.

The arguments m and n, which are the dimensions of the matrix, are not used directly in the definition,
but they are useful to define certain operations on matrices, such as the Kronecker product and matrix
multiplication, which depend on these dimensions. They are also useful as an informal annotation that
aids the programmer. We say a matrix is well-formed when it is zero-valued outside of its domain.

Definition WF_Matrix {m n} (M : Matrix m n) : P := ∀ i j, i ≥ m ∨ i ≥ n → M i j = 0.

This library is designed to facilitate reasoning about and computing with matrices. Treating matrices
as functions allows us to easily express otherwise complicated matrix operations. Consider the definitions
of Kronecker product (⊗) and complex conjugate transpose (†), where Cconj is the complex conjugate:

Definition kron {m n o p} (A : Matrix m n) (B : Matrix o p) : Matrix (m*n) (o*p) :=

fun x y ⇒ A (x / o) (y / p) * B (x mod o) (y mod p).

Definition ctrans {m n} (A : Matrix m n) : Matrix n m := fun x y ⇒ Cconj (A y x).

We represent complex numbers using an adaptation of Coquelicot’s Complex library [4]. This represen-
tation has the advantage of being a straightforward extension of the Coq real numbers, allowing us to
easily extend the Coq Standard Library’s powerful Linear Real Arithmetic solver (lra) to both complex
numbers and matrices. The tactics we define (termed clra for complex numbers and mlra for matrices)
allow us to trivially prove that complex conjugate and complex conjugate transpose are involutive:

Lemma conj_involutive : ∀ (c : C), Cconj (Cconj c) = c. Proof. intros. clra. Qed.

Lemma ctrans_involutive : ∀ {m n} (A : Matrix m n), A†† = A. Proof. intros. mlra. Qed.

4As a Coq technicality, note that matrices are only equal up to functional extensionality.

126 QWIRE Practice

4.2 Density Matrices

QWIRE programs are interpreted as superoperators over density matrices, following the denotational
semantics described by Paykin et al. [14]. We use a density matrix representation over the standard
unit vector representation (used for example by Boender et al. [3]) because density matrices represent
probability distributions (introduced via measurement) over quantum states directly, as opposed to the
unit vector representation which must be embedded inside a probability monad.

We start with some preliminary definitions. A unitary matrix is a well-formed square matrix A such
that A†

×A is the identity.

Definition is_unitary {n} (A : Matrix n n) := WF_Matrix A ∧ A† × A = Id n.

A pure state of a quantum system is one that corresponds to a unit vector ∣φ⟩. An equivalent repre-
sentation is that of square matrices ρ such that ρ ×ρ = ρ .

Definition Pure_State {n} (ρ : Matrix n n) : P := WF_Matrix ρ ∧ ρ = ρ × ρ.

A density matrix, or mixed state, is a linear combination of pure states representing the probability
of each pure state.

Inductive Mixed_State {n} (ρ : Matrix n n) : P :=

| Pure_S : ∀ ρ, Pure_State ρ → Mixed_State ρ

| Mix_S : ∀ (p : R) ρ1 ρ2, 0 < p < 1

→ Mixed_State ρ1 → Mixed_State ρ2 → Mixed_State (p .* ρ1 .+ (1-p) .* ρ2).

Note that every mixed state is also well-formed, since scaling and addition preserve well-formedness.
A superoperator is a function on square matrices that takes mixed states to mixed states.

Definition Superoperator m n := Matrix m m → Matrix n n.

Definition WF_Superoperator m n (f : Superoperator m n) :=

∀ (ρ : Matrix m m), Mixed_State ρ → Mixed_State (f ρ).

Any m×n matrix can be lifted to a superoperator from n to m as follows:

Definition super {m n} (A : Matrix m n) : Superoperator n m := fun ρ ⇒ A × ρ × A†.

4.3 Denotation of QWIRE

Types, Contexts and Gates In order to interpret circuits as superoperators over density matrices, we
will also give types, contexts, gates, and patterns interpretations in linear algebra. For clarity we write
J−K for the denotation of a variety of QWIRE objects, which we express via a Coq type class.

Class Denote source target := { denote : source → target }.

Notation "J x K" := (denote x) (at level 10).

We interpret every wire type as the number of primitive (Bit or Qubit) wires in that type, so
JQubit ⊗ (One ⊗ Bit)K = 2. Contexts and OCtxs are similarly denoted by the number of wires they contain.

Every gate of type Unitary W corresponds to a unitary matrix of dimension 2JWK
×2JWK. We omit the

implemented gate set and their corresponding matrices here, but in the development we prove that every
denoted unitary satisfies the is_unitary predicate defined above.

Lemma unitary_gate_unitary : ∀ {W} (u : Unitary W), is_unitary JuK.

A gate of type Gate W1 W2 corresponds to a superoperator as follows:

Rand, Paykin & Zdancewic 127

Definition denote_gate {W1 W2} (g : Gate W1 W2) : Superoperator 2∧JW1K 2∧JW2K :=

match g with

| U u ⇒ super JuK
| init0 | new0 ⇒ super ∣0⟩
| init1 | new1 ⇒ super ∣1⟩
| meas ⇒ fun ρ ⇒ super ∣0⟩⟨0∣ ρ .+ super ∣1⟩⟨1∣ ρ

| discard ⇒ fun ρ ⇒ super ⟨0∣ ρ .+ super ⟨1∣ ρ

end.

Instance Denote_Gate {W1 W2} : Denote (Gate W1 W2) (Superoperator 2∧JW1K 2∧JW2K) :=

{| denote := denote_gate |}.

When applying a gate to a subset of a quantum system, however, we will need a generalization of the
denote_gate operation that applies the gate to the first part of a quantum system.

Definition denote_gate' n {W1 W2} (g : Gate W1 W2) : Superoperator 2∧JW1K*2∧n 2∧JW2K*2∧n.

What we previously wrote as denote_gate is simply denote_gate' 0.

swap=

⎛

⎜
⎜
⎜

⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟
⎟
⎟

⎠

Patterns and Flat Circuits Patterns of type Pat Γ W are interpreted as permuta-
tion matrices of dimension 2JΓK

×2JWK. These matrices are constructed via mul-
tiple applications of a swap matrix, as follows: In general we will want to swap
the positions of two arbitrary qubits in a system; to swap qubit 0 with qubit 2 in a
3-qubit system, we invoke swap2 0 2 = (I2⊗swap)(swap⊗ I2)(I2⊗swap).

First, every pattern is interpreted as a list of indices indicating the wire
number (counting from 0) that each variable refers to. So the pattern
(3,0) : Pat [Some Qubit, None, None, Some Bit] (Bit ⊗ Qubit) corresponds to the
list [1;0], because variable 3 corresponds the wire numbered 1 and variable 0 corresponds to wire 0
in the circuit. This list ls is then turned into an association list [(0,1);(1,0)], mapping variable i to
ls[i]. These pairs are then interpreted as a series of calls to swap2.

As for gates, the function denote_pat_in follows a similar algorithm, but allows us to interpret a
pattern p inside a larger context of variables. Its signature is as follows:

Definition denote_pat_in Γ' {Γ W} (p : Pat Γ W): Matrix 2∧JΓ ⋓ Γ'K (2∧JWK * 2∧JΓ'K).
Instance Denote_Pat {Γ W} : Denote (Pat Γ W) (Matrix 2∧JΓK 2∧JWK) :=

{| denote := denote_pat_in (Valid []) |}.

Finally, we interpret circuits as superoperators on density matrices. To do this, we start with the “flat”
representation Circuit' that does not use higher-order abstract syntax. The higher-order abstract syntax
representation is useful for defining the meta-level operations on circuits, but the “flat” circuits from
Figure 1 use concrete variables, thus making them a useful intermediate representation for the semantics.

Consider an output circuit output' p, where p : Pat Γ W. The interpretation of this circuit is the super-
operator obtained from the denotation of p: Joutput' pK = super JpK.

Next, consider gate_ p2← g @p1; C, where g : Gate W1 W2, pi : Pat Γi Wi and C : Circuit' (Γ2 ⋓ Γ) W.
The interpretation of C has type Superoperator 2∧JΓ2 ⋓ ΓK 2∧JWK, so we need to compose JCK with a
superoperator from 2∧JΓ1K*2∧JΓK to 2∧JΓ2K*2∧JΓK which we obtain by composing denote_gate' with the
results of denote_pat_in, to rearrange the quantum system appropriately:

Jgate' g p1 p2 C'K = JC'K ○ super (Jp2K† ⊗ Id 2∧JΓK)
○ denote_gate' JΓK g ○ super (Jp1K ⊗ Id 2∧JΓK)

128 QWIRE Practice

Finally, consider a lift circuit, lift’ p f, where p : Pat Γ1 W and f : interpret W → Circuit' Γ2 W'.
When W is a qubit, interpret W = bool, and the lift operation would measure the qubit and sum over the
results of Jf trueK and Jf falseK. More generally, consider

Definition f' : interpret W → Superoperator 2∧JΓ1 ⋓ Γ2K 2∧JΓ2K
:= fun x ⇒ Jf xK ○ (super ((kets x)† ⊗ Id 2∧JΓ2K)) ○ (super (denote_pat_in Γ2 p))

Here, kets {W} : interpret W→ Matrix 2∧JWK 1 is the basis representation of the input value of type
interpret W. By transposing kets x and expanding it via the super operation, we pick out the par-
tial density matrix corresponding to that measurement branch. Next, since all wire types are finite, we
can enumerate all values of type interpret W in a list via the operation get_interpretations W. By
mapping f' over this list, we obtain each of the actual measurement branches as superoperators. Now we
can simply perform pointwise addition of the superoperators, and compose with the pattern p to organize
the wires in order:

Jlift' p fK = fold_left Splus (map f' (get_interpretations W)) SZero

A flat box is also interpreted as a superoperator: Jbox' p CK = JCK ○ super JpK†

HOAS Circuits To denote the HOAS version of circuits, we first map them to our representation of
“flat” circuits, which involves instantiating the output patterns of HOAS gates with a particular concrete
pattern. We do this via an operation fresh pat that takes as input a context and a type, and produces a
pattern of that type whose domain (fresh_pat_ctx) is disjoint from the input context.

Definition fresh_pat (Γ : OCtx) (W : WType) : Pat (fresh_pat_ctx Γ W) W.

Using fresh_pat we can define a function that converts HOAS circuits and boxes into flat circuits
and boxes. We leave off implicit proof and OCtx arguments for legibility.

Program Fixpoint from_HOAS {Γ W} (c : Circuit Γ W) : Circuit' Γ W :=

match c with

| output p ⇒ output' p

| gate g p1 f ⇒ gate' g p1 p2 (from_HOAS (f (fresh_pat _ _)))

| lift p f ⇒ lift' p (fun x ⇒ from_HOAS (f x))

end.

Program Definition from_HOAS_Box {W1 W2} (b : Box W1 W2) : Flat_Box W1 W2 :=

match b with box f ⇒ let p := fresh_pat [] W1 in box' p (from_HOAS (f p)) end.

The denotation of a HOAS circuit is exactly the denotation of its corresponding flat circuit.

5 A Taste of Verification

When a circuit is closed, that is when it has no input, it represents a preparation of a quantum state.
In many cases, a programmer may know what state their program should prepare, and our verification
framework allows them to compare the denotation of the circuit with the desired density matrix directly.

Consider, for instance, the coin flip circuit in Section 2. In the online development we prove that the
denotation of coin_flip corresponds to the matrix even_toss= (

1/2 0
0 1/2) as follows:

Lemma flip_toss : J coin_flip K (Id 1) = even_toss.

The Coq proof script used to prove this lemma is only twelve lines long, and calls out to a number
of specialized tactics, including Msimpl, Csimpl and Csolve, designed to simplify and prove equality
between matrices and complex numbers.

Rand, Paykin & Zdancewic 129

The combination of Coq and QWIRE truly shines in its ability to prove more complex properties
and prove properties of families of circuits, not merely circuits themselves. For example, consider the
Deutsch-Jozsa problem, where we want to verify a property of a family of circuits with any number of
input qubits, that holds for every appropriate unitary matrix U f . This sort of property requires induction
over the number of inputs and the full power of a proof assistant.

Open circuits, which correspond to arbitrary superoperators, are even more interesting from the per-
spective of verification. Consider the following circuit which composes a unitary gate with its transpose:

Definition unitary_trans {W} (U : Unitary W) : Box W W.

box_ p ⇒

gate_ p ← U @p;

gate_ p ← transpose U @p;

output p.

Lemma unitary_trans_id : ∀ W (U : Unitary W) ρ,

WF_Matrix (2∧JWK) (2∧JWK) ρ → Junitary_trans UKρ = Jid_circ WKρ.

U U
†

This correctness of this circuit holds for any unitary gate regardless of its input size. The proof of this
lemma takes fewer than 20 lines of code, and proceeds using common facts from linear algebra, such as
the fact that Id n × A = A, along with fact that the denotation of U is in fact unitary, that is, JUK† JUK = Id.
We also rely on the fact that the denotation of every pattern in this circuit is actually an identity matrix.

Definition lift meas : Box Qubit Bit.

box_ q ⇒

lift_ x ← q;

gate_ p ← (if x then new1 else new0) @();

output p.

Lemma lift meas_correct : ∀ ρ, WF_Matrix ρ

→ Jlift measK ρ = Jboxed_gate measK ρ.

Another useful sanity check ensures that the
denotation of a lift circuit is equivalent to ap-
plying a measurement gate. For example, con-
sider lift meas, which measures a qubit via
lift and then reconstructs a bit-valued wire
from the result of the measurement. The result-
ing circuit is equivalent to the circuit that simply
applies a measurement gate.

6 Related and Future Work

The Coq development described in this paper is very much still a work in progress. There are a small
number of lemmas in the underlying matrix library that we have not yet formally proved, although they
are known facts about linear algebra. In addition, we have not yet formally proved that the denota-
tion of every circuit is a well-formed superoperator over density matrices, or that the denotation of the
composition of two circuits is equal to the composition of their denotations.

After completing this work, there are a number of exciting areas to explore in the future.

Verified Compilation By verifying the equivalence of circuit transformations like unitary_trans_id

from Section 5, we seeQWIRE as a prime language in which to compile quantum programs. The area of
verified compilers has gained a lot of traction in recent years, inspired by the success of the CompCert C
compiler [12]. Towards this direction, Amy et al. [1] developed a verified, lightly-optimizing compiler
for reversible circuits, which can encompass unitary quantum circuits.

We can also provide insight into a relationship between QWIRE circuits and QASM [7], a quantum
assembly-like language that has gained widespread use in quantum simulators and IBM’s Quantum Ex-
perience [11]. The largest difference between QWIRE and QASM is our use of variable binding, using
abstract variables such as x, y, and z and allowing qubits to be renamed as in let_ y ← output x; C'. In

130 QWIRE Practice

comparison, QASM operates on a concrete set of quantum registers (e.g., qubits 1, 2, or 3) that cannot be
renamed. In the development we provide a version of QWIRE that similarly operates directly on named
qubits. Our denotational semantics extends directly to this representation, and we can compile from
QWIRE to these “assembly-level” circuits. Future work could formally establish a relationship between
the assembly-level version of QWIRE and QASM, allowing us to prove properties of QASM programs,
and prove that compilation is sound with respect to the denotational semantics.

A More Efficient Backend Unfortunately, we have so far struggled to prove properties of (non-
parametric) circuits with more than a few qubits, indicating that scalability will be a challenge moving
forward. A key contributor to the scalability of our theorems is the underlying matrix library, which is
not currently optimized in any significant way. Of course, any quantum simulator will be intractable on
large enough circuits, as density matrices are always exponential in the size of the corresponding circuit.

In the near future, we will be transitioning the linear algebra back-end of our development to one
of several existing projects, in the hopes of making it more efficient. Boender et al. [3] present one
candidate, a library developed reasoning about the correctness of quantum protocols using pure states.
Another candidate is the Coq Effective Algebra Library (CoqEAL) [5], which is designed specifically
to allow matrix computation inside Coq. This library allows easy translation between it matrices and
those of the Mathematical Components library [2], which in turn was designed with an eye towards
verification. The two libraries together may substantially increase our ability to run and reason about
QWIRE programs. We can also simulate QWIRE programs by extraction to OCaml.

Theory of QWIRE In this paper we focus on the denotational semantics of QWIRE, but many other
aspects of the meta-theory are left to be explored. Rennela and Staton [18] present a categorical model
of EWire, a close variant of QWIRE, as an enriched category. Their model also allows for additional
features such as quantum data types in the style of Quipper [10].

The equational theory of quantum circuits is another area left for future work. For example, Sta-
ton [21] presents an axiomatization of the relationship between measurement, qubit initialization, and a
limited set of unitary gates. In the future we hope to adapt Staton’s work to QWIRE and thereby reason
syntactically, rather than semantically, about the equivalence ofQWIRE circuits. An equational theory is
also key to integrating QWIRE with dependent types [14].

Verifying Higher-Order Programs The use of dependent types was a driving factor for both the de-
velopment ofQWIRE and the choice to embed it in Coq specifically. While dependent types power Coq’s
verification capabilities, they’re also key to our representation of circuits. For example, in the develop-
ment we implement a dependently-typed version of the Quantum Fourier Transform, as described in the
introduction to QWIRE [14]. This paper hasn’t focused on dependent types, or high level programming
in QWIRE generally, but both will feature heavily in future QWIRE development.

Greater use of the host language and classical programming abstractions will also allow to further
push the boundaries of quantum verification. While currentQWIRE programs can be thought of as “sim-
ply circuits,” such direct proofs will become increasingly difficult as we add on layers of abstraction—just
as it would be nearly impossible to prove interesting program properties by reasoning about the underly-
ing classical circuits. This will require new approaches to quantum verification, from quantum weakest
precondition reasoning [8] (expanded into a Hoare-like logic in [23, 24]), to the forms of equational
reasoning described above.

Rand, Paykin & Zdancewic 131

References
[1] Matthew Amy, Martin Roetteler & Krysta M Svore (2017): Verified compilation of space-efficient reversible

circuits. In: International Conference on Computer Aided Verification, Springer, pp. 3–21, doi:10.1007/978-
3-319-63390-9 1.

[2] Assia Mahboubi and Enrico Tassi (2016): Mathematical Components. Electronic resource, available from
https://math-comp.github.io/mcb/book.pdf.

[3] Jaap Boender, Florian Kammüller & Rajagopal Nagarajan (2015): Formalization of Quantum Protocols using
Coq. In Chris Heunen, Peter Selinger & Jamie Vicary, editors: Proceedings of the 12th International Work-
shop on Quantum Physics and Logic, Oxford, U.K., July 15-17, 2015, Electronic Proceedings in Theoretical
Computer Science 195, Open Publishing Association, pp. 71–83, doi:10.4204/EPTCS.195.6.

[4] Sylvie Boldo, Catherine Lelay & Guillaume Melquiond (2015): Coquelicot. http://coquelicot.

saclay.inria.fr/.

[5] Guillaume Cano, Cyril Cohen, Maxime Dénès, Anders Mörtberg & Vincent Siles (2016): CoqEAL - The Coq
Effective Algebra Library. https://github.com/CoqEAL/CoqEAL.

[6] Coq Development Team (2017): The Coq Proof Assistant Reference Manual, Version 8.6. Electronic re-
source, available from http://coq.inria.fr.

[7] Andrew Cross: qasm-tools: An interoperable open-source software tool chain for studying fault-tolerant
quantum circuits.

[8] Ellie D’Hondt & Prakash Panangaden (2006): Quantum weakest preconditions. Mathematical Structures in
Computer Science 16(03), pp. 429–451, doi:10.1017/S0960129506005251.

[9] Simon J. Gay, Rajagopal Nagarajan & Nikolaos Papanikolaou (2008): QMC: A Model Checker for Quan-
tum Systems. In Aarti Gupta & Sharad Malik, editors: Computer Aided Verification: 20th International
Conference, CAV 2008, Springer Berlin Heidelberg, Princeton, NJ, USA, pp. 543–547, doi:10.1007/978-3-
540-70545-1 51.

[10] Alexander Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger & Benoı̂t Valiron (2013): Quipper: A
Scalable Quantum Programming Language. In: Proceedings of the 34th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2013, pp. 333–342, doi:10.1145/2491956.2462177.

[11] IBM (2017): IBM Quantum Experience. Available at http://research.ibm.com/ibm-q/qx/.

[12] Xavier Leroy (2004): The CompCert verified compiler. Development available at http://compcert. inria. fr
2009.

[13] Michael A Nielsen & Isaac L Chuang (2010): Quantum computation and quantum information. Cambridge
university press, doi:10.1017/CBO9780511976667.

[14] Jennifer Paykin, Robert Rand & Steve Zdancewic (2017): QWIRE: A Core Language for Quantum Circuits.
In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, ACM, New York, NY, USA, pp. 846–858, doi:10.1145/3009837.3009894.

[15] Jennifer Paykin & Steve Zdancewic (2017): The Linearity Monad. In: Proceedings of the 10th ACM SIG-
PLAN International Symposium on Haskell, ACM, pp. 117–132, doi:10.1145/3122955.3122965.

[16] F. Pfenning & C. Elliott (1988): Higher-order Abstract Syntax. In: Proceedings of the ACM SIGPLAN 1988
Conference on Programming Language Design and Implementation, PLDI ’88, ACM, New York, NY, USA,
pp. 199–208, doi:10.1145/53990.54010.

[17] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael Greenberg,
Cǎtǎlin Hriţcu, Vilhelm Sjöberg & Brent Yorgey (2016): Software Foundations. Electronic textbook. Version
4.0. http://www.cis.upenn.edu/~bcpierce/sf.

[18] Mathys Rennela & Sam Staton (2017): Classical control and quantum circuits in enriched category theory.
In: Proceedings of the 33rd Conference on the Mathematical Foundations of Programming Semantics, MFPS.

http://dx.doi.org/10.1007/978-3-319-63390-9_1
http://dx.doi.org/10.1007/978-3-319-63390-9_1
https://math-comp.github.io/mcb/book.pdf
http://dx.doi.org/10.4204/EPTCS.195.6
http://coquelicot.saclay.inria.fr/
http://coquelicot.saclay.inria.fr/
https://github.com/CoqEAL/CoqEAL
http://coq.inria.fr
http://dx.doi.org/10.1017/S0960129506005251
http://dx.doi.org/10.1007/978-3-540-70545-1_51
http://dx.doi.org/10.1007/978-3-540-70545-1_51
http://dx.doi.org/10.1145/2491956.2462177
http://research.ibm.com/ibm-q/qx/
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1145/3009837.3009894
http://dx.doi.org/10.1145/3122955.3122965
http://dx.doi.org/10.1145/53990.54010
http://www.cis.upenn.edu/~bcpierce/sf

132 QWIRE Practice

[19] Neil J. Ross (2015): Algebraic and Logical Methods in Quantum Computation. Ph.D. thesis, Dalhousie
University.

[20] Peter Selinger & Benoı̂t Valiron (2009): Quantum lambda calculus. In Simon Gay & Ian Mackie,
editors: Semantic Techniques in Quantum Computation, Cambridge University Press, pp. 135–172,
doi:10.1017/CBO9781139193313.005.

[21] Sam Staton (2015): Algebraic Effects, Linearity, and Quantum Programming Languages. In: Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’15, ACM, New York, NY, USA, pp. 395–406, doi:10.1145/2676726.2676999.

[22] Dave Wecker & Krysta M Svore (2014): LIQUiD: A software design architecture and domain-specific lan-
guage for quantum computing. arXiv:1402.4467 [quant-ph].

[23] Mingsheng Ying (2011): Floyd–hoare logic for quantum programs. ACM Transactions on Programming
Languages and Systems (TOPLAS) 33(6), p. 19, doi:10.1145/2049706.2049708.

[24] Mingsheng Ying, Shenggang Ying & Xiaodi Wu (2017): Invariants of quantum programs: characterisations
and generation. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, ACM, pp. 818–832, doi:10.1145/3093333.3009840.

http://dx.doi.org/10.1017/CBO9781139193313.005
http://dx.doi.org/10.1145/2676726.2676999
http://dx.doi.org/10.1145/2049706.2049708
http://dx.doi.org/10.1145/3093333.3009840

	1 Introduction
	2 Introduction to Qwire programming
	3 Implementing Qwire in Coq
	4 Denotational Semantics
	4.1 The Matrix Library
	4.2 Density Matrices
	4.3 Denotation of Qwire

	5 A Taste of Verification
	6 Related and Future Work

