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Quipper is a practical programming language for describing families of quantum circuits. In this

paper, we formalize a small, but useful fragment of Quipper called Proto-Quipper-M. Unlike its

parent Quipper, this language is type-safe and has a formal denotational and operational semantics.

Proto-Quipper-M is also more general than Quipper, in that it can describe families of morphisms in

any symmetric monoidal category, of which quantum circuits are but one example. We design Proto-

Quipper-M from the ground up, by first giving a general categorical model of parameters and state.

The distinction between parameters and state is also known from hardware description languages. A

parameter is a value that is known at circuit generation time, whereas a state is a value that is known

at circuit execution time. After finding some interesting categorical structures in the model, we then

define the programming language to fit the model. We cement the connection between the language

and the model by proving type safety, soundness, and adequacy properties.

1 Introduction

Quipper is a functional programming language for quantum computing [3, 4]. What distinguishes Quip-

per from earlier quantum programming languages, such as the quantum lambda calculus [10], is that it

is a circuit description language. This means two things: on the one hand, the language can be used to

construct quantum circuits in a structured way, essentially by applying one gate at a time. On the other

hand, the completed circuits themselves become data, which can be stored in variables and passed as

components to subroutines, and on which meta-operations (such as circuit transformations, gate counts,

inversion, error correction, etc) can be performed. These two levels of description (gate level operations

and meta-operations on entire circuits) correspond quite closely to how many quantum algorithms are

specified in the literature, and therefore provide a useful high-level paradigm for quantum programming.

Quipper is practical; it has been used to implement several large-scale quantum algorithms, gener-

ating circuits containing trillions of gates. However, there are some drawbacks. For efficiency reason,

the original Quipper language was implemented as an embedded domain-specific language within the

host language Haskell. As a result of mismatches between Quipper’s type system and that of Haskell,

Quipper is not type-safe (there are some well-typed programs that lead to run-time errors). In particular,

Haskell is unable to enforce linearity, i.e., the requirement that a quantum state cannot be used more

than once (also known as the no-cloning property of quantum information). Moreover, as an embedded

language, Quipper has no formal semantics; its behavior is only defined by its implementation. Giving a

formal semantics of Quipper would require giving a formal semantics of Haskell, which is not feasible.

In this paper, we formalize a small, but useful fragment of Quipper called Proto-Quipper-M. This

fragment is a stand-alone programming language (i.e., not embedded in a host language), and it has its

own custom type system and semantics. This research fits into a larger program of formalizing portions of

Quipper, and we use the name Proto-Quipper more generally to refer to any such formalized languages.

For example, another version of Proto-Quipper has appeared in Ross’s Ph.D. thesis [9].

http://dx.doi.org/10.4204/EPTCS.266.11
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An important concept that arises in Quipper, and also in related settings such as hardware description

languages, is the distinction between parameters and state. To understand the distinction, it is useful to

keep in mind that Quipper is a language not just for describing individual quantum circuits, but param-

eterized families of quantum circuits: for example, in the case of Shor’s algorithm, one circuit for each

integer to be factored. A parameter is a value that is known at circuit generation time, thus potentially

picking out a member of the family of circuits. A state is a value that is known at circuit execution time,

such as the state of a qubit. Naturally, a state can depend on a parameter, but since states are not known

at circuit generation time, parameters cannot be a function of states.

Conceptually, Quipper’s gate level operations operate on states (for example, by applying a gate to a

qubit), whereas its circuit level operations operate on parameters. One fundamental feature of Quipper

is that there is only one kind of variable, which can hold both parameters and states (or any combination

thereof, such as a list of qubits: here the length of the list is a parameter, and the individual qubits

are states). We rely on the type system to ensure that parameters and states are used correctly. This

distinguishes Quipper from related approaches, such as the QWire language [8], which enforce a strict

separation between parameters and states by essentially defining two separate programming languages,

one for parameters and one for states. The Quipper approach is more flexible, because the ability to mix

parameters and states more freely gives the programmer access to useful abstractions, such as quantum

data structures (like lists of qubits), or even pairs of entangled functions.

Our approach to the design of Proto-Quipper-M is from the ground up. We start by defining a

general categorical model of parameters and state, and identifying a number of interesting categorical

structures in the model. We then define the programming language to fit the model. One advantage of

this approach is that our programming language is almost “correct by design”. In fact, as a result of

our abstract approach, Proto-Quipper-M is slightly more general than Quipper, in the sense that it can

describe families of morphisms of an arbitrary monoidal category, rather than just quantum circuits. We

give computational meaning to the language by defining an operational semantics. Finally, we establish

the correctness of the operational semantics by proving type safety, soundness, and adequacy properties.

2 A cartesian model of parameters and state

In this section, we describe a simplified categorical model of parameters and state, which will be con-

venient for introducing some useful terminology, and will be a stepping stone toward the more general

model of Section 3. The model presented here is cartesian, rather than monoidal, and therefore could

be used to model a language for describing classical, rather than quantum circuits. Nevertheless, several

important notions will already be visible in this model.

2.1 The model Set2op

Definition 2.1. Let 2 be the category with two objects, called 0 and 1, and a single non-identity arrow 0→
1. Consider the functor category Set2op

. Explicitly, an object of this category is a triple A = (A0,A1,a),
where A0,A1 are sets and a : A1 → A0 is a function. A morphism f : A → B is a commutative diagram

A1

a
��

f1
// B1

b
��

A0

f0
// B0.

(1)
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We can think of an object A = (A0,A1,a) as describing a family of sets, as follows. For each x ∈ A0,

we define

Ax = {s ∈ A1 | a(s) = x}. (2)

The set Ax is called the fiber of A over x. Up to isomorphism, the object A is uniquely determined by the

family (Ax)x∈A0
. We call the elements of A0 parameters. We call the elements of Ax states, and we say

that the state is over x. The elements of A1 can therefore be identified with pairs (x,s), where x ∈ A0 and

s ∈ Ax. We also call the pairs (x,s) the generalized elements of A.

The requirement that the diagram (1) commutes is exactly equivalent to the statement “states may

depend on parameters, but parameters may not depend on states”. To see this, consider the effect of a

morphism f : A → B on a parameter-state pair (x,s) as defined above. Let y = f0(x) and t = f1(s). Then

y ∈ B0 and t ∈ B1. Moreover, by the commutativity of (1), we have y = f0(x) = f0(a(s)) = b( f1(s)) =
b(t). In other words, for each x ∈ A0, f1 : A1 → B1 restricts to a function fx : Ax → B f0(x). We write

f (x,s) = (y, t). We note that y is only a function of x, because y = f0(x). Therefore, parameters may not

depend on states. On the other hand, t is a function of both x and s, because t = fx(s). Therefore, states

may depend on parameters and states.

Example 2.2. We define some particular objects of Set2op

. Let bool = (2,2, id), where 2 = {0,1} is a

2-element set and id is the identity function. Let bit = (1,2,u), where 1 = {∗} is a 1-element set and

u : 2 → 1 is the unique function. In diagrams:

bool =

2

id
��

2

bit =

2

u
��

1

The two generalized elements of bool are (0,0) and (1,1), which we identify with “false” and “true”,

respectively. The two generalized elements of bit are (∗,0) and (∗,1), which we again identify with

“false” and “true”.

So what is the difference between bool and bit? Informally, a boolean is only a parameter and

has no state, whereas a bit is only state and has no parameters. Note that there is an “identity” function

f : bool→ bit, mapping false to false and true to true. This function is given by the commutative diagram

2
id

//

id
��

2

u
��

2
u

// 1,

(3)

and it satisfies f (0,0) = (∗,0) and f (1,1) = (∗,1). On the other hand, there exists no morphism g : bit→
bool mapping false to false and true to true: the diagram

2
id

//

u
��

2

id
��

1
?

// 2

(4)

cannot be made to commute. Therefore, a boolean can be used to initialize a bit, but not the other way

round. This precisely captures our basic intuition about parameters and state.
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Generalizing the example of bool and bit, we say that an object A is a parameter object if it is of the

form (A,A, id), and it is called a state object or simple if A0 is a singleton. Note that bool is a parameter

object and bit is a state object. Informally, a simple object corresponds to a single piece of data, rather

than a parameterized family of data. Every object A is isomorphic to a sum of simple objects, namely,

A ∼= ∑x∈A0
Ax.

2.2 A lambda calculus for parameters and state

Since the category Set2op

is cartesian closed, we can interpret the simply-typed lambda calculus in it. We

can also add sum types, base types such as bool and bit, and basic operations such as init : bool→ bit, all

of which have obvious interpretations in the model. In this way, we obtain a very simple and semantically

sound lambda calculus for the description of boolean (non-reversible) circuits. Moreover, the category

Set2op

is co-complete, which allows us to interpret inductive datatypes such as list(A) using initial algebra

semantics.

3 A categorical model of circuit families

While the model of Section 2.1 is useful for formalizing some basic intuitions about parameters and state,

it is not yet a good model for describing families of quantum circuits. The main issue is that the model

is cartesian, rather than monoidal. For example, there exist morphisms ∆ : A → A×A for all objects

A, including state objects. This is not appropriate if we want to describe quantum circuits, where the

no-cloning property prevents us from duplicating quantum states.

To see how to generalize the model Set2op

to a monoidal setting, recall from (2) that the objects of

Set2op

can be equivalently described as pairs (A0,(Ax)x∈A0
), where A0 is a set and (Ax)x∈A0

is a family

of sets. Then a morphism f : A → B can be equivalently described as a pair ( f0,( fx)x∈A0
), where f0 :

A0 → B0, and for each x ∈ A0, fx : Ax → B f0(x). We generalize this by considering Ax to be an object of a

monoidal category instead of a set.

3.1 The category M: generalized circuits

Before designing a circuit description language, we should be more precise about what we mean by a

“circuit”. Rather than specifying a particular class of circuits, for example as graphical representations

of sequences of gates, we take a more general and abstract point of view: for us, a circuit is simply a

morphism in a (fixed but arbitrary) symmetric monoidal category. We therefore assume that a symmetric

monoidal category M is given once and for all, and we call its morphisms generalized circuits. From this

point of view, Proto-Quipper is simply a language for describing families of morphisms of M.

Remark 3.1. We will regard the morphisms of M as concrete data. We should imagine that the category

M is equipped with additional “meta-operations”, such as methods to print morphisms, determine their

size or cost, invert them, and so on. These additional operations are external to the category M, and take

the form of set-theoretic functions such as size : M(T,U) → N, print : M(T,U) → Document, invert :

M(T,T ) → M(T,T). Here M(T,U) denotes a hom-set of the category M, and “Document” denotes a

set of printable documents. If such meta-operations are present, we regard them as fixed and given.
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3.2 The category M: state

As the first step in constructing our model, we choose a full embedding M in some symmetric monoidal

closed, product-complete category M. This can be done in some fixed, but arbitrary way. For example,

the Yoneda embedding has the required properties, using the Day tensor for the monoidal structure [2, 6].

However, we do not specify any particular way of constructing M.

Remark 3.2. Unlike the category M, we regard the category M as abstract. It is monoidal closed, so

we will be able to form higher-order objects such as (A⊸B⊗C)⊸D. However, we do not imagine

morphisms between such higher-order objects as being concrete things that can be printed, measured,

etc. Instead, we will only interact with such higher-order morphisms via the monoidal closed structure.

In other words, the higher-order structure only exists as a kind of “scaffolding” to support lower-order

concrete operations. By not specifying a particular way of constructing M, but only specifying its prop-

erties, we ensure that we will treat this category in the abstract, i.e., none of the theorems we will prove

depend on any properties of M other than those that were stated.

3.3 The category M: parameters

We now define the category M, which will serve as a model for parameters and state, and which will be

the main carrier of the categorical semantics of our circuit description language.

Definition 3.3. The category M has the following objects and morphisms:

• An object is a pair A= (X ,(Ax)x∈X ), where X is a set and (Ax)x∈X is an X -indexed family of objects

of M. As before, we call Ax the fiber of A over x. We sometimes write X = A0.

• A morphism f : (X ,(Ax)x∈X )→ (Y,(By)y∈Y ) is a pair ( f0,( fx)x∈X ), where f0 : X →Y is a function

and each fx : Ax → B f0(x) is a morphism of M.

This category is surprisingly rich in structure. We begin by stating some of its most fundamental

properties. It is perhaps not very surprising that M has coproducts and a symmetric monoidal structure.

What is perhaps more surprising is that it is also monoidal closed.

Proposition 3.4. The category M has an initial object, given by 0 = ( /0, /0), where /0 denotes both the

empty set and the empty family. It also has coproducts, given by A+B=(A0+B0,(Ci)i), where A0+B0 =
{(0,x) | x ∈ A0}∪ {(1,y) | y ∈ B0} is the disjoint union of sets, and C(0,x) = Ax and C(1,y) = By. The

category M also has infinite coproducts, defined in an analogous manner. Indeed, it is well-known that

M is the free coproduct completion of M.

Proposition 3.5. The category M is symmetric monoidal closed with the following structure:

I = (1,(I))
A⊗B = (A0 ×B0,(Ax ⊗By)(x,y)∈A0×B0

)

A⊸B = (A0 → B0,(C f ) f ),

where C f = ∏x∈A0
(Ax ⊸B f (x)). Here, of course, A0 → B0 denotes the set of all functions from A0 to

B0, and Ax ⊸By denotes the exponential object in the monoidal closed category M. Note that in the

definition of C f , we have used the fact that M has products.

We note that the category Set2op

of Section 2 is a special case; indeed, if the initial monoidal category

is M = Set, then it is already closed, so we can take M = Set, and we get M ≃ Set2op

.
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3.4 Properties of objects

The concepts of parameter and state objects can be defined analogously to Section 2.1. Namely, an

object A ∈ M is a parameter object if each fiber is the tensor unit I, i.e., if A = (X ,(I)x∈X ). An object

A ∈ M is a state object or simple if A0
∼= 1. Note that the full subcategory of M of simple objects is

equivalent to M. An object A ∈ M is an M-object if every fiber belongs to the category M (regarded as a

full subcategory of M). Thus, M-objects denote families of objects of M. Note that the full subcategory

of M of simple M-objects is equivalent to M. The terminology “simple” is justified by the fact that every

object A = (X ,(Ax)x) of M can be written, essentially uniquely, as a coproduct of simple objects.

More systematically, note that we have functors Set
p
−→M and M

i
→֒M

j
→֒M, where p(X)= (X ,(I)x),

i is the canonical inclusion, and j(A) = (1,(A)). Then A is a parameter object iff it is in the image of the

functor p, a simple object iff it is in the image of j, and a simple M-object iff it is in the image of j ◦ i.

3.5 Some basic types and operations

The coproducts of M permit us to construct a parameter object bool = I + I. This object is equipped

with morphisms true, false : I → bool and an if-then-else construction, i.e., an operation mapping a pair

of morphisms f ,g : A → B to a morphism h : bool⊗A → B satisfying appropriate conditions. Similarly,

there is an object nat = (N,(I)n), and indeed there is a parameter object p(X) corresponding to every set

X , arising from the functor p : Set → M.

Assume the category M has some distinguished objects, say bit and qubit, and some distinguished

morphisms, for example H : qubit → qubit and meas : qubit → bit. The latter are called gates. Then

there are corresponding objects and morphisms in M, arising from the embedding M →֒ M.

3.6 Inductive types

Recall that a functor F on a category is continuous if it preserves colimits of diagrams of the form A0 →
A1 → . . .. In a category with colimits, every continuous functor has an initial algebra. This is the basis for

the categorical semantics of inductive datatypes. Unfortunately, the category M only has coproducts, and

not necessarily all colimits, so we cannot in general expect initial algebras of continuous functors to exist.

Nevertheless, for many functors of interest, the required initial algebras exist. For example, consider the

functor F(X) = I +A⊗X . Its initial algebra is the infinite coproduct I +A+A⊗A+A⊗A⊗A+ . . ..
We denote it as list(A), the type of lists of A. An analogous construction also works for other functors

constructed from + and ⊗. Another example is the object nat of natural numbers, which arises as the

initial algebra of F(X) = I+X , and is also isomorphic to list(I).

3.7 Boxing

Proposition 3.6. The functor p : Set → M, defined in Section 3.4, has a right adjoint ♭ : M → Set. It is

given as follows, where M(A,B) denotes a hom-set of the category M:

♭(X ,(Ax)x∈X ) = ∑
x∈X

M(I,Ax).

An important special case arises for simple M-objects T and U . In this case, we have

♭(T ⊸U) ∼= M(I,T ⊸U) ∼= M(T,U) ∼= M(T,U). (5)



170 A Categorical Model for a Quantum Circuit Description Language

In other words, ♭(T ⊸U) is just a hom-set of the category M, i.e., a set of generalized circuits. We

would like to be able to use completed circuits as parameters in the construction of other circuits, i.e., we

would like there to be a parameter object whose elements are circuits. Such an object is p(M(T,U)) ∼=
p(♭(T ⊸U)). This motivates the following definition:

Definition 3.7. The functor ! : M → M is defined by ! = p ◦ ♭. Since p and ♭ are adjoints, the functor

! is a comonad on the category M [6]. We call it the boxing comonad. It is equipped with a natural

transformation force : !A → A as well as a lifting operation

f : !A → B

lift( f ) : !A → !B.

Remark 3.8. From (5), we have an isomorphism box : !(T ⊸U)→ p(M(T,U)) for simple M-objects

T and U . We denote its inverse by unbox. It will also be convenient to consider an operation apply :

p(M(T,U))⊗T →U , which is definable from unbox using force and the monoidal closed structure.

Remark 3.9. In the category M, every parameter object P is isomorphic to an object of the form !A. We

can therefore generalize the lift operation to all parameter objects:

f : P → B

lift( f ) : P → !B.

Theorem 3.10. The category M, together with the adjunction given by p : Set → M and ♭ : M → Set,

forms a linear-non-linear model in the sense of Benton [1, 7].

3.8 Meta-operations on circuits

In Remark 3.1, we considered that the category M may be equipped with additional meta-operations on

generalized circuits, such as

size : M(T,U)→ N,
print : M(T,U)→ Document,
invert : M(T,T )→ M(T,T )

Note that these operations are external to the category M, i.e., they are not morphisms of M, but set-

theoretic functions. Using the boxing monad “!”, these meta-operations can be internalized in the cate-

gory M. Namely, given the above operations, the following are morphisms of M, where T,U are simple

M-objects:

size = !(T ⊸U)
box

−−−→ p(M(T,U))
p(size)

−−−−→ p(N)
∼=
−−→ nat

print = !(T ⊸U)
box

−−−→ p(M(T,U))
p(print)

−−−−−→ p(Document)

invert = !(T ⊸T )
box

−−−→ p(M(T,T ))
p(invert)

−−−−−→ p(M(T,T ))
unbox

−−−−→ !(T ⊸T )

This precisely captures our intuition that “boxed” circuits are concrete data that can be operated upon

at circuit generation time.
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4 Towards a circuit description language

4.1 Overview

As explained in the introduction, we will design a programming language for circuit description by

making the language fit the denotational model. We start with a brief overview of all the features that

will be added to the language. The formal definitions will follow in Section 4.3.

Since the category M is symmetric monoidal closed with coproducts, a standard linear lambda cal-

culus with sum types can be interpreted in it. Basic types such as bool, bit and qubit (the latter two

if present in the category M of generalized circuits) can also be added to the language, along with the

associated terms (such as true, false, an if-then-else construction, and any basic gates that are present

in the category M). Moreover, certain inductive types such as list(A) and nat exist in the model and

therefore can be added to the language. The language can further be equipped with a type operation “!”

and terms “lift ”, “force ”, “box”, and “apply”, arising from their categorical counterparts in Section 3.7.

Certain types of the language will be designated as parameter types, simple types, and/or M-types.

Their interpretation in the model will of course be parameter objects, simple objects, and/or M-objects,

respectively. In Quipper, M-types were called quantum data types, but that name does not seem appro-

priate in the context of generalized circuits. We have not come up with a better name for them and are

stuck with “M-types” for now.

Remark 4.1. Our claim that the resulting programming language is a language for describing families

of circuits is justified by the following observation. Suppose Φ ⊢ N : T ⊸U is a valid typing judgement,

where Φ is a parameter context (i.e., a context where each type is a parameter type), and T and U are

simple M-types. Then the interpretation of this typing judgement will be a morphism [[N]] : p(X) →

[[T ]]⊸ [[U ]] of the category M, where p(X) = [[Φ]] is a parameter object and [[T ]] and [[U ]] are simple

M-objects. We have:

M(p(X), [[T ]]⊸ [[U ]]) ∼= Set(X , ♭([[T ]]⊸ [[U ]])) ∼= Set(X ,M([[T ]], [[U ]])),

where the first isomorphism uses the fact that ♭ is the right adjoint of p, and the second isomorphism

arises from (5). Therefore, the interpretation of N literally yields a function from X to M([[T ]], [[U ]]), i.e.,

a parameterized family of generalized circuits.

4.2 Labelled circuits

As explained in Section 3.1, we assume that a symmetric monoidal category M of generalized circuits

has been fixed once and for all. To make it more convenient for our programming language to manipulate

morphisms of M, it is useful to equip M with an additional labelling structure, which we now define.

Let us assume a fixed given set W of wire types, together with an interpretation function [[−]] : W →
|M|, assigning an object of M to every wire type. In practical examples, we will sometimes assume that

the set W contains two wire types called bit and qubit, but in general the set of wire types is arbitrary. We

often denote wire types by Greek letters such as α and β . Let L be a fixed countably infinite set of labels,

which we assume to be totally ordered. We often denote labels by the letters ℓ or k. A label context is a

function from some finite set of labels to wire types. We write label contexts as Q = ℓ1 : α1, . . . , ℓn : αn.

To each label context Q = ℓ1 : α1, . . . , ℓn : αn, we associate the object [[Q]] = [[α1]]⊗ . . .⊗ [[αn]] of M,

where ℓ1 < ℓ2 < .. . < ℓn. In case Q = /0, we set [[Q]] = I.
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Types A,B ::= α | 0 | A+B | I | A⊗B | A⊸B | !A | nat | list A | Circ(T,U)
Parameter types P,R ::= 0 | P+R | I | P⊗R | !A | nat | list P | Circ(T,U)
Simple M-types T,U ::= α | I | T ⊗U

Table 1: The types of Proto-Quipper-M

Terms M,N ::= x | ℓ | c | let x = M in N

|�AM | left A,B M | right A,B M | case M of{left x → N | right y → P}

| ∗ | M;N | 〈M,N〉 | let 〈x,y〉 = M in N | λxA.M | MN

| lift M | force M | boxT M | apply(M,N) | (~ℓ,C,~ℓ′)

Label tuples ~ℓ,~k ::= ℓ | ∗ | 〈~ℓ,~k〉

Values V,W ::= x | ℓ | c | left A,BV | right A,BV | ∗ | 〈V,W 〉 | λxA.M | lift M | (~ℓ,C,~ℓ′)

Table 2: The terms of Proto-Quipper-M

Definition 4.2 (Labelled circuits). Let M be a given symmetric monoidal category, and let W , L , and

the function [[−]] : W → |M| be given as above. The symmetric monoidal category ML of labelled

circuits is defined as follows:

• The objects of ML are label contexts.

• A morphism f : Q → Q′ in ML is by definition a morphism f : [[Q]]→ [[Q′]].

Identities and composition are defined so that [[−]] : ML → M is a full and faithful functor. We equip

ML with the unique (up to natural isomorphism) symmetric monoidal structure making this functor

symmetric monoidal.

Note that if Q and Q′ have disjoint domains, then Q⊗Q′ ∼= Q∪Q′, i.e., the tensor of disjoint label

contexts is given by their union. Two label contexts can always be made disjoint up to isomorphism by

renaming their labels. We can visualize the morphisms of ML as generalized circuits with labelled and

typed inputs and outputs, for example

fℓ1

ℓ3

ℓ2.

α
β

γ

Remark 4.3. Although it was convenient to assume that the set of labels is totally ordered, Definition 4.2

is actually independent of the particular order chosen. Specifically, if we change the ordering of the

labels, the resulting category ML will be isomorphic to the original one.

4.3 The syntax of Proto-Quipper-M

The types of Proto-Quipper-M are shown in Table 1. Here, α ranges over the set W of wire types.

Circ(T,U) is the type of generalized circuits with inputs T and outputs U . Denotationally, this type is

the same as !(T ⊸U), but it will receive special treatment in the operational semantics.

The terms of Proto-Quipper-M are shown in Table 2. Here, x ranges over a countable set of variables,

ℓ ranges over the set L of labels, and c ranges over a given set of constants. We assume that these sets
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Φ,x : A; /0 ⊢ x : A
(var)

Φ;ℓ : α ⊢ ℓ : α
(label)

Φ; /0 ⊢ c : Ac
(const)

Γ,x : A;Q ⊢ M : B

Γ;Q ⊢ λxA.M : A⊸B
(abs)

Φ,Γ1;Q1 ⊢ M : A⊸B Φ,Γ2;Q2 ⊢ N : A

Φ,Γ1,Γ2;Q1,Q2 ⊢ MN : B
(app)

Φ; /0 ⊢ M : A

Φ; /0 ⊢ lift M : !A
(lift)

Γ;Q ⊢ M : !A

Γ;Q ⊢ force M : A
(force)

Γ;Q ⊢ M : !(T ⊸U)

Γ;Q ⊢ boxT M : Circ(T,U)
(box)

Φ,Γ1;Q1 ⊢ M : Circ(T,U) Φ,Γ2;Q2 ⊢ N : T

Φ,Γ1,Γ2;Q1,Q2 ⊢ apply(M,N) : U
(apply)

/0;Q ⊢~ℓ : T /0;Q′ ⊢~ℓ′ : U C ∈ ML (Q,Q′)

Φ; /0 ⊢ (~ℓ,C,~ℓ′) : Circ(T,U)
(circ)

Table 3: The typing rules of Proto-Quipper-M (excerpt)

are pairwise disjoint. A label is a symbolic representation of a circuit state: it is a pointer to an output

of a labelled circuit. Constants have a fixed interpretation, which depends on the chosen category M.

For example, it will be convenient to assume constants for built-in gates such as H : qubit⊸qubit. If

the category M is equipped with meta-operations as in Remark 3.1, then these can be represented by

constants such as size : Circ(T,U) → nat, invert : Circ(T,U) → Circ(U,T ), and so on. Most of the

other terms follow standard lambda calculus conventions. The operator �A : 0 → A represents the unique

function from the empty type to any type A. The term (~ℓ,C,~ℓ′) represents a boxed circuit, i.e., a value of

type Circ(T,U). Specifically, C is a morphism of the category ML , representing a generalized circuit,

and ~ℓ and ~ℓ′ are label tuples, establishing an interface between the inputs and outputs of C and the types

T and U . Terms of the form (~ℓ,C,~ℓ′) are not intended to be written directly by users of the programming

language. Rather, such terms represent values that are computed by the programming language.

A variable context is a function from a finite set of variables to types. We write a variable context as

Γ = x1 : A1, . . . ,xn : An. A variable context in which all types are parameter types is called a parameter

context; we sometimes denote parameter contexts by Φ. A label context was already defined in Sec-

tion 4.2, and is a function from a finite set of labels to wire types. As usual, we write Γ,∆ to denote the

union of contexts, provided that they have disjoint domain.

A typing judgement is of the form Γ;Q ⊢ M : A, and it informally means that if the variables and

labels have the types declared in Γ and Q, then M is well-typed of type A. A selection of the typing

rules for Proto-Quipper-M is shown in Table 3. Most of the typing rules resemble the standard rules for a

linear lambda calculus; we will comment on a few particular features of the type system. Note that in the

typing rules, Φ stands for a parameter context, whereas Γ denotes an arbitrary variable context (which

can contain both parameter types and non-parameter types). There is no formal distinction between

these two kinds of contexts, so it is entirely possible to have a type derivation where a given type is part

of Φ in one rule and part of Γ in another. Let us call a variable whose type is not a parameter type a

linear variable. The type system enforces that labels and linear variables are used exactly once, whereas

parameters may be used any number of times or not at all. In the typing rule for constants, we have

assumed that each constant c is equipped with a fixed type Ac.
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[[Φ,x : A; /0 ⊢ x : A]] = [[Φ]]⊗ [[A]]
⋄⊗id
−−→ I ⊗ [[A]]

∼=
−→ A

[[Φ;ℓ : α ⊢ ℓ : α ]] = [[Φ]]⊗ [[α ]]
⋄⊗id
−−→ I⊗ [[α ]]

∼=
−→ α

[[Φ; /0 ⊢ lift M : !A]] = [[Φ]]
lift[[M]]
−−−→ ![[A]]

[[Γ;Q ⊢ boxT M : Circ(T,U)]] = [[Γ]]⊗ [[Q]]
[[M]]
−−→ !([[T ]]⊸ [[U ]])

∼=
−→ p(M([[T ]], [[U ]]))

[[Φ,Γ1,Γ2;Q1,Q2 ⊢ apply(M,N) : U ]] = [[Φ]]⊗ [[Γ1]]⊗ [[Γ2]]⊗ [[Q1]]⊗ [[Q2]]
∆⊗id
−−−→ [[Φ]]⊗ [[Φ]]⊗ [[Γ1]]⊗ [[Γ2]]⊗ [[Q1]]⊗ [[Q2]]
∼=
−→ ([[Φ]]⊗ [[Γ1]]⊗ [[Q1]])⊗ ([[Φ]]⊗ [[Γ2]]⊗ [[Q2]])
[[M]]⊗[[N]]
−−−−−→ p(M([[T ]], [[U ]]))⊗ [[T ]]

apply
−−−→ [[U ]]

[[Φ; /0 ⊢ (~ℓ,C,~ℓ′) : Circ(T,U)]] = [[Φ]]
⋄
−→ I

p( f (~ℓ,C,~ℓ′))
−−−−−−→ p(M([[T ]], [[U ]]))

Table 4: The interpretation of type derivations (excerpt)

4.4 Categorical semantics

Because of the preparatory work we did in Section 3, the categorical semantics of Proto-Quipper-M is

now straightforward. The semantics associates to each type A an object [[A]] of the category M in the obvi-

ous way: the interpretation [[α ]] of a wire type is assumed given, and each connective is interpreted as “it-

self”, for example, [[0]] = 0, [[A+B]] = [[A]]+[[B]], and so on. We also set [[Circ(T,U)]] = p(M([[T ]], [[U ]])).
If Γ = x1 : A1, . . . ,xn : An is a typing context, we write [[Γ]] = [[A1]]⊗ . . .⊗ [[An]].

Next, we associate a morphism [[Γ;Q ⊢ M : A]] : [[Γ]]⊗ [[Q]]→ [[A]] to each valid typing judgement. By

abuse of notation, we sometimes denote this simply as [[M]]. We assume that each constant c of type Ac

is interpreted by a given fixed morphism [[c]] : I → [[Ac]]. The interpretation of type derivations is defined

by induction on the typing rules. For space reasons, we only show part of the interpretation in Table 4.

The interpretation uses maps ⋄ : P → I and ∆ : P → P⊗P, which exist in the category M whenever P is a

parameter object. Each judgement of the form Q ⊢~ℓ : T induces an isomorphism [[~ℓ]] : [[Q]]→ [[T ]], from

which we can define a morphism f (~ℓ,C,~ℓ′) = [[~ℓ′]] ◦C ◦ [[~ℓ]]−1 : [[T ]]→ [[U ]]. This is used in the last rule

in Table 4.

5 Operational semantics

5.1 Evaluation rules

We define the operational semantics of Proto-Quipper-M as a big-step semantics [5]. A configuration

is a pair (C,M) of a labelled circuit C and a term M. Recall that a labelled circuit is, by definition,

a morphism of the category ML . Intuitively, C is the circuit “currently being constructed” when the

term M is run. A configuration is a value configuration if M is a value. Evaluation takes the form of an

evaluation relation (C,M) ⇓ (C′,V ). Its intuitive meaning is: when the term M is evaluated in the context

of a partially constructed circuit C, then it produces a circuit C′ (obtained from C by appending zero or

more gates) and a value V . We also define an error relation (C,M) ⇓ Error, meaning that the evaluation

of M in the context of the circuit C produces a run-time error. Examples of run-time errors are:

• Run-time type errors. For example, evaluating an application MN, where M is not a function, or a

projection π1M, when M is not a pair.
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(C,x) ⇓ Error (C, ℓ) ⇓ (C, ℓ) (C,c) ⇓ (C,c)

(C,λx.M) ⇓ (C,λx.M)

(C,M) ⇓ (C′,λx.M′) (C′,N) ⇓ (C′′,V ) (C′′,M′[V/x]) ⇓ (C′′′,W )

(C,MN) ⇓ (C′′′,W )

(C,M) ⇓ otherwise

(C,MN) ⇓ Error

(C, lift M) ⇓ (C, lift M)

(C,M) ⇓ (C′, lift M′) (C′,M′) ⇓ (C′′,V )

(C, force M) ⇓ (C′′,V )

(C,M) ⇓ otherwise

(C, force M) ⇓ Error

(C,M) ⇓ (C′, lift N) freshlabels(T ) = (Q,~ℓ) (idQ,N~ℓ) ⇓ (D,~ℓ′)

(C,boxT M) ⇓ (C′,(~ℓ,D,~ℓ′))

(C,M) ⇓ (C′, lift N) freshlabels(T ) = (Q,~ℓ) (idQ,N~ℓ) ⇓ otherwise

(C,boxT M) ⇓ Error

(C,M) ⇓ otherwise

(C,boxT M) ⇓ Error

(C,M) ⇓ (C′,(~ℓ,D,~ℓ′)) (C′,N) ⇓ (C′′,~k) append(C′′,~k,~ℓ,D,~ℓ′) = (C′′′,~k′)

(C,apply(M,N)) ⇓ (C′′′,~k′)

(C,(~ℓ,D,~ℓ′)) ⇓ (C,(~ℓ,D,~ℓ′))

Table 5: The big-step semantics (excerpt)

• Unbound variable or label. For example, using a variable x that has not been defined, or trying to

append a gate to a wire ℓ that does not exist.

• Cloning errors. For example, trying to append a 2-input gate to wires ℓ and ℓ′, where ℓ= ℓ′.

The evaluation and error relations are defined recursively. A selection of the evaluation rules are

shown in Table 5, using some notations which we now explain. As usual, M[V/x] denotes capture-

avoiding substitution, i.e., the result of replacing the variable x by the value V in the term M. In the

hypotheses of several rules, we have used the notation “(C,M) ⇓ otherwise”. This is an abbreviation for

(C,M) ⇓ (C′,W ), where W is not of one of the explicit forms mentioned in a previous rule for the same

configuration. For example, in the rules for force , (C,M) ⇓ otherwise means (C,M) ⇓ (C′,W ) where W

is not of the form lift M′. All such “otherwise” cases yield run-time type errors.

Most of the evaluation rules are those of a standard call-by-value lambda calculus. The rules that

do all of the interesting “work” of Proto-Quipper-M are those for “box” and “apply”. Namely, these

rules are responsible for the construction of circuits. They rely on two auxiliary functions, which we

now explain. The rules for “box” use a function freshlabels. Given a simple M-type T , the operation

freshlabels(T ) returns a pair (Q,~ℓ) of a label context and a label tuple such that Q ⊢~ℓ : T . Moreover, the

labels in ~ℓ are chosen to be fresh, which means that they do not occur in N.

The rule for “apply” uses a function append, defined as follows. First, let us say that two boxed

circuits (~ℓ,D,~ℓ) and (~k,D′,~k′) are equivalent, in symbols (~ℓ,D,~ℓ) ∼= (~k,D′,~k′), if they only differ by a

renaming of labels. Given labelled circuits C : Q0 → Q1 and D : Q2 → Q3 and label tuples~k, ~ℓ, and ~ℓ′,
the operation append(C,~k,~ℓ,D,~ℓ′) finds D′ and~k′ such that (~k,D′,~k′)∼= (~ℓ,D,~ℓ′), and such that the labels

in~k′ are fresh. It returns (C′,~k′), where C′ is the labelled circuit obtained by connecting the inputs of D′
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to the matching outputs of C like this:

C

D′

...
...

...

...

~k ~k′

(6)

5.2 Safety properties

The operational semantics satisfies the following safety properties: a well-typed configuration never

produces a run-time error, and if it reduces to a value configuration, then the latter is well-typed of the

same type. To make this more precise, we first define a notion of typing for configurations.

Definition 5.1. Let Q,Q′ be label contexts, (C,M) a configuration, and A a type. We say that (C,M) is

well-typed with input labels Q, output labels Q′, and type A, in symbols Q ⊢ (C,M) : A;Q′, if there exists

Q′′ disjoint from Q′ such that C : Q → Q′′∪Q′ and /0;Q′′ ⊢ M : A.

Proposition 5.2 (Subject reduction). If Q ⊢ (C,M) : A;Q′ and (C,M) ⇓ (C′,V ), then Q ⊢ (C′,V ) : A;Q′.

Proposition 5.3 (Error freeness). If Q ⊢ (C,M) : A;Q′, then (C,M) 6⇓ Error.

While the statement of these properties is succinct, the proofs are intricate and require a number of

auxiliary lemmas, which we omit. Since our language does not have a recursion operator, we also have:

Proposition 5.4 (Termination). If Q ⊢ (C,M) : A;Q′, then there exists (C′,V ) such that (C,M) ⇓ (C′,V ).

5.3 Soundness properties

While the safety properties of Section 5.2 relate the evaluation rules to the typing rules, the following

soundness properties relate the evaluation rules to the categorical semantics. We first extend the categor-

ical semantics from well-typed terms to well-typed configurations.

Definition 5.5. To each well-typed configuration Q ⊢ (C,M) : A;Q′, we associate a morphism [[(C,M)]] :

[[Q]]→ [[A]]⊗ [[Q′]] of the category M as follows. By definition of well-typed configuration, there exists a

unique Q′′ such that C : Q → Q′′∪Q′ and /0;Q′′ ⊢ M : A. Then

[[(C,M)]] = [[Q]]
C
−→ [[Q′′∪Q′]]

∼=
−→ [[Q′′]]⊗ [[Q′]]

[[M]]⊗id
−−−−→ [[A]]⊗ [[Q′]]

Proposition 5.6 (Soundness). If Q ⊢ (C,M) : A;Q′ is a well-typed configuration and (C,M) ⇓ (C′,V ),
then [[(C,M)]] = [[(C′,V )]] : [[Q]]→ [[A]]⊗ [[Q′]].

The soundness property implies that the operational semantics coincides with the categorical seman-

tics. An important special case arises if we have a closed term M : Circ(T,U). The categorical meaning

of M is some generalized circuit [[M]] : [[T ]]→ [[U ]]. Operationally, the term M evaluates to some boxed

circuit (~ℓ,D,~ℓ′), and soundness ensures that [[M]] = [[(~ℓ,D,~ℓ′)]]. Therefore, at observable types such as

Circ(T,U), our evaluation rules are a constructive implementation of the categorical semantics. More

generally, we have the following adequacy property.

Proposition 5.7 (Computational adequacy). If /0 ⊢ (C,M) : A; /0 such that [[(C,M)]] = [[(C′,V )]] and A is

an observable type, then (C,M) ⇓ (C′,V ) (possibly up to a renaming of labels in V ).

As promised in Remark 3.2, the proofs of the soundness and adequacy properties are independent of

the choice of the category M. This justifies not having made such a choice in the first place.
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6 Conclusions and future work

We systematically constructed a programming language for describing families of generalized circuits

by first giving a categorical model and then defining the language to fit the model. The language has

an operational semantics, and we proved safety, soundness, and adequacy properties showing that the

computational and categorical meanings coincide.

A software implementation of Proto-Quipper-M is in progress and almost completed. In future work,

we hope to extend the language to encompass successively larger sets of features of the original Quip-

per. For example, the current version of Proto-Quipper-M lacks a general recursion scheme, so that all

programs are terminating (see Proposition 5.4). Adding recursion to the programming language is no

problem at all, but how to add it to the categorical model while preserving soundness and adequacy is an

open question.

Another question we hope to address in future work is the exact relationship between Proto-Quipper-

M and the version of Proto-Quipper from Ross’s thesis [9]. While these two languages have much in

common, they differ in some important aspects: for example, Ross’s Proto-Quipper uses a subtyping

relation !A <: A instead of explicit “lift ” and “force ” operators. This is convenient for programmers, but

giving a categorical semantics for Ross’s version of Proto-Quipper is left for future work.
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