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Techniques from higher categories and higher-dimensionalrewriting are becoming increasingly im-
portant for understanding the finer, computational properties of higher algebraic theories that arise,
among other fields, in quantum computation. These theories have often the property of contain-
ing simpler sub-theories, whose interaction is regulated in a limited number of ways, which reveals a
topological substrate when pictured by string diagrams. Byexploring the double nature of computads
as presentations of higher algebraic theories, and combinatorial descriptions of “directed spaces”, we
develop a basic language of directed topology for the compositional study of algebraic theories. We
present constructions of computads, all with clear analogues in standard topology, that capture in
great generality such notions as homomorphisms and actions, and the interactions of monoids and
comonoids that lead to the theory of Frobenius algebras and of bialgebras. After a number of exam-
ples, we describe how a fragment of the ZX calculus can be reconstructed in this framework.

1 Introduction

A traditional presentation of an algebraic theory consistsof a number of generating operations, together
with a number of equations that they satisfy. If we are concerned with computational aspects of the
presentation — looking for normalisation procedures, for instance — it is commonplace to replace equa-
tions with directedrewrite rules. Then, in the analysis of critical pairs and confluences of a rewrite
system, we are led to consider relations between different sequences of rewrites, which can in turn be
relaxed to “rewrites of rewrites”, and so on, leading intohigher-dimensional rewriting theory[35]. From
this perspective, the dichotomy between generators and relations in a presentation is resolved: they both
become generators of a higher-dimensional algebraic theory, only differing in dimension.

The natural setting for higher-dimensional rewriting ishigher category theory, where, besides the
objects (0-cells) and morphisms (1-cells) of basic category theory, there can also ben-cells between
(n−1)-cells, for anyn> 0. The use of terminology borrowed from topology is not coincidental: there
is a sense in which the “directedn-cells” of higher categories behave like topologicaln-cells. This is
exemplified by the successful application of methods from homology theory in the study of rewriting
systems, based on this analogy [28, 29]; however, it is perhaps best pictured through the use ofstring
diagrams[38, 26] (or, more recently, surface diagrams [18]) for reasoning about higher categories.

In one especially relevant application, string diagrams have emerged as a strong contender for a high-
level, native syntax for quantum programming [44, 15], whose highly symmetrical semantics — in pure,
finite-dimensional quantum theory, all processes are reversible, and inputs can be turned into outputs
and vice versa [37] — require a quite unusual amount of interplay between algebraic and coalgebraic
structures.

Better understanding the computational properties of theories such as the ZX calculus [14, 2] and its
refinement, the ZW calculus [22], is pivotal in making them viable for the efficient design of quantum
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algorithms and protocols. Although these theories include, as a whole, a relatively large number of
axioms, they contain a number of simpler sub-theories, whose interactions are regulated by the axioms
in fairly predictable ways: something is a homomorphism of something else, something is an action on
something else...

Beyond these motivating examples, such a factorisation seems to be a property of many theories: as
a simple case, think of∗-monoids, which can be seen as an interaction of the theory ofmonoids and the
theory of involutions. So we asked ourselves the question:

• Is there a way to study algebraic theoriescompositionally, so that one can derive properties of the
larger theory from its components, and the few ways in which they are allowed to interact?

There has already been, in fact, an attempt to develop a compositional algebra, through Lack’s “com-
posing PROPs” framework [27]. In this setting, a presentation of a fragment of the ZX calculus — the
theory of interacting bialgebras— was successfully constructed from the theories of monoidsand of
comonoids [7]. There are, nevertheless, two downsides to this approach, relative to our objectives.

Firstly, composition relies on the choice of a “distributive law”, which conceptually amounts to
stating what the normal form for operations of the resultingtheory should be. Thus, we can already
tell what the resulting theory willglobally look like, which subtracts something from its heuristic value,
especially when we only have an algebraic presentation at hand. In fact, “composing PROPs” is mostly
useful to derive axioms when concrete models of the component theories are available, also suggesting a
“concrete” way of composing them.

Secondly, it is aflat composition, in that it works in a strictly 2-categorical framework, and fails to
account for any of the topological properties of the interactions. For instance, two specular distributive
laws for monoids and comonoids lead, respectively, to the theory of special Frobenius algebras, and to
the theory of bialgebras. Both the theory of monoids and the theory of comonoids areplanar — none of
the axioms require the swapping of inputs or outputs of operations — and so is the theory of Frobenius
algebras; hence, the interaction leading to Frobenius algebras is not supposed to change the dimension
of generators.

On the other hand, the bialgebra law — a part of the theory of bialgebras — isnot planar, and is in
fact best represented by a string diagram in 3 dimensions, where the monoid part and the comonoid part
belong to different, orthogonal planes, as in the followingpicture.

=

So the interaction leading to bialgebras should be of a different, dimension-increasing sort.
In this paper, we try to lay the groundwork for an alternativeapproach, and make a case for the

following assertions:

1. that there exists a way of studying algebraic theories compositionally, with a small number of basic
constructions corresponding to the most frequent interactions;

2. that the language for compositional algebra is a kind of combinatorialdirected topology, all inter-
actions having clear analogues in standard topology.

In Section 2, we briefly present our technical framework of choice, the theory ofcomputadsor
polygraphs, and build a basic vocabulary of directed topology in this context. In Section 3, we use these
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tools to construct presentations of some basic theories, such as the theory of monoids, from even simpler
ones. In Section 4, we show how two kinds of interaction capture the notion of homomorphism and of
(co)action. Finally, in Section 5, we introduce the dimension-changing operation which enables us to
obtain the theory of bialgebras (and of commutative monoids) from the theory of monoids. We conclude
by describing a partial reconstruction “from scratch” of the theory of interacting bialgebras, and discuss
some of the many possible further directions of this project.

2 Computads and directed spaces

A computadis, informally, a presentation of a higher category “by generators and no relations”. This
notion, introduced by Street [40] in the 2-dimensional case, was rediscovered and expanded by Burroni
[13] in the context of higher-dimensional rewriting theory, where it is known under the name ofpoly-
graph. We will only use the original setting of computads for strict ω-categories, although weak variants
have also been considered [4].

A computad describes how to build a higher category by progressively adjoining generating cells of
higher dimension, whose border is a pasting of lower-dimensional cells, and letting composition be, at
each stage, the free pasting of old and new cells.

Like Lawvere theories, PROs, and operads [32], computads can be used to describe algebraic the-
ories, to be internalised in arbitrary higher categories through appropriate “semantical” functors. The
equational laws by which such theories are normally presented need to have corresponding higher cells,
and are, therefore, directed by default: this makes computads a natural choice for studying computa-
tional aspects of presentations (normalisation, confluence...), and has led to a particular interest among
rewriting theorists [21, 28].

The information contained in a computad is conceptually analogous to the description of a topo-
logical space as a CW complex, withdirected cellsreplacing the undirected, topological cells. The
formalism of higher categories can be seen as an auxiliary, combinatorial tool for specifying how cells
are glued together, corresponding to the gluing maps of point-set topology; in other words, a computad
is a combinatorial description of adirected space, in the spirit of Grandis [20]. There may be ways to
make an explicit connection; for now, we take this as no more than a guiding heuristics.

The simplest and more direct combinatorics of pasting are provided by globularω-categories. Since
technical details are not particularly important in the remainder, we leave the presentation quite informal,
and refer, for instance, to [34] for more details. Preliminary definitions are in Appendix A.
Definition 2.1. A computad Xis a pair of anω-categoryX and a subset|X| ⊆ X , such that, ifXn is
then-skeleton ofX , and|X|n := {σ ∈ |X| | d(σ) = n}, for n≥ 0:

• X0 = |X|0;

• Xn is obtained fromXn−1 by freely adjoining the cells of|X|n.
A map f : X → Y of computads is a function of sets| f | : |X| → |Y| that induces a functor of free

ω-categoriesf : X → Y . Computads and their maps form a categoryCpt.
Thus, a computad is described by giving, for eachn, a setXn of generatingn-cells, and specifying

their border as a formal composition of the lower-dimensional generating cells. A map of computads is
a mapping of the generating cells ofX onto generating cells ofY preserving the composition of borders.
Definition 2.2. Thedisjoint union X⊕Y of two computadsX andY is the computad with generating set
|X⊕Y| := |X|+ |Y|, and

∂ α
n σ =

{

∂ α
X,nσ , σ ∈ |X| ,

∂ α
Y,nσ , σ ∈ |Y| .



A. Hadzihasanovic 73

A subcomputad A⊆ X is a mapA→ X of computads whose underlying set-function is an inclusion
of sets|A| ⊆ |X|. Given a setB of cells ofX, we also denote byB the smallest subcomputad ofX that
contains them.

An equivalence relation Eon a computadX is an equivalence relation on the set|X| of generating
cells, whose extension to composite cells commutes with allborder operators. We denote byX/E the
quotientof X by the equivalence relationE, with generating set|X|/E. Given a subcomputadA⊆ X, we
also writeX/A for the quotient ofX by the equivalence relation|A|× |A|.

These operations are analogous to the corresponding operations on topological spaces, something we
try to highlight through notation and terminology: we buildthe disjoint union ofX andY by separately
attaching the generating cells ofX and ofY, and obtain a quotient space by identifying cells compatibly
with their borders. The disjoint union is a categorical coproduct in Cpt [31]; however, theproduct
of topological spaces does not correspond to the categorical product of computads, but to a different
monoidal structure — the computadic version of theCrans-Graytensor product ofω-categories [16].

Definition 2.3. The tensor product X⊗Y of two computadsX andY is the computad with generating
set|X⊗Y| := |X|× |Y|, where

|X⊗Y|n =
n

∑
k=0

|X|k×|Y|n−k ,

and, for all generatingn-cells σ ⊗ τ , σ ∈ |X|k, τ ∈ |Y|n−k, attaching is characterised by the following
condition. Let

ε(n) =

{

+ if n is even,

− if n is odd.

By induction: (X ⊗Y )0 is justX0×Y0. For alln> 0, in (X ⊗Y )n−1, extend the−⊗− operation
to composite cells by writing(ρ #mρ ′)⊗π for the pasting ofρ ⊗π andρ ′⊗π along their shared border
∂+

m−1ρ ⊗π = ∂−
m−1ρ ′⊗π, and similarly forρ ⊗ (π #mπ ′).

Then,∂ α
n−1(σ ⊗ τ) is obtained by pasting the(n−1)-cells

∂ α
k−1σ ⊗ τ and σ ⊗∂ ε(k)α

n−k−1τ

along their shared border∂ α
k−1σ ⊗∂ ε(k)α

n−k−1τ .

The tensor product determines a non-symmetric monoidal structure onCpt, with 1, the terminal
computad of a single 0-cell, as unit.

The explicit combinatorics for the border operators inX⊗Y are quite complicated; we will, however,
only consider low-dimensional cases, of which some expressions are given in Appendix B. The approach
to ω-categories by cubical sets with connections [9, 10] leads to a much sleeker definition of the Crans-
Gray tensor product [1], but it is unclear whether a cubical description of computads would lead to an
overall simplification, due to the additional complications related to the handling of thin cells.

Remark2.4. That this is a valid definition can be seen as following from the results of [39]. Our con-
ditions determine the tensor product for the category of loop-free augmented directed complexes with
unital bases, which,moduloan adjustment of terminology, is equivalent to a subcategory of ω-categories
presented by computads that are loop-free in a suitable sense. These include, in particular, then-globes
Gn, generated by onen-cell ⊤ and one cellkα for all k< n, α ∈ {+,−}, such that∂ α

k (⊤) = kα , and the
“walking m-compositions”Gn#mGn (calledG[n] andG[n;m] in the referenced paper).
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This tensor product determines, in turn, the Crans-Gray tensor product on the whole ofωCat. Let X,
Y be computads, andX ⊗Y be the tensor product of theω-categories they generate. For allσ ∈ |X|k,
τ ∈ |Y|n−k, σ ⊗ τ corresponds to a functor(σ ⊗ τ)∗ : Gk⊗Gn−k → X ⊗Y sending⊤⊗⊤ to σ ⊗ τ .

In particular, the border ofσ ⊗ τ is the image of a cell ofGk⊗Gn−k. But sinceGk⊗Gn−k is freely
generated by theiα ⊗ jβ , and(σ ⊗ τ)∗(iα ⊗ jβ ) = ∂ α

i σ ⊗ ∂ β
j τ , the border ofσ ⊗ τ is generated by the

∂ α
i σ ⊗∂ β

j τ . If ∂ α
i σ , ∂ β

j τ are generators, there is nothing to do.
Otherwise, suppose the first one is a composite cell; by the interchange law, it can be written in the

form ρ #mρ ′ for somem> 0, so that no composition of dimensiond > m appears inρ ,ρ ′. By a similar
argument as before, using the fact that(ρ #mρ ′)⊗π corresponds to a functor(Gi #mGi)⊗G j →X ⊗Y ,
we can rewrite the tensor as a composition ofρ ⊗ π, ρ ′⊗ π, and lower-dimensional cells. Continuing
like this until all the highest-dimensional compositions are eliminated, since generators can appear only
in finite number in the cells ofX andY , we finally obtain an expression of the border ofσ ⊗ τ as
a composition of tensors of lower-dimensional generators;so X ⊗Y, as defined, is a presentation of
X ⊗Y .

All these constructions have analogues for topological spaces; the following, however, is purely
directed.

Definition 2.5. Let X be a computad,S⊆ N. Then,Xop(S) is the computad with the same generating set
of X, but with the direction ofn-cells andn-composition reversed for alln∈S; that is, lettingσop(S) := σ
for all 0-cells ofX, define inductively

∂ α
n−1(σop(S)) :=

{

(∂−α
n−1σ)op(S) , n∈ S,

(∂ α
n−1σ)op(S) , n 6∈ S,

(σ #n τ)op(S) :=

{

τop(S)#n σop(S) , n∈ S,

σop(S)#nτop(S) , n 6∈ S,

for all numbersn, cells σ , τ of Xn, andα ∈ {+,−}. Then,Xop(S) is generated by theσop(S), for all
σ ∈ |X|. We writeXop := Xop(N).

In the definition of the tensor product of computads, the border of the tensor of two cells is reversed
when the border of the two cells, separately, is: it follows that, for all computadsX andY, (X⊗Y)op ≃
Xop⊗Yop.

In what follows, our constructions will often result in lax versions of algebraic theories, where equal-
ities are replaced by cells pointing in a specific direction.These may not always be the best choices for
computational purposes; we will leave it implicit that one can always reverse cells of a given dimension,
if needed. We will also tend to not distinguish between strict and lax versions of a theory: the theories
that we consider are usually interpreted in low-dimensional categories, so we can leave it to semantical
functors to strictify as necessary, turning directed cellsinto equalities or isomorphisms.

3 Basic examples: Yang-Baxter, associativity, units

In this section, we look at some fundamental examples of interacting computads, with a focus on their
algebraic interpretation. The latter is better understoodwhen cells are visualised asstring diagramsin the
style of [26]; for the first examples, however, we will also provide the more traditional, dual presentation
by pasting diagrams.
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The simplest 1-dimensional computad, and the basic ingredient of many later constructions, is the
directed intervalI , which is the same as the 1-globeG1.

0 1
a

Definition 3.1. Thedirected n-cubeis the computadIn obtained by tensoringn copies ofI .

The directed 2-cube models an “interaction” operation withno additional relations. We writeστ for
σ ⊗ τ in the pasting diagrams.

00

01

10

11

0a a1

a0 1a

aa

Further on, the directed 3-cube can be seen as the presentation of a coloured, directed version of the
Yang-Baxter equation.

000

001 011

111

100 110

010

00a

0a1

a11

a00

1a0

11a

0a0

01a

a10

0aa

a1a

aa0
aaa

000

001 011

111

100 110

101

00a

0a1

a11

a00

1a0

11a

a01

1a1

10a

aa1

a0a

1aa

(1)

Noting that all cells of the same dimension have the same shape in I3, we can eliminate all colouring by
quotienting by the equivalence relationE := {(σ ,σ ′) | d(σ) = d(σ ′)}. Models ofI3/E, that is, functors
from the 3-category it generates to a monoidal categoryC (as a 2-category with a single 1-cell), are
R-matrices inC [36].

There is much more to quotients of cubes: in fact, they cover all sorts ofassociativity-like equations.
We introduce a couple general constructions for later use.

Definition 3.2. Let X be a computad. Thecylinder of X is the computadI ⊗X. The future coneof X
is the quotient computadC+(X) := (I ⊗X)/({1}⊗X). The past coneof X is the quotient computad
C−(X) := (I ⊗X)/({0}⊗X).



76 A Topological Perspective on Interacting Algebraic Theories

One can obtain different variants of these constructions byreversing the directions of cells of any
dimension. All directed variants collapse for the corresponding constructions of CW complexes, the
usual cylinder and cone of a topological space.

We can see then-cube as then-th iteration of the cylinder construction on the terminal computad.
The corresponding iterations of the future cone produce Street’s oriented simplexes, ororientals [41].
This is proven in detail in [12].

Definition 3.3. Then-oriental is the computadC+ n. . .C+(1).

The 2-oriental is just a binary operation.

00

01

1

0a a1

a0

aa

The 3-oriental is a coloured version of an associator.

000

001 01

1

00a

0a1

a1

a00

0a0

0aa

a1a aaa

000

001 01

1

00a

0a1

a1

a00

a01

aa1

a0a

The 4-oriental corresponds to the pentagonator, a directedversion of MacLane’s pentagon [30] and
a part of the theory of pseudomonoids; we only draw its string-diagrammatic version.

Taking past instead of future cones gives the coalgebraic duals of theseconstructions: respectively, a
co-multiplication, co-associator, and co-pentagonator.

Clearly, these computads can also be obtained directly as quotients of then-cubes. Now, letE instead
be the equivalence relation onI3 with

0⊗σ ⊗ τ ∼ 0⊗σ ′⊗ τ ,

1⊗σ ⊗ τ ∼ 1⊗σ ⊗ τ ′ ,
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for all σ ,σ ′,τ ,τ ′ ∈ |I |. Then, the quotientI3/E — which roughly corresponds to taking a past cone on
one copy ofI , and a future cone on another, “fibrewise” on cells of the other copy — presents a version
of the Frobenius law(see [25, Chapter 4] for a review). This can be checked graphically by merging
regions in Diagram (1).

(2)

Again, since both orientals and their duals have congruent shapes for cells of equal dimension, we
can quotient in order to obtain presentations of the theory of semigroups and co-semigroups, as lax —
that is, with as many non-invertible higher cells — as we wantthem to be.

Now, we show how to obtain the theory ofmonoidsby cones, in two steps; for comonoids, it will
suffice to dualise everything. First of all, we need the 2-computadK presenting the “theory of constants”.

a η

Then, the future cone ofK with reversed 1-cells,C+(K)op(1), is a 3-computad presenting an operation
with a right unit.

Now, take the future coneC+(C+(K)op(1)); this can be pictured as follows.

This is a directed version of MacLane’s triangle equality. As usual, we can identify all cells of congruent
shape; since we have a right unitor 3-cell for the “white-yellow” operation, and a new left unitor 3-cell
for the “yellow-magenta” operation, upon identification, the constant becomes a two-sided unit.

Thus, by quotientingC+(C+(K)op(1)) (or further iterations of future cones), we obtain presentations
of arbitrarily lax theories of monoids.

4 Homomorphisms and actions

Now that we have a list of basic examples, let us reconsider the constructions of Section 3 more in
general. Given a computadX, the cylinder ofX has the following structure:
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1. it contains two copies ofX, {0}⊗X and{1}⊗X;

2. for all generatingn-cells σ of X, it contains an(n+ 1)-cell a⊗σ , which has 0⊗σ in its input
border, and 1⊗σ in its output border.

The categoryωCat with the Crans-Gray tensor product actually admits abiclosedstructure, so that a
functor h : I ⊗X → C corresponds to a functor̃h : I → (X ⊸ C ), whereX ⊸ C is an internal
hom-object. ButI is just the “walking arrow” category, sõh is a morphism inX ⊸ C — which can
be seen as a higher-dimensional version of a category ofX-algebras inC ; hence,h̃ is ahomomorphism
of X-algebras.

This suggests thatI ⊗X captures the theory of homomorphisms for the theoryX: a functor h :
I ⊗X → C is an internal homomorphism inC between the two modelsh0 : {0} ⊗X → C and
h1 : {1}⊗X → C . Observe that the undirected analogue is just ahomotopyof maps of topological
spaces.

Example4.1. Let M be a computad presenting a theory of (possibly lax) monoids,with a single “object”
1-cell a, a multiplication 2-cellµ , and a unit 2-cellη . In I ⊗M, the 3-cellsa⊗ µ anda⊗η can be
pictured in the following way.

,

(3)

These cells embody the action of “sliding” the multiplication and unit past the mediating 1-cella⊗
∗, where∗ is the unique 0-cell ofM. The use of sliding for reasoning about naturality is discussed
extensively in [26]; the tensor product of computads provides it with a compositional semantics.

Models ofI ⊗M in the 2-categoryCat are pairs of monads related by a Kleisli law, an asymmetric
version of adistributive law[5]. The dual notion of Eilenberg-Moore law is obtained as a model of
(I ⊗M)op(1).

If X is PRO-like, in the sense that it has only one 0-cell∗ and one cella of lowest, non-zero di-
mensionk (so thatk is seen as the dimension of “objects” in the theory), one is usually interested in
homomorphisms betweenX-algebras in a higher categoryC that are localised at the same 0-cell, so
that the lowest-dimensional component is a(k+1)-morphism between the two underlying objects of the
algebras.

In order to achieve this, we quotientI ⊗X to obtain thereduced cylinderof X, (I ⊗X)/(I ⊗{∗}).
Again, this construction has a well-established undirected analogue: maps from the reduced cylinder of
a topological space into another space are pointed homotopies.

Example4.2. For the computadM of the previous example, the 3-cellsa⊗µ anda⊗η take the following
form in the reduced cylinder ofM.

,

In theconeof a computadX, one of the copies ofX in a cylinder is trivialised by a quotient. After this
analysis, the future cone ofX can be seen as the theory of homomorphisms from an arbitraryX-algebra
to the trivialX-algebra. WhenX is, for instance, the theory of monoids, this happens to capture precisely
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the notion ofleft actionof a monoid, as can most easily be seen by merging the regions beyonda⊗∗ in
Diagram (3).

,

Dually, the past cone captures a notion ofright co-action, and reversing cells gives all the usual mirror
variants. Generalising how we obtained (2), we can also construct theories of objects with a compatible
left (co-)action ofX and right (co-)action ofY, as a quotient ofI ⊗X⊗Y.

Remark4.3. It may be worth observing that, in the compositional style ofbuilding algebraic theories,
the “simplest” theories are the ones with the least artificial identifications of cells — hence, the ones with
themostcells, or most “colours”. Thus, for instance, the theory of semigroups arises more naturally as
a quotient of the theory of actions of non-associative operations; or the theory of Frobenius algebras as
a quotient of the theory of objects with a compatible left action of a monoid and right co-action of a
comonoid. This is in contrast with direct, symbolic presentations, where one is led to consider theories
with a small signature as simpler.

5 Smash products: commutativity, bialgebras

WhenX andY are two PRO-like computads, hence presentations of algebraic theories in the standard,
narrower sense, we may want to be able to compose them in orderto obtain another. Starting from the
tensor product, ifaX, aY are the basic object cells ofX⊗Y, the obvious candidate for the new basic cell
is aX ⊗aY; thus, we need to quotient out theaX ⊗∗ and∗⊗aY. This comes naturally if we work with
pointed spaces.

Definition 5.1. A pointed computad(X,∗X) is a computadX with a distinguished 0-cell∗X, itsbasepoint.
A map of pointed computadsf : (X,∗X)→ (Y,∗Y) is a map of computads withf (∗X) = ∗Y.

Given two pointed computads(X,∗X), (Y,∗Y), their wedge sumis the pointed computad(X ∨Y,∗),
whereX∨Y := (X⊕Y)/({∗X}⊕{∗Y}), and∗ is the identification of∗X and∗Y.

There is an inclusion of computadsX ∨Y ⊆ X ⊗Y, given byX 7→ X ⊗{∗Y}, Y 7→ {∗X}⊗Y. The
smash productof X andY is the pointed computadX∧Y := (X⊗Y)/(X∨Y), with the image ofX∨Y
through the quotient as basepoint.

Example5.2. The reduced cylinder of(X,∗X), mentioned in the previous section, can be described as
the smash product(X,∗X)∧ (I +1,∗1).

Much like their analogues in topology, the wedge sum and smash product define monoidal structures
on the categoryCpt∗ of pointed computads, with(1,∗) and(1+ 1,∗), respectively, as units. We will
sometimes leave the basepoint implicit.

Let S1 be theoriented1-sphere, that is, the computad

a

with its unique 0-cell as basepoint.
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Definition 5.3. Thereduced suspensionof a pointed computad(X,∗) is the computadΣX := X∧S1.

Write σ ∧τ for the image ofσ ⊗τ through the quotient. Generators ofΣX of dimensiond > 0 are in
bijection with generators ofX, by the assignmentσ 7→ σ ∧a, and∂ α

n (σ ∧a) = ∂ α
n σ ∧a, for all numbers

n, andα ∈ {+,−}.
The net effect of the suspension on a PRO-like computadX, thus, is just to raise the dimension of

each cell — and, in particular, the dimension of the “objects” — by 1. This is useful when one needs to
compare theories of different basic dimensionality: the multiplication may be represented by a 2-cell in
a theory of monoidsM, and by a 3-cell in a theory of commutative monoidsMcomm, yet we want to be
able to identify the two; the solution is to includeΣM, rather thanM, in Mcomm.

Next, let us consider the smash product of the theory of monoids with itself,M∧M. The 3-cellsµ∧a
andη ∧a are suspensions of a multiplication and unit. In the diagrammatic representation, their arity as
operations is a reflection of the sliding moves changing the number of intersections between diagrams
from one copy ofM and the other; these are the only 2-cells ofM⊗M that survive the quotient.

:= :=

On the other hand, sincea is an odd-dimensional cell,a∧µ anda∧η are suspensions of aco-multiplication
andco-unit.

:= :=

In the tensor productM ⊗M, the 4-cellµ ⊗ µ mediates between two ways of sliding diagrams past
each other. In the smash productM ∧M, this becomes thebialgebra lawbetween multiplication and
comultiplication.

µ ∧µ
=

The two 3-cells in the input 3-border should really be decomposed in two more, sliding each multipli-
cation first past one strand, then past the other. The 4-cellsµ ∧η , η ∧ µ andη ∧η give the remaining
bialgebra equations.

µ ∧η

,

η ∧µ

,

η ∧η
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Therefore,M∧M is a presentation of the theory of bialgebras. Of course,M∧M contains other higher-
dimensional cells; ifα is the associator 3-cell,α ∧ a will be an associator forµ ∧ a, anda∧α a co-
associator fora∧µ ; while α ∧µ will be a higher coherence between “associate, then use bialgebra law”
and “use bialgebra law, then associate”, and so on.

Let us now take a look atM ∧Mop, the smash product of the theory of monoids and of the theory
of comonoids. As before,µ ∧ aop andη ∧ aop are a (suspended) multiplication and unit cell; but now
a∧ µop anda∧ηop arealsoa multiplication and unit. Below, we show whatµ ∧ µop andη ∧ηop look
like; the black multiplication and unit representa∧µop anda∧ηop, respectively.

µ ∧µop

,

η ∧ηop

The first one is a directed version of aninterchange law; the second one identifies the two units. By
the Eckmann-Hilton argument [19], a pair of monoids satisfying an interchange law is equivalent to a
singlecommutative monoid; hence,M∧Mop can be seen as a presentation of the theory of commutative
monoids. Dually,Mop∧M presents the theory of cocommutative comonoids. The defining equations of
all these theories obtain an original topological interpretation in terms of intersecting, sliding diagrams.
Remark5.4. In [42], it is suggested that directed interchange laws, of the kind just presented, may have
a fundamental role in proof systems for propositional logics: what we have said about potential insights
on algebraic theories coming from our approach may apply to proof systems, and their normalisation
properties, as well.
Remark5.5. There is a symmetric monoidal structure on the category of symmetric operads — the
Boardman-Vogt tensor product[6] — such that the tensor product of the operad of monoids with itself
is equivalent to the operad of commutative monoids [43]. We have not explored the connection, but by
the results just presented, it seems likely that the two constructions are related, with the non-symmetric
smash product of computads being the more general one.

We conclude by putting all the information together in orderto describe how a part of the theory of
interacting bialgebras [7], the “basic fragment” of the ZX calculus, can be assembled in the language we
developed.

1. Starting from the theory of constantsK (either as a given, or as a 2-cube with three faces quotiented
out), we can obtain theoriesM and Mop of monoids and comonoids by successive cones, and
identifying cells of congruent shape, as shown in Section 3

2. By the discussion in Section 4, we know how to obtain the theory of a compatible left action of
a monoid and right co-action of a comonoid by cones. A theoryF of Frobenius algebras results
from the identification of cells of congruent shape. Also letting the comultiplication act on the left,
or the multiplication co-act on the right, allows one to eliminate loops, as in the diagram below —
leading to a theoryFs of special Frobenius algebras.

3. By the results of this section, a theory of commutative, co-commutative bialgebras can be presented
as a smash product of copies ofM andMop, for instanceB := M∧M∧M∧M.
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4. To conclude, it suffices to take two copies ofB and two copies ofFs, and identify pairs of monoids
and comonoids; since objects are 4-cells inB and 1-cells inFs, we first need to take the iterated sus-
pensionΣ3Fs. LettingA := Σ3(M∨Mop∨M∨Mop), a presentation of the theoryIB of interacting
bialgebras is obtained as the pushout

A

B∨B

Σ3(Fs∨Fs)

IB

in the category of pointed computads.

This does not include the axiom that the dualities induced bythe two Frobenius algebras are equal, which
is equivalent to the antipode of the bialgebras being the identity. From preliminary results, it appears that
to complete the compositional presentation, certain “skewed” sliding rules are needed, which can be
obtained by working in a cubical, rather than globular, setting, in which different directions are nota
priori equivalent. We leave this to further work.

6 Conclusions and outlook

In this paper, we introduced a basic language for composing higher-dimensional algebraic theories, em-
bodied by computads, in the way that topological spaces can be composed, and demonstrated how simple
constructions correspond to common algebraic interactions.

This language is able to account for the topological differences between the interactions that produce,
for instance, Frobenius algebras and bialgebras, respectively, from monoids and comonoids, in a way
that earlier compositional frameworks, built in a strictly2-categorical setting, could not. It seems also
remarkably “inductive”: we showed how to obtain complicated, higher-dimensional coherence diagrams
by performing obvious compositions, and then just calculating. This goes in favour of the framework
having a heuristic value.

Furthermore, every theory we have constructed in this paperhas been obtained from copies of the di-
rected intervalI through five basic operations: disjoint union, tensor product, identification of congruent
cells, quotient by a subspace, and reversal of cells. By keeping the number of operations contained, we
can hope to prove general theorems of the form

If the theory T is obtained from the theories T1, . . . ,Tn, which have the property P, by the operation
x, then T has the property P′,

and use them to prove interesting facts about interesting theories. By contrast, where cells of arbitrary
shape have to be added by hand, as in [8, 17], it is unclear how one could obtain general results.

There are many directions in which to proceed from here. One path is purely incremental: finding
more examples, analysing different theories containing different interactions, and trying to describe them
in the language of directed topology. As a follow-up to the description of interacting bialgebras, we are
particularly interested in a fully topological account of the ZW calculus [22], including the theory of
Hopf algebras.

On a higher level of abstraction, the ideas of this paper could serve as a link between the use of
homotopical and homological methods in rewriting theory, and the tools of directed and nonabelian
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topology developed in monographs such as [20, 11]. Compositionality is a powerful calculational tool
in algebraic topology, from the Seifert-van Kampen Theorem, to the Mayer-Vietoris Theorem, through
monoidality of homology functors, so there is a clear potential gain in sight. However, we note that both
the latter sources show a clear preference for cubical methods, so a cubical approach to computads might
be required to make calculations simpler.

There is, then, the issue of strictness, which does not allowthis sort of computads to directly present
braidings and other intermediate degrees of commutativity, of the kind that has been extensively studied
in the theory of topological operads [33]. This could be tackled by resorting to different, weaker notions
of computad and higher category; otherwise, in the spirit of[23, 24], rather than relying on notions
of weakness “from the outside”, it might be conceptually more rewarding to develop them within the
simpler combinatorics of strict computads, by imposing various representability conditions.

Finally, as picturing things by diagrams becomes harder andharder in high dimensions, a computa-
tional aid may be useful: it could be worth developing an extension of Globular [3] to automatise certain
compositions.
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Appendix A Strict ω-categories

We recall the definition of strict, globularω-category.

Definition A.1. A strict ω-categoryC is a set together with unary border operators∂+
n (outputn-border),

∂−
n (input n-border), and partial binary compositions #n , for all n≥ 0, satisfying the following axioms:

1. for all σ ,τ in C , σ #n τ is defined if and only if∂+
n σ = ∂−

n τ ;

2. whenever both sides are defined, andn 6= m,

(σ #n τ)#n ρ = σ #n (τ #n ρ) (associativity),

σ #n ∂+
n σ = σ = ∂−

n σ #n σ (unitality),

(σ1 #n σ2)#m(τ1 #n τ2) = (σ1 #mτ1)#n (σ2#mτ2) (interchange);

3. for all n,m≥ 0, andα ,β ∈ {+,−},

∂ β
m∂ α

n =

{

∂ β
m , m< n ,

∂ α
n , m≥ n ;

4. wheneverσ #n τ is defined, andm 6= n,

∂−
n (σ #n τ) = ∂−

n σ ,

∂+
n (σ #n τ) = ∂+

n τ ,

∂ α
m(σ #n τ) = ∂ α

mσ #n ∂ α
mτ ;
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5. for all σ in C , there is a smallestn, thedimension d(σ) of σ , such that for allm≥ n

∂−
m σ = σ = ∂+

m σ .

Elements ofC are calledcells; a cell of dimensionn is ann-cell. For anyω-categoryC , andn≥ 0, the
n-skeletonCn of C is the restriction ofC to cells of dimensiond ≤ n.

Given twoω-categoriesC , D , a functor f : C → D is a function commuting with border operators
and compositions. Functors andω-categories form a categoryωCat.

Appendix B Borders in low dimensions

Let X, Y be two computads,σ ∈ |X|, τ ∈ |Y|. We give explicit expressions for the low-dimensional
borders ofσ ⊗ τ , in terms of the borders ofσ andτ .

∂−
0 (σ ⊗ τ) = ∂−

0 σ ⊗∂−
0 τ

∂+
0 (σ ⊗ τ) = ∂+

0 σ ⊗∂+
0 τ

∂−
1 (σ ⊗ τ) = (∂−

0 σ ⊗∂−
1 τ)#1 (∂−

1 σ ⊗∂+
0 τ)

∂+
1 (σ ⊗ τ) = (∂+

1 σ ⊗∂−
0 τ)#1 (∂+

0 σ ⊗∂+
1 τ)

∂−
2 (σ ⊗ τ) =

(

(∂−
0 σ ⊗∂−

2 τ)#1 (∂−
1 σ ⊗∂+

0 τ)
)

#2 (∂−
1 σ ⊗∂+

1 τ)#2
(

(∂−
2 σ ⊗∂−

0 τ)#1 (∂+
0 σ ⊗∂+

1 τ)
)

∂+
2 (σ ⊗ τ) =

(

(∂−
0 σ ⊗∂−

1 τ)#1 (∂+
2 σ ⊗∂+

0 τ)
)

#2 (∂+
1 σ ⊗∂−

1 τ)#2
(

(∂+
1 σ ⊗∂−

0 τ)#1 (∂+
0 σ ⊗∂+

2 τ)
)

∂−
3 (σ ⊗ τ) =

(

(

(∂−
0 σ ⊗∂−

3 τ)#1(∂−
1 σ ⊗∂+

0 τ)
)

#2 (∂−
1 σ ⊗∂+

1 τ)#2
(

(∂−
2 σ ⊗∂−

0 τ)#1 (∂+
0 σ ⊗∂+

1 τ)
)

)

#3

(

(∂−
1 σ ⊗∂+

2 τ)#2
(

(∂−
2 σ ⊗∂−

0 τ)#1(∂+
0 σ ⊗∂+

1 τ)
)

)

#3

(

(∂−
2 σ ⊗∂−

1 τ)#2
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(∂+
1 σ ⊗∂−

0 τ)#1(∂+
0 σ ⊗∂+

2 τ)
)

)

#3
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3 σ ⊗∂+

0 τ)
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)

)
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(∂−
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2 τ)#1(∂−
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)
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