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A representation of finite-dimensional probabilistic models in terms of formally real Jordan algebras
is obtained, in a strikingly easy way, from simple assumptions. This provides a framework in which
real, complex and quaternionic quantum mechanics can be treated on an equal footing, and allows
some (but not too much) room for other alternatives. This is based on earlier work (arXiv:1206:2897),
but the development here is further simplified, and also extended in several ways. I also discuss the
possibilities for organizing probabilistic models, subject to the assumptions discussed here, into sym-
metric monoidal categories, showing that such a category will automatically have a dagger-compact
structure. (Recent joint work with Howard Barnum and Matthew Graydon (arXiv:1507.06278) ex-
hibits several categories of this kind.)

1 Introduction and Overview

Several recent papers, notably [7, 9, 17], have derived the standard formulation of finite-dimensional
quantum mechanics (QM) from various packages of axioms governing the information-carrying and
information-processing capacity of finite-dimensional probabilistic systems. In this paper, I derive some-
what less, but do so in what I think is a very attractive and simple way. Specifically, I characterize
formally real Jordan algebrasas probabilistic models, in terms of a few assumptions having straight-
forward probabilistic interpretations. This allows some —but not too much — latitude to go beyond
standard finite-dimensional complex QM. (All simple formally real Jordan algebras are self-adjoint parts
either of matrix algebrasMn(K), whereK is eitherR,C or H, or, if n = 3, O (the Octonions), or of
Clifford algebras [14]. The first three cases correspond to finite-dimensional real, complex and quater-
nionic quantum-mechanical systems.) Moreover, this approach is significantly simpler mathematically
than any of those cited above. Once the various definitions are in place, the proofs of the main theorems
are all quite easy, at least if one is allowed to invoke one classical mathematical result. An ordered vector
spaceE, with positive coneE+, is self-dualiff there exists an inner product onE such thata∈ E+ iff
〈a,b〉 ≥ 0 for all b∈ E+. Call E homogeneousiff the group of order automorphisms — positive linear
automorphisms with positive inverses — onE acts transitively on theinterior of E+. Any formally real
Jordan algebra, ordered by its cone of squaresE+ := {a·a|a∈ E}, is homogeneous and self-dual. For
an accessible proof of the following, see [10].

Theorem [Koecher 1958; Vinberg 1961]: Let E be a finite-dimensional ordered vector space with
a distinguished order-unit u. IfE is homogeneous and self-dual, then there exists a unique product·
onE such that(E,·) is a formally real Jordan algebra with Jordan unit u, andE+ is the cone of squares.
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It is standard to represent an abstract probabilistic physical system in terms of an order unit space
(E,u) in such a way that elements ofE+ dominated byu representeffects(essentially: measurement
outcomes). Thus, if we can find a conceptually compelling wayto motivate the homogeneity and self-
duality ofE, we will have cleared a route to (the vicinity of) quantum theory.

Much of what follows is drawn from the earlier papers [20, 21,22], but the approach sketched here
is organized somewhat differently, is (even) simpler, and goes somewhat further.

2 Probabilistic Models

A test spaceis a collectionM of non-empty sets, regarded as the outcome-sets of various experiments,
measurements, etc. We refer to a setE ∈ M as a test. LetX =

⋃
M be theoutcome-spaceof M . A

probability weighton M is a mappingα : X → [0,1] summing to 1 on every test. We say thatα is
non-singulariff α(x)> 0 for all x∈ X(A).1

Definition: A probabilistic modelis a pairA= (M (A),Ω(A)) whereM (A) is a test space andΩ(A) is
a specified convex set of probability weights onM (A), called thestatesof the model.

It is harmless to assume that, for every outcomex∈X(A), there exists at least one stateα ∈Ω(A) with
α(x) > 0. The span ofΩ(A) in R

X(A), ordered by the coneV+(A) of non-negative multiples of states,
is denotedV(A). It will be useful below to note that the interior of the coneV(A)+ consists of positive
multiples of non-singular states. There is a unique positive functionaluA ∈ V(A)∗ given byu(α) = 1 for
all α ∈ Ω. An effecton V(A) is positive linear functionala ∈ V∗ with 0 ≤ a ≤ u. For example, each
outcomex ∈ X defines an effect̂x ∈ V(A)∗ by evaluation, i.e.,̂x(α) = α(x) for all α ∈ V(A). Effects
can be taken to represent outcomes ofmathematicallypossible measurements, but I make no assumption
about which effects, other than those of the formx̂, are physically accessible.

Classical, Quantum and Jordan ModelsIf E is a finite set, the correspondingclassical modelis
A(E) = ({E},∆(E)) where∆(E) is the simplex of probability weights onE. If H is a finite-dimensional
complex Hilbert space, letM (H ) denote the set of orthonormal bases ofH : thenX =

⋃
M (H ) is

the unit sphere ofH , and any density operatorW on H defines a probability weightαW, given by
αW(x) = 〈Wx,x〉 for all x∈ X. Letting Ω(H ) denote the set of states of this form, we obtain thequan-
tum model A(H ) = (M (H ),Ω(H )) associated withH . The spaceV(A(H )) is isomorphic to the
spaceLh(H ) of hermitian operators onH , ordered as usual.

More generally, every formally real Jordan algebraE gives rise to a probabilistic model. Recall that a
Jordan algebra is a real commutative algebra(E,·) with unit elementu, · satisfying the Jordan identity
a2·(a·b) = a·(a2·b). E is formally real if ∑i a

2
i = 0 impliesai = 0 for all i. A minimal or primitive

idempotent ofE is an elementp∈E with p2 = p and, forq= q2 < p, q= 0. A Jordan frameis a maximal
pairwise orthogonal set of primitive idempotents. LetX(E) be the set of primitive idempotents,M (E),
the set of Jordan frames, andΩ(E), the set of probability weights of the formα(p) = 〈a, p〉 wherea∈E+

with 〈a,u〉 = 1. This defines theJordan model A(E) associated withE. WhereE = Lh(H ) for a finite-
dimensional Hilbert spaceH , this almostrecovers the quantum modelA(H ), except that we replace
unit vectors by their associated projection operators, thus conflating outcomes that differ by a phase.

1Material in this section is standard. See [5] for a more detailed account, and for further references. A good general
reference for ordered vector spaces is [2]
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Sharp modelsA probabilistic modelA is sharp iff, for every outcomex∈ X(A), there exists a unique
stateα ∈ Ω(A) with α(x) = 1. Quantum models are evidently sharp; more generally, any Jordan model
is sharp. IfA is sharp, then there is a sense in which each testE ∈ M (A) is maximally informative:
if we know for certain which outcome will occur, then we know the system’s state exactly, as there is
only one state in which this outcome has probability 1. Conversely, sharpness can be understood as the
requirement that all tests be maximally informative in thissense.

ProcessesWe may want to regard two systems, represented by modelsA and B, as the input to and
output from someprocess, whether dynamical or purely information-theoretic, thathas some probability
to destroy the system or otherwise “fail”. Such a process canbe represented mathematically by a positive
linear mappingT : V(A)→ V(B) taking each normalized stateα of A to a possiblysub-normalizedstate
T(α) of B, i.e.,T(α) = pβ whereβ ∈ Ω(B) andp∈ [0,1] is the probability for the process to fail, given
input stateα . I do not suppose that every positive linear mapping of this sort represents a physically
possible process.

Even if a processT has a nonzero probability of failure, it may be possible to reverse its effect with
nonzero probability:

Definition: A processT : A→ B is probabilistically reversible, or p-reversible, for short, iff there exists
a processSsuch that, for allα ∈ Ω(A), (S◦T)(α) = pα , wherep∈ (0,1].

This means that there is a probability 1− p of the processS◦T failing, but a probabilityp that it will
leave the system in its initial state. (Note that here,p is independent ofα , sinceα 7→ pα is linear.) IfT
preserves normalization, so thatT(Ω(A))⊆ Ω(B), Swill also preserve normalization, and will undo the
result ofT with probability 1. In this case, we just say thatT is reversible.

Every processT : V(A) → V(B) has a dual mappingT∗ : V∗(B) → V∗(A), also positive, given by
T∗(b)(α) = b(T(α)) for all b∈ V∗(B) andα ∈ V(A). ThatT takes normalized states to subnormalized
states is equivalent to the requirement thatT∗(uB)≤ uA, that is, thatT∗ map effects to effects.

Bipartite States If A andB are two models, a (non-signaling)bipartite stateon A andB is a mapping
ω : X(A)×X(B)→R such that (i)∑(x,y)∈E×F ω(x,y) = 1 for all E∈M (A),F ∈M (B); (ii) themarginals

ω1(x) = ∑
y∈E

ω(x,y) andω2(y) = ∑
x∈E

ω(x,y)

are independent ofE ∈ M (A) andF ∈ M (B), respectively; (iii) theconditional states

ω1|y(x) := ω(x,y)/ω2(y) andω2|x := ω(x,y)/ω1(x)

belong toΩ(A) andΩ(B), respectively. We then have thelaw of total probability:

ω1(x) = ∑
y∈F

ω2(y)ω1|y(x) andω2(y) = ∑
x∈E

ω1(x)ω2|x(y).

(Note this implies thatω1 andω2 belong toΩ(A) andΩ(B).)

The space E(A) At this point, it is helpful to introduce another ordered vector space associated with a
modelA. Let E(A)+ ⊆ V(A)∗ be the set of all linear combinations∑i ti x̂i with xi ∈ X(A) andti ≥ 0 for
all i. This is a convex generating cone forV(A)∗, generally smaller than the dual coneV(A)∗. Write
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E(A) for the spaceV(A)∗, as ordered by this smaller cone. The main utility ofE(A) is the following
observation:

Lemma 0: If ω is a bipartite state on A and B, there exists a unique positivelinear mappingω̂ : E(A)→
V(B) such thatω̂(x̂)(y) = ω(x,y) for all x ∈ X(A) and y∈ X(B).

The proof is straightforward (consider the mapX(B)→ V(B) defined byy 7→ ω( ·y); then dualize).
Sinceω̂(x̂) = ω1(x)ω2|x, I call ω̂ theconditioning mapassociated witĥω .

3 Self-duality and homogeneity for quantum models

I will say that a probabilistic modelA is self-dualif there exists an inner product onE(A) with respect
to which E(A) is self-dualand E(A)+ ≃ V(A)+ (in the sense thata ∈ E(A)+ iff ∃α ∈ V(A)+ with
〈a,b〉 = α(b) for all b ∈ E(A)). If V(A)+ — and hence, alsoE(A)+ — is homogeneous, as well as
self-dual, it will follow from the KV theorem thatE(A) carries a formally real Jordan structure.

Why should a model have either of these properties? It is instructive to look at the standard quantum
model associated with a finite-dimensional Hilbert space. As discussed above,V(A(H )) ≃ Lh(H ),
the space of self-adjoint operators onH . If x is a unit vector inH , let px denote the corresponding
rank-one orthogonal projection operator. Consider the trace inner product〈a,b〉 = Tr(ab) on Lh(H ):
by the spectral theorem, Tr(ab) ≥ 0 for all b∈ Lh(H )+ iff Tr (apx) = 〈ax,x〉 ≥ 0 for all unit vectorsx.
So Tr(ab)≥ 0 for all b∈ E+ iff a∈Lh(H )+, i.e., the trace inner product is self-dualizing. But this now
leaves us with the question,what does the trace inner productrepresent, probabilistically?

The trace inner product as a bipartite stateLet H be the conjugate Hilbert space toH . SupposeH
has dimensionn. Any unit vectorΨ in H ⊗H gives rise to a joint probability assignment to effectsa
on H andb on H , namely〈(a⊗b)Ψ,Ψ〉. Consider the maximally entangledEPR statefor H ⊗H

defined by the unit vector

Ψ =
1√
n ∑

x∈E
x⊗x∈ H ⊗H ,

whereE is any orthonormal basis forH . A straightforward computation shows that, for alla,b ∈
Lh(H ), 〈(a⊗b)Ψ,Ψ〉 = 1

nTr(ab). In other words,the normalized trace inner productjust is the joint
probability function determined by the pure state vectorΨ! As a consequence, the state represented
by Ψ has a very strong correlational property: ifx,y are two orthogonal unit vectors with correspond-
ing rank-one projectionspx and py, we havepxpy = 0, so 〈(px ⊗ py)Ψ,Ψ〉 = 0. On the other hand,
〈(px⊗ px)Ψ,Ψ〉= 1

nTr(px) =
1
n. Hence,Ψ perfectly, and uniformly, correlatesevery basic measurement

(orthonormal basis) ofH with its counterpart inH . Note thatΨ is uniquely defined by this property.

Filters and homogeneityTo say that the coneLh(H )+ is homogeneous means that any non-singular
density operator can be obtained from any other by an order-automorphism. But in fact, something
better is true: this order-automorphism can be chosen to represent a probabilistically reversiblephysical
process, i.e., an invertible CP mapping. To see how this works, supposeW is a positive operator on
H . Consider the pure CP mappingφW : Lh(H ) → Lh(H ) given by φW(a) = W1/2aW1/2. Then
φW(1) =W. If W is nonsingular, so isW1/2, soφW is invertible, with inverseφ−1

W = φW−1, again a pure
CP mapping. Now given another nonsingular density operatorM, we can get fromW to M by applying
φM ◦φW−1.
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This is all well and good, but it leaves us with another question: What does the mappingφW represent,
physically? SupposeW is a density operator, with spectral expansionW = ∑x∈E txpx. Here,E is an
orthonormal basis forH diagonalizingW, andtx is the eigenvalue corresponding tox ∈ E. Then, for
each vectorx∈ E, φW(px) = txpx, wherepx is the projection operator associated withx. Thus, ifM is a
density operator corresponding to another state of the system, then the probability ofx’s occurring in the
(sub-normalized) stateφW(M) is txTr(Mpx). In other words,φW acts as afilter on the testE: theresponse
of each outcomex∈ E is attenuated by a factor 0≤ tx ≤ 1.

Thinking of the orthonormal basisE as representing a set of alternativechannelsplus detectors,
we can add a classical filter attenuating the response of one of the detectors — say,x — by a fraction
tx. The discussion above tells us that we can achieve the same result by applying a suitable CP map
to the system’s state,in advanceof the measurement. Moreover, this can be done independently for
each outcome ofE. This is illustrated below for 3-dimensional quantum system: E = {x,y,z} is an
orthonormal basis, representing three possible outcomes of a Stern-Gerlach-like experiment; the filterΦ
acts on the system’s state in such a way that the probability of outcomex is attenuated by a factor of
tx = 1/2, while outcomesy andzare unaffected.

M
▽
△

x prob = 1
2Tr(Mpx)

y prob = Tr(Mpy)

z prob = Tr(Mpz)Φ

Figure 1:Φ attenuatesx’s sensitivity by 1/2.

If we apply theφW to the maximally mixed state1n1, we obtain1
nW. Thus, we canprepare W, up to

normalization, by applying the processΦW to the maximally mixed state. What is more, as long as none
of the eigenvaluestx is zero (that is, as long asW is non-singular),Φ can be invertible, and hence, in the
language of section 2, a p-reversible process

Filters are Symmetric Here is a final observation, linking these last two: The filterΦW is symmetric
with respect to the uniformly correlating stateΨ, in the sense that

〈(ΦW(a)⊗b)Ψ,Ψ〉 = 〈(a⊗ΦW(b))Ψ,Ψ〉

for all effectsa,b∈ Lh(H )+. As we’ll soon see, this is basicallyall that’s neededto recover the Jordan
structure of finite-dimensional quantum theory: the existence of a conjugate system, with a uniformly
correlating “EPR”-like joint state, plus the possibility of preparing non-singular states by means of p-
reversible filters that are symmetric with respect to this state.

4 Conjugates and Filters

In order to abstract the features of QM discussed above, we first need to restrict our focus very slightly.
Call a test space(X,M ) uniform iff all tests E ∈ M have the same size, which we call therank of A.
The test spaces associated with Jordan (and so, in particular, with quantum) models all have this feature.
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Definition: Let A be a uniform probabilistic model of rankn. A conjugatefor A is a modelA, plus a
chosen isomorphism2 A≃ A, takingx∈ X(A) to ax∈ X(A), and a non-signaling bipartite stateηA on A
andA such thatηA(x,x) = 1/n for all x∈ X(A).

If E ∈ M (A), we have|E| = n and∑x,y∈E×E ηA(x,y) = 1 = ∑x∈E η(x,x). Hence,ηA(x,y) = 0 for
x,y ∈ E with x 6= y. Thus,ηA establishes a perfect, uniform correlation betweenany testE ∈ M (A)
and its counterpart,E := {x|x ∈ E}, in M (A). Sinceη is a bipartite state onA andA, it follows that
its marginal, the uniformly or maximally mixed stateρ(x) := 1

n, belongs toΩ(A). If A = A(H ) is
the quantum-mechanical model associated with ann-dimensional Hilbert spaceH , then we can take
A= A(H ) and defineηA(x,y) = |〈Ψ,x⊗y〉|2, whereΨ is the EPR state, as discussed in Section 3.

So much for conjugates. We generalize the filters associatedwith pure CP mappings as follows:

Definition: A filter associated with a testE ∈ M (A) is a processΦ : V(A)→ V(A) such that for every
outcomex∈ E, there is some coefficienttx ∈ [0,1] with Φ(α)(x) = txα(x) for every stateα ∈ Ω(A).

Equivalently,Φ is a filter iff the dual processΦ∗ : V∗(A) → V∗(A) satisfiesΦ∗(x̂) = txx̂ for each
x∈ E. Just as in the quantum-mechanical case, a filter independently attenuates the “sensitivity” of the
outcomesx ∈ E. We’ll shortly see that the existence of a conjugate, plus the preparability of arbitrary
nonsingular states bysymmetric, p-reversible filters, is enough to makeA a Jordan model. Most of the
work is done by the easy Lemma 1, below.

Definition: Let ∆= {δx|x∈X(A)} be any family of states, indexed by outcomesx∈X(A)with δx(x) = 1.
I will say that a stateα ∈ Ω(A) is spectralwith respect to∆ if there is a testE ∈ M (A) such that
α = ∑x∈E α(x)δx. I’ll call the modelA spectral with respect to∆ iff all its states are.

If A is sharp and also spectral with respect to a set∆ of states, then∆ must be the unique set of states
δx with δx(x) = 1. Thus, for a sharp model, we can use the adjective “spectral” without qualification.

Lemma 1: Let A have a conjugate(A,ηA). Suppose that every non-singular state of A is spectral with
respect to the set of conditional statesδx := η1|x, x∈ X. Then A is sharp, and〈a,b〉 := ηA(a,b) is a
self-dualizing inner product onE(A), with respect to whichV(A)≃ E(A). That is, A is self-dual.

Proof: That〈 , 〉 is symmetric and bilinear follows fromη ’s being symmetric and non-signaling. Since
η̂ is a positive mapping,̂η(E(A)+) is contained inV(A)+. By the spectrality assumption,̂η(E(A)+)
contains the interior ofV(A)+. It follows (recalling that we are dealing with finite-dimensional spaces)
that η̂(E(A)+) = V(A)+, and, hence, that̂η is an order-isomorphism. The spectrality assumption now
implies that everya belonging to the interior ofE(A)+ has a decomposition of the form∑x∈E txx for some
coefficientstx > 0 and some testE ∈ M (A). It follows that the such a decomposition is available (albeit
with arbitrary coefficients) for anya∈ E(A): for a sufficiently large value ofN, a+Nu belongs to the
interior ofE(A)+, and hence, has the desired decomposition, saya+Nu= ∑x∈E txx for someE ∈M (A).
Sinceu= ∑x∈E x, we havea= (a+Nu)−Nu= ∑x∈E(tx−N)x.

2By an isomorphism from a modelA to a modelB, I mean a bijectionφ : X(A)→X(B) inducing a bijectionM (A)→M (B),
and such thatα ∈ Ω(A) iff α ◦φ ∈ Ω(B).
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Now supposea∈ E with a= ∑x∈E txx for someE ∈ M (A) and coefficientstx ∈ R. Then

〈a,a〉 = ∑
x,y∈E×E

txtyηA(x,y) =
1
n ∑

x∈E

tx
2 ≥ 0.

This is zero only fora= 0, so〈 , 〉 is an inner product. That this is self-dualizing, and makesE(A) ≃
V(A), is straightforward (use the spectral decomposition plus the fact that̂η is an order-isomorphism).�

If A is sharp and has a conjugateA, then the conditional stateη1|x is the unique stateδx with δx(x) = 1,
so the spectrality assumption in Lemma 1 is fulfilled if we simply say thatA is spectral. Hence,a sharp,
spectral model with a conjugate is self-dual.For the simplest systems, this is already enough to secure
the desired representation in terms of a formally real Jordan algebra. CallA a bit iff it has rank 2 (all
tests have two outcomes), and if every stateα ∈ Ω(A) can be expressed as a mixture of two sharply
distinguishable states; that is,α = tδx+(1− t)δy for somet ∈ [0,1] and statesδx andδy with δx(x) = 1
andδy(y) = 1 for some test{x,y}. If a bit is sharp, then it is already spectral; so it follows from Lemma
1 that if a sharp bitA has a conjugate, it is self-dual. It follows easily thatΩ(A) must then be a ball of
some finite dimensiond. If d is 2,3 or 5, we have a real, complex or quaternionic bit. Ford = 4 ord≥ 6,
we have a non-quantum spin factor.

Suppose now thatA has arbitrary rank, and satisfies the hypotheses of Lemma 1. If V(A) and, hence,
E(A) are homogeneous, then, by the Koecher-Vinberg Theorem,E(A) carries a canonical Jordan struc-
ture. In fact, we can say something a little stronger [22]:

Theorem 1: Let A be spectral with respect to a conjugate systemA. If V(A) is homogeneous, then there
exists a canonical Jordan product onE(A) with respect to which u is the Jordan unit. Moreover with
respect to this product X(A) is exactly the set of primitive idempotents, andM (A) is exactly the set of
Jordan frames.

The homogeneity ofV(A) can be understood as apreparability assumption:it says that every non-
singular state can be obtained,up to normalization, from the maximally mixed state by a p-reversible
process. In fact, under the hypotheses of Lemma 1, the homogeneity of V(A)≃ E(A) follows from the
mere existence of p-reversible filters with arbitrary non-zero coefficients. For ifa is in the interior of
E(A)+, thena= ∑x∈E txx for someE ∈ M (A), with tx > 0 for all x∈ E. If Φ is a p-reversible filter with
Φ(x) = txx ∀x∈ E, thenΦ(u) = a.

Two paths to spectrality Some form of spectral decomposition for states is occasionally taken as an
axiom [11, 6]. However, spectrality can be derived from moretransparent assumptions.3

Definition: A non-signaling bipartite stateω on probabilistic modelsA andB is correlating iff it sets up
a perfect correlation betweensometestE ∈ M (A) andsometestF ∈ M (B), in the sense that there ex-
ists a partial bijectionf : E → F such that for allx∈E,y∈F, ω(x,y)> 0 iff f (x) is defined andy= f (x).

This is equivalent to saying thatω(x, f (x)) = ω1(x) = ω2( f (x)), or ω2|x( f (x)) = 1, for ω1(x) 6= 0,
for all x∈ E. (Notice, too, that sinceω must sum to 1 overE×F, f must be non-empty.) Using these
observations and the law of total probability, we have

3A different path to spectrality is charted in a recent paper [8] by G. Chiribella and C. M. Scandolo.
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Lemma 2: Suppose A is sharp. Any state arising as the marginal of a correlating bipartite state between
A and some model B, is spectral.

Let us say thatA satisfies thecorrelation principleiff every state ofA arises as the marginal of —
dilates to— a correlating bipartite state. We can paraphrase Lemma 2 assaying that ifA is sharp and
satisfies this principle, then it is also spectral.

The correlation principle has an affinity with the purification postulate of [7], which requires that
every state dilate to apurestate on a composite system. It is also related to the idea that, for every state
α , there should exist anon-disturbing, recordable measurement: a testE ∈ M (A) that can be made,
without affectingα , in such a way that the outcome can be recorded in the state of some ancillary system
B. Prior to the testE, A is in stateα andB is in some “ready” state. After the test, the combined system
is in some joint, non-signaling stateω . If the test is non-disturbing ofα , we must haveω1 = α . If the
outcome ofE wasx, we supposeB to be in a “record state”βx: if this record is accurate, we must have
βx = ω2|x, the conditional state ofB givenx. If these record states are to be readable, there must exist a
testF onB and a partial injectionf : E → F such thatβx( f (x)) = 1 for everyx∈ E with α(x)> 0. Thus,
ω correlatesE with F.

Here is another, superficially quite different, way of arriving at spectrality. LetA have a conjugate
(A,ηA). Call a transformationΦ : V(A) → V(A) symmetricwith respect toηA iff, for all x,y ∈ X(A),
ηA(Φ∗x,y) = ηA(x,Φ

∗
y). Now let α = Φ(ρ) whereΦ is a symmetric filter on a testE ∈ M (A), say

Φ(x) = txx for all x∈ E. A direct computation then shows thatα = ∑x∈E txδx (whereδx = η1|x). Thus, if
every nonsingular state is preparable by a symmetric filter,the spectrality assumption of Lemma 1 holds,
andA is self-dual. If the preparing filter can always be taken to bep-reversible, as well as symmetric,
thenV(A) is homogeneous, and we have a Jordan model. On the other hand,as noted above, in the
presence of spectrality, it’s enough tohavearbitrary p-reversible filters, as these allow one to prepare the
spectral decompositions of arbitrary non-singular states. Thus, conditions (a) and (b), below, both imply
that A is a Jordan model. Conversely, one can show that any Jordan model satisfies both (a) and (b),
closing the loop [22]:

Theorem 2: The following are equivalent:
(a) A has a conjugate, and every non-singular state can be prepared by a p-reversible symmetric

filter;
(b) A is sharp, has a conjugate and arbitrary p-reversible filters, and satisfies the correlation

principle;
(c) A is a Jordan model.

Remark:With some work, one can show that the assumptions of Lemma 1 imply a spectral uniqueness
theorem, and hence, a functional calculus, forE(A). Call an effecte∈ E(A) sharpiff there exists a state
α with α(e) = 1. It is easy to show thate must then have the forme= e(D) := ∑x∈D x̂ whereD ⊆ E
for someE ∈ M (A). Call sharp effectse1, ...,en jointly orthogonal iff ei = e(Di) whereD1, ...,Dn are
pairwise disjoint subsets of a single testE ∈ M (A). Then everya∈ E(A) has a unique representation
a = ∑n

i=0 tiei whereto > t1 > .... > tn ande1, ...,en are jointly orthogonal sharp effects. Thus, for any
function f : {to, ..., tn} → R, one can definef (a) := ∑i f (ti)ei . In particular,a2 = ∑i t

2
i ei . There is now

only one candidate for a Jordan product onE(A), namely,a·b = (a+ b)2 − a2 − b2. If V(A) is also
homogeneous, the KV theorem implies that thisis a Jordan product. In particular, it is bilinear. An
interesting problem is whether one can prove thiswithout invoking the Koecher-Vinberg Theorem.
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5 Jordan Composites and Jordan Theories

A probabilistic theory is best understood as a category of probabilistic models and processes. In order
to handle composite systems, one would like this to be a symmetric monoidal category. However, one
wants to place some minimal restriction on how the monoidal product interacts with the probabilistic
structure:

Definition: A (non-signaling)compositeof probabilistic modelsA andB is a modelAB, equipped with
a mappingπ : X(A)×X(B)→ V(AB)∗, whereby outcomesx∈ X(A) andy∈ X(B) can be combined into
a single effectπ(x,y) =: xy∈ V(AB)∗+. Moreover, we require that (i)∑(x,y)∈E×F π(x,y) = uAB for all
E ∈ M (A), F ∈ M (B), and (ii)∀ω ∈ Ω(AB), ω ◦π is a (non-signaling) bipartite state onA andB.

By a monoidal probabilistic theory, I mean a symmetric monoidal categoryC in which objects are
probabilistic models, morphisms are processes, and the monoidal product is a non-signaling composite in
the above sense. Moreover, I require the monoidal unit to be the (obvious) trivial model 1 withV(1) =R.
By a conjugatefor A∈ C , I mean a conjugate in the sense defined earlier, but with the added restriction
thatA∈ C andηA ∈ Ω(AA).

Theorem 3: Let C be a locally tomographic monoidal probabilistic theory in which every model A is
sharp, spectral, and has a conjugate inC . Suppose also that (i)A= A, withηA(a,b) = ηA(a,b), and (ii)
if φ ∈ C (A,B), thenφ ∈ C (A,B). ThenC has a canonical dagger compact structure, in whichA is the
dual of A andηA is the co-unit.

The proof is straightforward. Lemma 1 gives us a self-dualizing inner product on each of the spaces
E(A), and also sets up canonical isomorphismsE(A) ≃ V(A)∗ ≃ V(A), whence, we have a canonical
inner product on the latter. We can therefore regardC as a subcategory of the categoryFdHilb R of
real finite-dimensional Hilbert spaces and linear mappings. Using conditions (i) and (ii), plus local
tomography, one shows thatC inherits the †-compact structure from the latter.

This raises two questions. The first is whether the local tomography assumption can be dropped. In
a forthcoming paper [4] (see also [3]), Howard Barnum, Matthew Graydon and I have shown that one
can construct a dagger-compact category embracing real, complex and quaternionic quantum systemsat
the same time, at the cost of modifying the composition rule for complex quantum systems to include an
extra classical bit, i.e., a two-valued superselection rule. (This has the function of allowing time-reversal
to be a physical operation in complex QM, as it is in the real and quaternionic cases). Composites in
this category are generally not locally tomographic. On theother hand, morphisms are not processes, in
the sense defined above, bu rather, certain positive mappings on the enveloping complex matrix algebras
associated with these Jordan algebras.

The second question, which at present I cannot answer either, is what sort of converse, if any, holds
for Theorem 3. That is, given a dagger-compact monoidal probabilistic theory consisting of finite-
dimensional (uniform) probabilistic models, must these models satisfy the hypotheses of Lemma 1?
Must they in fact be Jordan models?
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