Quantum Programs as Kleisli Maps

Abraham Westerbaan
Radboud University Nijmegen
bram@westerbaan.name

Abstract

Furber and Jacobs have shown in their study of quantum computation that the category of commutative C^{*}-algebras and $P U$-maps (positive linear maps which preserve the unit) is isomorphic to the Kleisli category of a comonad on the category of commutative C^{*}-algebras with MIU-maps (linear maps which preserve multiplication, involution and unit). [3]

In this paper, we prove a non-commutative variant of this result: the category of C^{*}-algebras and PU-maps is isomorphic to the Kleisli category of a comonad on the subcategory of MIU-maps.

A variation on this result has been used to construct a model of Selinger and Valiron's quantum lambda calculus using von Neumann algebras. [1]

The semantics of a non-deterministic program that takes two bits and returns three bits can be described as a multimap (= binary relation) from $\{0,1\}^{2}$ to $\{0,1\}^{3}$. Similarly, a program that takes two qubits and returns three qubits can be modelled as a positive linear unit-preserving map from $\mathrm{M}_{2} \otimes \mathrm{M}_{2} \otimes \mathrm{M}_{2}$ to $\mathrm{M}_{2} \otimes \mathrm{M}_{2}$, where M_{2} is the C^{*}-algebra of 2×2-matrices over \mathbb{C}.

More generally, the category Set $_{\text {multi }}$ of multimaps between sets models non-deterministic programs (running on an ordinary computer), while the opposite of the category $\mathbf{C}_{\mathrm{PU}}^{*}$ of PU-maps (positive linear unit-preserving maps) between C^{*}-algebras models programs running on a quantum computer. (When we write " C^{*}-algebra" we always mean " C^{*}-algebra with unit".)

A multimap from $\{0,1\}^{2}$ to $\{0,1\}^{3}$ is simply a map from $\{0,1\}^{2}$ to $\mathscr{P}\left(\{0,1\}^{3}\right)$. In the same line Set $_{\text {multi }}$ is (isomorphic to) the Kleisli category of the powerset monad \mathscr{P} on Set. What about $\mathbf{C}_{\text {PU }}^{*}$?

We will show that there is a monad Ω on $\left(\mathbf{C}_{\mathrm{MIU}}^{*}\right)^{\text {op }}$, the opposite of the category $\mathbf{C}_{\mathrm{MIU}}^{*}$ of C^{*}-algebras and MIU-maps (linear maps that preserve the multiplication, involution and unit), such that $\left(\mathbf{C}_{\mathrm{PU}}^{*}\right)^{\mathrm{op}}$ is isomorphic to the Kleisli category of Ω. We say that $\left(\mathbf{C}_{\mathrm{PU}}^{*}\right)^{\text {op }}$ is Kleislian over $\left(\mathbf{C}_{\mathrm{MIU}}^{*}\right)^{\mathrm{op}}$. So in the same way we add non-determinism to Set by the powerset monad \mathscr{P} yielding $\operatorname{Set}_{\text {multit }}$, we can obtain $\left(\mathbf{C}_{\mathrm{PU}}^{*}\right)^{\text {op }}$ from $\left(\mathbf{C}_{\text {MIU }}^{*}\right)^{\text {op }}$ by a monad Ω.

Let us spend some words on how we obtain this monad Ω. Note that since every positive element of a C^{*}-algebra \mathscr{A} is of the form $a^{*} a$ for some $a \in \mathscr{A}$ any MIU-map will be positive. Thus $\mathbf{C}_{\text {MIU }}^{*}$ is a subcategory of $\mathbf{C}_{\mathrm{PU}}^{*}$. Let $U: \mathbf{C}_{\mathrm{MIU}}^{*} \longrightarrow \mathbf{C}_{\mathrm{PU}}^{*}$ be the embedding.

In Section 1 we will prove that U has a left adjoint $F: \mathbf{C}_{\mathrm{PU}}^{*} \longrightarrow \mathbf{C}_{\mathrm{MIU}}^{*}$, see Theorem 5 . This adjunction gives us a comonad $\Omega:=F U$ on $\mathbf{C}_{\mathrm{MIU}}^{*}$ (which is a monad on $\left(\mathbf{C}_{\mathrm{MIU}}^{*}\right)^{\text {op }}$) with the same counit as the adjunction. The comultiplication δ is given by $\delta_{\mathscr{A}}=F \eta_{U \mathscr{A}}$ for every object \mathscr{A} from $\mathbf{C}_{\text {MIU }}^{*}$ where η is the unit of the adjunction between F and U.

In Section 2 we will prove that $\left(\mathbf{C}_{\mathrm{PU}}^{*}\right)^{\text {op }}$ is isomorphic to $\mathscr{K} \ell(F U)$ if $F U$ is considered a monad on $\left(\mathbf{C}_{\mathrm{MIU}}^{*}\right)^{\mathrm{op}}$. In fact, we will prove that the comparison functor $L: \mathscr{K} \ell(F U) \longrightarrow\left(\mathbf{C}_{\mathrm{PU}}^{*}\right)^{\text {op }}$ (which sends a MIU-map $f: F U \mathscr{A} \longrightarrow \mathscr{B}$ to $U f \circ \eta_{U \mathscr{A}}: U \mathscr{A} \longrightarrow U \mathscr{B}$) is an isomorphism, see Corollary 10 .

The method used to show that $\left(\mathbf{C}_{\mathrm{PU}}^{*}\right)^{\text {op }}$ is Kleislian over $\left(\mathbf{C}_{\mathrm{MIU}}^{*}\right)^{\text {op }}$ is quite general and it will be obvious that many variations on $\left(\mathbf{C}_{\mathrm{PU}}^{*}\right)^{\text {op }}$ will be Kleislian over $\left(\mathbf{C}_{\mathrm{MIU}}^{*}\right)^{\text {op }}$ as well, such as the opposite of the category of subunital completely positive linear maps between C^{*}-algebras. The flip-side of this generality is that we discover preciously little about the monad Ω which leaves room for future inquiry (see Section 3).
R. Duncan and C. Heunen (Eds.): Quantum Physics and Logic (QPL) 2016 EPTCS 236, 2017, pp. 215-228, doi 10.4204/EPTCS. 236.14
© A.A. Westerbaan
This work is licensed under the Creative Commons Attribution License.

We will also see that the opposite $\left(\mathbf{W}_{\mathrm{NCPsU}}^{*}\right)^{\text {op }}$ of the category of normal completely positive subunital maps between von Neumann algebras is Kleislian over the subcategory $\left(\mathbf{W}_{\text {NMIU }}^{*}\right)^{\text {op }}$ of normal unital $*$ homomorphisms. This fact is used in [1] to construct an adequate model of Selinger and Valiron's quantum lambda calculus using von Neumann algebras.

1 The Left Adjoint

In Theorem 5 we will show that U has a left adjoint, $F: \mathbf{C}_{\mathrm{MIU}}^{*} \rightarrow \mathbf{C}_{\mathrm{PU}}^{*}$, using a quite general method. As a result we do not get any "concrete" information about F in the sense that while we will learn that for every C^{*}-algebra \mathscr{A} there exists an arrow $\rho: \mathscr{A} \rightarrow U F \mathscr{A}$ which is initial from \mathscr{A} to U we will learn nothing more about ρ than this. Nevertheless, for some (very) basic C^{*}-algebras \mathscr{A} we can describe $F \mathscr{A}$ directly, as is shown below in Example 1.3

Example 1. Let us start easy: \mathbb{C} will be mapped to itself by F, that is:
the identity $\rho: \mathbb{C} \longrightarrow U \mathbb{C}$ is an initial arrow from \mathbb{C} to $U(-)$.
Indeed, let \mathscr{A} be a C^{*}-algebra and let $\sigma: \mathbb{C} \rightarrow U \mathscr{A}$ be a PU-map. Then σ must be given by $\sigma(\lambda)=\lambda \cdot 1$ for $\lambda \in \mathbb{C}$, where 1 is the identity of \mathscr{A}. Thus σ is a MIU-map as well. Hence there is a unique MIU-map $\hat{\sigma}: \mathbb{C} \rightarrow \mathscr{A}$ (namely $\hat{\sigma}=\sigma$) such that $\hat{\sigma} \circ \rho=\sigma .\left(\mathbb{C}\right.$ is initial in both $\mathbf{C}_{\mathrm{MIU}}^{*}$ and $\mathbf{C}_{\mathrm{PU}}^{*}$.)
Example 2. The image of \mathbb{C}^{2} under F will be the C^{*}-algebra $C[0,1]$ of continuous functions from $[0,1]$ to \mathbb{C}. As will become clear below, this is very much related to the familiar functional calculus for C^{*} algebras: given an element a of a C^{*}-algebra \mathscr{A} with $0 \leq a \leq 1$ and $f \in C[0,1]$ we can make sense of " $f(a)$ ", as an element of \mathscr{A}.
The map $\rho: \mathbb{C}^{2} \longrightarrow U C[0,1]$ given by, for $\lambda, \mu \in \mathbb{C}, x \in[0,1]$,

$$
\rho(\lambda, \mu)(x)=\lambda x+\mu(1-x)
$$

is an initial arrow from \mathbb{C}^{2} to U.
Let $\sigma: \mathbb{C}^{2} \rightarrow U \mathscr{A}$ be a PU-map. We must show that there is a unique MIU-map $\bar{\sigma}: C[0,1] \rightarrow \mathscr{A}$ such that $\sigma=\bar{\sigma} \circ \rho$.

Writing $a:=\sigma(1,0)$, we have $\sigma(\lambda, \mu)=\lambda a+\mu(1-a)$ for all $\lambda, \mu \in \mathbb{C}$. Note that $(0,0) \leq(1,0) \leq$ $(1,1)$ and thus $0 \leq a \leq 1$. Let $C^{*}(a)$ be the C^{*}-subalgebra of \mathscr{A} generated by a. Then $C^{*}(a)$ is commutative since a is positive (and thus normal). Given a MIU-map $\omega: C^{*}(a) \rightarrow \mathbb{C}$ we have $\omega(a) \in[0,1]$ since $0 \leq a \leq 1$. Thus $\omega \mapsto \omega(a)$ gives a map $j: \Sigma C^{*}(a) \rightarrow[0,1]$, where $\Sigma C^{*}(a)$ is the spectrum of $C^{*}(a)$, that is, $\Sigma C^{*}(a)$ is the set of MIU-maps from $C^{*}(a)$ to \mathbb{C} with the topology of pointwise convergence. (By the way, the image of j is the spectrum of the element a.) The map j is continuous since the topology on $\Sigma C^{*}(a)$ is induced by the product topology on $\mathbb{C}^{C^{*}}(a)$. Thus the assignment $h \mapsto h \circ j$ gives a MIU-map $C j: C[0,1] \rightarrow C \Sigma C^{*}(a)$. By Gelfand's representation theorem there is a MIU-isomorphism

$$
\gamma: C^{*}(a) \longrightarrow C \Sigma C^{*}(a)
$$

given by $\gamma(b)(\omega)=\omega(b)$ for all $b \in C^{*}(a)$ and $\omega \in \Sigma C^{*}(a)$. Now, define

$$
\bar{\sigma}:=\gamma^{-1} \circ C j: C[0,1] \longrightarrow \mathbb{C}^{*}(a) \hookrightarrow \mathscr{A} .
$$

(In the language of the functional calculus, $\bar{\sigma}$ maps f to $f(a)$.) We claim that $\bar{\sigma} \circ \rho=\sigma$. It suffices to
show that $C j \circ \rho \equiv \gamma \circ \bar{\sigma} \circ \rho=\gamma \circ \sigma$. Let $\lambda, \mu \in \mathbb{C}$ and $\omega \in \Sigma C^{*}(a)$ be given. We have

$$
\begin{aligned}
(C j \circ \rho)(\lambda, \mu)(\omega) & =(C j)(\rho(\lambda, \mu))(\omega) & & \\
& =\rho(\lambda, \mu)(j(\omega)) & & \text { by def. of } C j \\
& =\lambda j(\omega)+\mu(1-j(\omega)) & & \text { by def. of } \rho \\
& =\lambda \omega(a)+\mu(1-\omega(a)) & & \text { by def. of } j \\
& =\omega(\lambda a+\mu(1-a)) & & \text { as } \omega \text { is a MIU-map } \\
& =\omega(\sigma(\lambda, \mu)) & & \text { by choice of } a \\
& =\gamma(\sigma(\lambda, \mu))(\omega) . & & \text { by def. of } \gamma \\
& =(\gamma \circ \sigma)(\lambda, \mu)(\omega) . & &
\end{aligned}
$$

It remains to be shown that $\bar{\sigma}$ is the only MIU-map $\tau: C[0,1] \rightarrow \mathscr{A}$ such that $U \tau \circ \rho=\sigma$. Let τ be such a map; we prove that $\tau=\bar{\sigma}$. By assumption τ and $\bar{\sigma}$ agree on the elements $f \in C[0,1]$ of the form

$$
f(x)=\lambda x+\mu(1-x) .
$$

In particular, $\bar{\sigma}$ and τ agree on the map $h:[0,1] \rightarrow \mathbb{C}$ given by $h(x)=x$.
Now, since $\bar{\sigma}$ and τ are MIU-maps and h generates the C^{*}-algebra $C[0,1]$ (this is Weierstrass's theorem), it follows that $\bar{\sigma}=\tau$.
Example 3. The image of \mathbb{C}^{3} under F will not be commutative, or more formally:
If $\rho: \mathbb{C}^{3} \longrightarrow U \mathscr{B}$ is an initial map from \mathbb{C}^{3} to U, then \mathscr{B} is not commutative.
Suppose that \mathscr{B} is commutative towards contradiction. Let \mathscr{A} be a C^{*}-algebra in which there are positive a_{1}, a_{2}, a_{3} such that $a_{1} a_{2} \neq a_{2} a_{1}$ and $a_{1}+a_{2}+a_{3}=1$.
(For example, we can take \mathscr{A} to be the set of linear operators on \mathbb{C}^{2} and let

$$
a_{1}:=1 / 2 P_{1} \quad a_{2}:=1 / 2 P_{+} \quad a_{3}:=I-1 / 2 P_{1}-1 / 2 P_{+}
$$

where P_{1} denotes the orthogonal projection onto $\{(0, x): x \in \mathbb{C}\}$ and P_{+}is the orthogonal projection onto $\{(x, x): x \in \mathbb{C}\}$.)

Define $f: \mathbb{C}^{3} \rightarrow \mathscr{A}$ by, for all $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{C}$,

$$
f\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\lambda_{1} a_{1}+\lambda_{2} a_{2}+\lambda_{3} a_{3} .
$$

Then it is not hard to see that f a PU-map. So as \mathscr{B} is the initial arrow from \mathbb{C}^{3} to U there is a (unique) MIU-map $\bar{f}: \mathscr{B} \rightarrow \mathscr{A}$ such that $\bar{f} \circ \rho=f$. We have

$$
\begin{aligned}
a_{1} \cdot a_{2} & =f(1,0,0) \cdot f(0,1,0) \\
& =\bar{f}(\rho(1,0,0)) \cdot \bar{f}(\rho(0,1,0)) \\
& =\bar{f}(\rho(1,0,0) \cdot \rho(0,1,0)) \\
& =\bar{f}(\rho(0,1,0) \cdot \rho(1,0,0)) \quad \text { because } \mathscr{B} \text { is commutative } \\
& =\bar{f}(\rho(0,1,0)) \cdot \bar{f}(\rho(1,0,0)) \\
& =a_{2} \cdot a_{1} .
\end{aligned}
$$

This contradicts $a_{1} \cdot a_{2} \neq a_{2} \cdot a_{1}$. Hence \mathscr{B} is not commutative.

Remark 4. Before we prove that the embedding $\mathbf{C}_{\mathrm{MIU}}^{*} \rightarrow \mathbf{C}_{\mathrm{PU}}^{*}$ has a left adjoint F (see Theorem 5) let us compare what we already know about F with the commutative case. Let $\mathbf{C C}_{\mathrm{MIU}}^{*}$ denote the category of MIU-maps between commutative C^{*}-algebras and let $\mathbf{C C}_{\mathrm{PU}}^{*}$ denote the category of PU-maps between commutative C^{*}-algebras. From the work in [3] it follows that the embedding $\mathbf{C C}_{\mathrm{MIU}}^{*} \longrightarrow \mathbf{C C}_{\mathrm{PU}}^{*}$ has a left adjoint F^{\prime} and moreover that $F^{\prime} \mathscr{A}=C \operatorname{Stat} \mathscr{A}$, where $\operatorname{Stat} \mathscr{A}$ is the topological space of PU-maps from \mathscr{A} to \mathbb{C} with pointwise convergence and $C \operatorname{Stat} \mathscr{A}$ is the C^{*}-algebra of continuous functions from $\operatorname{Stat} \mathscr{A}$ to \mathbb{C}.

Let $x \in[0,1]$. Then the assignment $(\lambda, \mu) \mapsto x \lambda+(1-x) \mu$ gives a PU-map $\bar{x}: \mathbb{C}^{2} \rightarrow \mathbb{C}$. It is not hard to see that $x \mapsto \bar{x}$ gives an isomorphism from $[0,1]$ to Stat \mathbb{C}^{2}. Thus $F^{\prime} \mathbb{C}^{2} \cong C[0,1]$. Hence on \mathbb{C}^{2} the functor F and its commutative variant F^{\prime} agree (see Example 2). However, on \mathbb{C}^{3} the functors F and F^{\prime} differ. Indeed, $F^{\prime} \mathbb{C}^{3}$ is commutative while $F \mathbb{C}^{3}$ is not (see Example 3).

Roughly summarised: while in the diagram above the right adjoints commute with the vertical embeddings, the left adjoints do not.

Theorem 5. The embedding $U: \mathbf{C}_{\mathrm{MIU}}^{*} \longrightarrow \mathbf{C}_{\mathrm{PU}}^{*}$ has a left adjoint.
Proof. By Freyd's Adjoint Functor Theorem (see Theorem V.6.1 of [6]) and the fact that all limits can be formed using only products and equalisers (see Theorem V.2.1 and Exercise V.4.2 of [6]) it suffices to prove the following.
(i) The category $\mathbf{C}_{\text {MIU }}^{*}$ has all small products and equalisers.
(ii) The functor $U: \mathbf{C}_{\mathrm{MIU}}^{*} \longrightarrow \mathbf{C}_{\mathrm{PU}}^{*}$ preserves small products and equalisers.
(iii) Solution Set Condition. For every C^{*}-algebra \mathscr{A} there is a set I and for each $i \in I$ a PU-map $f_{i}: \mathscr{A} \rightarrow \mathscr{A}_{i}$ such that for any PU-map $f: \mathscr{A} \rightarrow \mathscr{B}$ there is an $i \in I$ and a MIU-map $h: \mathscr{A}_{i} \rightarrow \mathscr{B}$ such that $h \circ f_{i}=f$.

Conditions (i) and (ii) can be verified with routine so we will spend only a few words on them (and leave the details to the reader). To see that Condition (iii) holds requires a little more ingenuity and so we will give the proof in detail.
(Conditions (i) and (ii)) Let us first think about small products in $\mathbf{C}_{\mathrm{MIU}}^{*}$ and $\mathbf{C}_{\mathrm{PU}}^{*}$.
Let I be a set, and for each $i \in I$ let \mathscr{A}_{i} be a C^{*}-algebra.
It is not hard to see that cartesian product $\prod_{i \in I} \mathscr{A}_{i}$ is a $*$-algebra when endowed with coordinate-wise operations (and it is in fact the product of the \mathscr{A}_{i} in the category of $*$-algebras with MIU-maps, and with PU-maps).

However, $\prod_{i \in I} \mathscr{A}_{i}$ cannot be the product of the \mathscr{A}_{i} as C^{*}-algebras: there is not even a C^{*}-norm on $\prod_{i \in I} \mathscr{A}_{i}$ unless \mathscr{A}_{i} is trivial for all but finitely many $i \in I$. Indeed, if $\|-\|$ were a C^{*}-norm on $\prod_{i \in I} \mathscr{A}_{i}$, then we must have $\|\sigma(i)\| \leq\|\sigma\|$ for all $\sigma \in \prod_{i \in I} \mathscr{A}_{i}$ and $i \in I$, and so for any sequence i_{0}, i_{1}, \ldots of distinct elements of I for which $\mathscr{A}_{i_{0}}, \mathscr{A}_{i_{1}}, \ldots$ are non-trivial, and for every $\sigma \in \prod_{i \in I} \mathscr{A}_{i}$ with $\sigma\left(i_{n}\right)=n \cdot 1$ for all n, we have $n=\left\|\sigma\left(i_{n}\right)\right\| \leq\|\sigma\|$ for all n, so $\|\sigma\|=\infty$, which is not allowed.

Nevertheless, the $*$-subalgebra of $\prod_{i \in I} \mathscr{A}_{i}$ given by

$$
\bigoplus_{i \in I} \mathscr{A}_{i}:=\left\{\sigma \in \prod_{i \in I} \mathscr{A}_{i}: \sup _{i \in I}\|\sigma(i)\|<+\infty\right\}
$$

is a C^{*}-algebra with norm given by, for $\sigma \in \bigoplus_{i \in I} \mathscr{A}_{i}$,

$$
\|\sigma\|=\sup _{i \in I}\|\sigma(i)\|
$$

We claim that $\bigoplus_{i \in I} \mathscr{A}_{i}$ is the product of the \mathscr{A}_{i} in $\mathbf{C}_{\mathrm{PU}}^{*}\left(\right.$ and in $\left.\mathbf{C}_{\mathrm{MIU}}^{*}\right)$.
Let \mathscr{C} be a C^{*}-algebra, and for each $i \in I$, let $f_{i}: \mathscr{C} \rightarrow \mathscr{A}_{i}$ be a PU-map. We must show that there is a unique PU-map $f: \mathscr{C} \rightarrow \bigoplus_{i \in I} \mathscr{A}_{i}$ such that $\pi_{i} \circ f=f_{i}$ for all $i \in I$ where $\pi_{i}: \bigoplus_{j \in I} \mathscr{A}_{j} \rightarrow \mathscr{A}_{i}$ is the i-th projection. It is clear that there is at most one such f, and it would satisfy for all $i \in I$, and $c \in \mathscr{C}$, $f(c)(i)=f_{i}(c)$.

To see that such map f exists is easy if we are able to prove that, for all $c \in \mathscr{C}$,

$$
\begin{equation*}
\sup _{i \in I}\left\|f_{i}(c)\right\|<+\infty \tag{1}
\end{equation*}
$$

Let $i \in I$ be given. We claim that that $\left\|f_{i}(c)\right\| \leq\|c\|$ for any positive $c \in \mathscr{C}$. Indeed, we have $c \leq\|c\| \cdot 1$, and thus $f_{i}(c) \leq\|c\| \cdot f(1)=\|c\| \cdot 1$, and so $\left\|f_{i}(c)\right\| \leq\|c\|$. It follows that $\left\|f_{i}(c)\right\| \leq 4 \cdot\|c\|$ for any $c \in \mathscr{A}$ by writing $c=c_{1}-c_{2}+i c_{3}-i c_{4}$ where $c_{1}, c_{2}, c_{3}, c_{4} \in \mathscr{C}$ are all positive. (We even have $\|f(c)\| \leq\|c\|$ for all $c \in \mathscr{C}$, but this requires a bit more effor ${ }^{1}$) Thus, we have $\sup _{i \in I}\left\|f_{i}(c)\right\| \leq 4\|c\|<+\infty$. Hence Statement (1) holds.

Thus $\bigoplus_{i \in I} \mathscr{A}_{i}$ is the product of the \mathscr{A}_{i} in $\mathbf{C}_{\mathrm{PU}}^{*}$. It is easy to see that $\bigoplus_{i \in I} \mathscr{A}_{i}$ is the product of the \mathscr{A}_{i} in $\mathbf{C}_{\mathrm{MIU}}^{*}$ as well. Hence $\mathbf{C}_{\mathrm{MIU}}^{*}$ has all small products (as does $\mathbf{C}_{\mathrm{PU}}^{*}$) and $U: \mathbf{C}_{\mathrm{MIU}}^{*} \longrightarrow \mathbf{C}_{\mathrm{PU}}^{*}$ preserves small products.

Let us think about equalisers in $\mathbf{C}_{\mathrm{MIU}}^{*}$ and $\mathbf{C}_{\mathrm{PU}}^{*}$. Let \mathscr{A} and \mathscr{B} be C^{*}-algebras and let $f, g: \mathscr{A} \rightarrow \mathscr{B}$ be MIU-maps. We must prove that f and g have an equaliser $e: \mathscr{E} \rightarrow \mathscr{A}$ in $\mathbf{C}_{\mathrm{MIU}}^{*}$, and that e is the equaliser of f and g in $\mathbf{C}_{\mathrm{PU}}^{*}$ as well.

Since f and g are MIU-maps (and hence continuous), it is not hard to see that

$$
\mathscr{E}:=\{a \in \mathscr{A}: f(a)=g(a)\}
$$

is a C^{*}-subalgebra of \mathscr{A}. We claim that the inclusion $e: \mathscr{E} \rightarrow \mathscr{A}$ is the equaliser of f, g in $\mathbf{C}_{\mathrm{PU}}^{*}$. Let \mathscr{D} be a C^{*}-algebra and let $d: \mathscr{D} \rightarrow \mathscr{A}$ be a PU-map such that $f \circ d=g \circ d$. We must show that there is a unique PU-map $h: \mathscr{D} \rightarrow \mathscr{E}$ such that $d=e \circ h$. Note that d maps \mathscr{A} into \mathscr{E}. The map $h: \mathscr{D} \rightarrow \mathscr{E}$ is simply the restriction of $d: \mathscr{D} \rightarrow \mathscr{A}$ in the codomain. Hence e is the equaliser of f, g in $\mathbf{C}_{\mathrm{PU}}^{*}$.

Note that in the argument above h is a PU-map since d is a PU-map. If d were a MIU-map, then h would be a MIU-map too. Hence e is the equaliser of f, g in the category $\mathbf{C}_{\mathrm{MIU}}^{*}$ as well.

Hence $\mathbf{C}_{\mathrm{MIU}}^{*}$ has all equalisers and $U: \mathbf{C}_{\mathrm{MIU}}^{*} \longrightarrow \mathbf{C}_{\mathrm{PU}}^{*}$ preserves equalisers. Hence $\mathbf{C}_{\mathrm{MIU}}^{*}$ has all small limits and $U: \mathbf{C}_{\mathrm{MIU}}^{*} \longrightarrow \mathbf{C}_{\mathrm{PU}}^{*}$ preserves all small limits.
(Note that while we have seen that $\mathbf{C}_{\mathrm{PU}}^{*}$ has all small products, and it was easy to see that $\mathbf{C}_{\mathrm{MIU}}^{*}$ has all equalisers, it is not clear whether $\mathbf{C}_{\mathrm{PU}}^{*}$ has all equalisers. Indeed, if $f, g: \mathscr{A} \rightarrow \mathscr{B}$ are PU-maps, then the set $\{a \in \mathscr{A}: f(a)=g(a)\}$ need not be a C^{*}-subalgebra of \mathscr{A}.)
(Condition(iii)). Let \mathscr{A} be a C^{*}-algebra. We must find a set I and for each $i \in I$ a PU-map $f_{i}: \mathscr{A} \rightarrow \mathscr{A}_{i}$ such that for every PU-map $f: \mathscr{A} \rightarrow \mathscr{B}$ there is a (not necessarily unique) $i \in I$ and $h: \mathscr{A}_{i} \rightarrow \mathscr{B}$ such that $f=h \circ f_{i}$.

Note that if $f: \mathscr{A} \rightarrow \mathscr{B}$ is a PU-map, then the range of the PU-map f need not be a C^{*}-subalgebra of \mathscr{B}. (If the range of PU-maps would have been C^{*}-algebras, then we could have taken I to be the set of all ideals of \mathscr{A}, and $f_{J}: \mathscr{A} \rightarrow \mathscr{A} / J$ to be the quotient map for any ideal J of \mathscr{A}.)

[^0]Nevertheless, given a PU-map $f: \mathscr{A} \rightarrow \mathscr{B}$ there is a smallest C^{*}-subalgebra, say \mathscr{B}^{\prime}, of \mathscr{B} that contains the range of f. We claim that $\# \mathscr{B}^{\prime} \leq \#\left(\mathscr{A}^{\mathbb{N}}\right)$ where $\# \mathscr{B}^{\prime}$ is the cardinality of \mathscr{B}^{\prime} and $\#\left(\mathscr{A}^{\mathbb{N}}\right)$ is the cardinality of $\mathscr{A}^{\mathbb{N}}{ }^{2}$

If we can find proof for our claim, the rest is easy. Indeed, to begin note that the collection of all C^{*} algebras is not a small set. However, given a set U, the collection of all C^{*}-algebras \mathscr{C} whose elements come from U (so $\mathscr{C} \subseteq U$) is a small set. Now, let $\kappa:=\#\left(\mathscr{A}^{\mathbb{N}}\right)$ be the cardinality of $\mathscr{A}^{\mathbb{N}}$ (so κ is itself a set) and take

$$
I:=\left\{(\mathscr{C}, c): \mathscr{C} \text { is a } C^{*} \text {-algebra on a subset of } \kappa \text { and } c: \mathscr{A} \rightarrow \mathscr{C} \text { is a PU-map }\right\} .
$$

Since the collection of C^{*}-algebras \mathscr{C} with $\mathscr{C} \subseteq \kappa$ is small, and since the collection of PU-maps from \mathscr{A} to \mathscr{C} is small for any C^{*}-algebra \mathscr{C}, it follows that I is small.

For each $i \in I$ with $i \equiv(\mathscr{C}, c)$ define $\mathscr{A}_{i}:=\mathscr{C}$ and $f_{i}:=c$.
Let $f: \mathscr{A} \rightarrow \mathscr{B}$ be a PU-map. We must find $i \in I$ and a MIU-map $h: \mathscr{A}_{i} \rightarrow \mathscr{B}$ such that $h \circ f_{i}=f$. Let \mathscr{B}^{\prime} be the smallest C^{*}-subalgebra that contains the range of f. By our claim we have $\# \mathscr{B}^{\prime} \leq \#\left(\mathscr{A}^{\mathbb{N}}\right) \equiv$ κ. By renaming the elements of \mathscr{B}^{\prime} we can find a C^{*}-algebra \mathscr{C} isomorphic to \mathscr{B}^{\prime} whose elements come from κ. Let $\varphi: \mathscr{C} \rightarrow \mathscr{B}^{\prime}$ be the isomorphism.

Note that $c:=\varphi^{-1} \circ f: \mathscr{A} \rightarrow \mathscr{C}$ is a PU-map. So we have $i:=(\mathscr{C}, c) \in I$. Further, the inclusion $e: \mathscr{B}^{\prime} \rightarrow \mathscr{B}$ is a MIU-map, as is φ. So we have:

Now, $h:=e \circ \varphi: \mathscr{C} \rightarrow \mathscr{B}$ is a MIU-map with $f=h \circ f_{i}$. Hence Cond. (iii)] holds.
Let us proof our claim. Let \mathscr{A} and \mathscr{B} be C^{*}-algebras and let $f: \mathscr{A} \rightarrow \mathscr{B}$ be a PU-map. Let \mathscr{B}^{\prime} be the smallest C^{*}-subalgebra that contains the range of f.
We must show that $\# \mathscr{B}^{\prime} \leq \#\left(\mathscr{A}^{\mathbb{N}}\right)$.
Let us first take care of pathological case. Note that if \mathscr{A} is trivial, i.e. $\mathscr{A}=\{0\}$, then $\mathscr{B}^{\prime}=\{0\}$, so $\#\left(\mathscr{A}^{\mathbb{N}}\right)=1=\# \mathscr{B}^{\prime}$. Now, let us assume that \mathscr{A} is not trivial. Then we have an injection $\mathbb{C} \rightarrow \mathscr{A}$ given by $\lambda \mapsto \lambda \cdot 1$, and thus $\# \mathbb{C} \leq \# \mathscr{A}$.

The trick to prove $\# \mathscr{B}^{\prime} \leq \#\left(\mathscr{A}^{\mathbb{N}}\right)$ is to find a more explicit description of \mathscr{B}^{\prime}. Let T be the set of terms formed using a unary operation $(-)^{*}$ (involution) and two binary operations, • (multiplication) and + (addition), starting from the elements of \mathscr{A}. Let $f_{T}: T \longrightarrow \mathscr{B}^{\prime}$ be the map (recursively) given by, for $a \in \mathscr{A}$, and $s, t \in T$,

$$
\begin{aligned}
f_{T}(a) & =f(a) \\
f_{T}\left(s^{*}\right) & =\left(f_{T}(s)\right)^{*} \\
f_{T}(s \cdot t) & =f_{T}(s) \cdot f_{T}(t) \\
f_{T}(s+t) & =f_{T}(s)+f_{T}(t) .
\end{aligned}
$$

[^1]Note that the range of f_{B}, let us call it $\operatorname{Ran} f_{B}$, is a $*$-subalgebra of \mathscr{B}^{\prime}. We will prove that $\# \operatorname{Ran} f_{B} \leq \# \mathscr{A}$. Since f_{B} is a surjection of T onto $\operatorname{Ran} f_{B}$ it suffices to prove that $\# T \leq \# \mathscr{A}$. In fact, we will show that $\# T=\# \mathscr{A}$.

First note that \mathscr{A} is infinite, and $\mathscr{A} \subseteq T$, so T is infinite as well. To prove that $\# T=\# \mathscr{A}$ we write the elements of T as words (with the use of brackets). Indeed, with $Q:=\mathscr{A} \cup\{" . ", "+", " * ", ") ", "("\}$ there is an obvious injection from T into the set Q^{*} of words over Q. Since \mathscr{A} is infinite, and $Q \backslash \mathscr{A}$ is finite we have $\# Q=\# \mathscr{A}$ by Hilbert's hotel. Recall that $Q^{*}=\bigcup_{n=0}^{\infty} Q^{n}$. Since Q is infinite, we also have $\#(\mathbb{N} \times Q)=\# Q$ and even $\#(Q \times Q)=\# Q$ (see Theorem 3.7.7 of [2]), so $\# Q=\#\left(Q^{n}\right)$ for all $n>0$. It follows that

$$
\begin{aligned}
\#\left(Q^{*}\right) & =\#\left(\bigcup_{n=0}^{\infty} Q^{n}\right) \\
& =\#\left(1+\bigcup_{n=1}^{\infty} Q\right) \\
& =\#(1+\mathbb{N} \times Q) \\
& =\# Q
\end{aligned}
$$

Since there is an injection from T to Q^{*} we have $\# \mathscr{A} \leq \# T \leq \#\left(Q^{*}\right)=\# Q=\# \mathscr{A}$ and so $\# T=\# \mathscr{A}$. Hence $\# \operatorname{Ran} f_{B} \leq \# \mathscr{A}$.

Since $\operatorname{Ran} f_{B}$ is a $*$-algebra that contains $\operatorname{Ran} f$, the closure $\overline{\operatorname{Ran} f_{B}}$ of $\operatorname{Ran} f_{B}$ with respect to the norm on \mathscr{B}^{\prime} is a C^{*}-algebra that contains $\operatorname{Ran} f$. As \mathscr{B}^{\prime} is the smallest C^{*}-subalgebra that contains $\operatorname{Ran} f$, we see that $\mathscr{B}^{\prime}=\overline{\operatorname{Ran} f_{B}}$.

Let S be the set of all Cauchy sequences in $\operatorname{Ran} f_{B}$. As every point in \mathscr{B}^{\prime} is the limit of a Cauchy sequence in $\operatorname{Ran} f_{B}$, we get $\# \mathscr{B}^{\prime} \leq \# S$. Thus:

$$
\begin{array}{rlr}
\# \mathscr{B}^{\prime} & \leq \# S & \\
& \leq \#\left(\operatorname{Ran} f_{B}\right)^{\mathbb{N}} & \\
& \text { as } S \subseteq\left(\operatorname{Ran} f_{B}\right)^{\mathbb{N}} \\
& \leq \#\left(\mathscr{A}^{\mathbb{N}}\right) & \\
\text { as } \# \operatorname{Ran} f_{B} \leq \# \mathscr{A}
\end{array}
$$

Thus we have proven our claim.
Hence Conditions (i) (iii) hold and $U: \mathbf{C}_{\mathrm{MIU}}^{*} \longrightarrow \mathbf{C}_{\mathrm{PU}}^{*}$ has a left adjoint.
We have seen that $U: \mathbf{C}_{\mathrm{MIU}}^{*} \longrightarrow \mathbf{C}_{\mathrm{PU}}^{*}$ has a left adjoint $F: \mathbf{C}_{\mathrm{PU}}^{*} \longrightarrow \mathbf{C}_{\mathrm{MIU}}^{*}$. This adjunction gives a comonad $F U$ on $\mathbf{C}_{\mathrm{MIU}}^{*}$, which in turns gives us two categories: the Eilenberg-Moore category $\mathscr{E} \mathscr{M}(F U)$ of $F U$-coalgebras and the Kleisli category $\mathscr{K} \ell(F U)$. We claim that $\mathbf{C}_{\mathrm{PU}}^{*}$ is isomorphic to $\mathscr{K} \ell(F U)$ since $\mathbf{C}_{\mathrm{MIU}}^{*}$ is a subcategory of $\mathbf{C}_{\mathrm{PU}}^{*}$ with the same objects.

This is a special case of a more general phenomenon which we discuss in the next section (in terms of monads instead of comonads), see Theorem 9

2 Kleislian Adjunctions

Beck's Theorem (see [6], VI.7) gives a criterion for when an adjunction $F \dashv U$ "is" an adjunction between C and $\mathscr{E} \mathscr{M}(U F)$. We give a similar (but easier) criterion for when an adjunction "is" an adjunction between \mathbf{C} and $\mathscr{K} \ell(U F)$. The criterion is not new; e.g., it is mentioned in [5] (paragraph 8.6) without proof or reference, and it can be seen as a consequence of Exercise VI.5.2 of [6] (if one realises that an equivalence which is bijective on objects is an isomorphism). Proofs can be found in the appendix.

Notation 6. Let $F: \mathbf{C} \longrightarrow \mathbf{D}$ be a functor with right adjoint U. Denote the unit of the adjunction by $\eta: \mathrm{id}_{\mathbf{D}} \rightarrow U F$, and the counit by $\varepsilon: F U \rightarrow \mathrm{id}_{\mathbf{C}}$.

Recall that $U F$ is a monad with unit η and as multiplication, for C from \mathbf{C},

$$
\mu_{C}:=U \varepsilon_{F C}: U F U F C \longrightarrow U F C .
$$

Let $\mathscr{K} \ell(U F)$ be the Kleisli category of the monad $U F$. So $\mathscr{K} \ell(U F)$ has the same objects as \mathbf{C}, and the morphisms in $\mathscr{K} \ell(U F)$ from C_{1} to C_{2} are the morphism in \mathbf{C} from C_{1} to $U F C_{2}$. Given C from \mathbf{C} the identity in $\mathscr{K} \ell(U F)$ on C is η_{C}. If $C_{1}, C_{2}, C_{3}, f: C_{1} \rightarrow C_{2}, g: C_{2} \rightarrow C_{3}$ from \mathbf{C} are given, g after f in $\mathscr{K} \ell(U F)$ is

$$
g \odot f:=\mu_{C_{3}} \circ U F g \circ f
$$

Let $V: \mathbf{C} \longrightarrow \mathscr{K} \ell(U F)$ be given by, for $f: C_{1} \longrightarrow C_{2}$ from \mathbf{C},

$$
V f:=\eta_{C_{2}} \circ f: \quad C_{1} \longrightarrow U F C_{2} .
$$

Let $G: \mathscr{K} \ell(U F) \longrightarrow \mathbf{C}$ be given by, for $f: C_{1} \longrightarrow U F C_{2}$ from \mathbf{C},

$$
G f:=\mu_{C_{2}} \circ U F f: \quad U F C_{1} \longrightarrow U F C_{2} .
$$

The following is Exercise VI.5.1 of [6].
Lemma 7. Let $F: \mathbf{C} \longrightarrow \mathbf{D}$ be a functor with a right adjoint U.
Then there is a unique functor $L: \mathscr{K} \ell(U F) \longrightarrow \mathbf{D}$ (called the comparison functor) such that $U \circ L=G$ and $L \circ V=F$ (see Notation 6).

Definition 8. Let \mathbf{C} and \mathbf{D} be categories.
(i) A functor $F: \mathbf{C} \longrightarrow \mathbf{D}$ is called Kleislian when it has a right adjoint $U: \mathbf{D} \rightarrow \mathbf{C}$, and the functor $L: \mathscr{K} \ell(U F) \longrightarrow \mathbf{D}$ from Lemma 7 is an isomorphism.
(ii) We say that \mathbf{D} is Kleislian over \mathbf{C} when there is a Kleislian functor $F: \mathbf{C} \longrightarrow \mathbf{D}$.

Theorem 9. Let $F: \mathbf{C} \longrightarrow \mathbf{D}$ be a functor with a right adjoint U.
The following are equivalent.
(i) F is Kleislian (see Definition 8).
(ii) F is bijective on objects (i.e. for every object D from \mathbf{D} there is a unique object C from \mathbf{C} such that $F C=D$).
Corollary 10. The embedding $U^{\mathrm{op}}:\left(\mathbf{C}_{\mathrm{MIU}}^{*}\right)^{\mathrm{op}} \longrightarrow\left(\mathbf{C}_{\mathrm{PU}}^{*}\right)^{\mathrm{op}}$ is Kleislian (see Def. 8 .
Proof. By Theorem 9 we must show that U^{op} has a left adjoint and is bijective on objects. Since the embedding $U: \mathbf{C}_{\mathrm{MIU}}^{*} \rightarrow \mathbf{C}_{\mathrm{PU}}^{*}$ has a left adjoint $F: \mathbf{C}_{\mathrm{PU}}^{*} \rightarrow \mathbf{C}_{\mathrm{MIU}}^{*}$ it follows that $F^{\mathrm{op}}:\left(\mathbf{C}_{\mathrm{PU}}^{*}\right)^{\mathrm{op}} \rightarrow\left(\mathbf{C}_{\mathrm{MIU}}^{*}\right)^{\mathrm{op}}$ is the right adjoint of $U^{\text {op }}$. Thus $U^{\text {op }}$ has a left adjoint. Further, as $\mathbf{C}_{\mathrm{MIU}}^{*}$ and $\mathbf{C}_{\mathrm{PU}}^{*}$ have the same objects, U is bijective on objects, and so is U^{op}. Hence U^{op} is Kleislian.

In summary, the embedding $U: \mathbf{C}_{\mathrm{MIU}}^{*} \longrightarrow \mathbf{C}_{\mathrm{PU}}^{*}$ has a left adjoint $F\left(\right.$ and so $F^{\mathrm{op}}:\left(\mathbf{C}_{\mathrm{MIU}}^{*}\right)^{\text {op }} \rightarrow\left(\mathbf{C}_{\mathrm{PU}}^{*}\right)^{\text {op }}$ is right adjoint to U^{op}), and the unique functor from the Kleisli category $\mathscr{K} \ell(F U)$ of the monad $F U$ on $\left(\mathbf{C}_{\mathrm{MIU}}^{*}\right)^{\text {op }}$ to $\left(\mathbf{C}_{\mathrm{PU}}^{*}\right)^{\text {op }}$ that makes the two triangles in the diagram below on the left commute is an isomorphism.

For the category Set $_{\text {multi }}$ of multimaps between sets used in the introduction to describe the semantics of non-deterministic programs the situation is the same, see the diagram above to the right.
(The functor V is the obvious embedding. The right adjoint G of V sends a multimap f from X to Y to the function $G f: \mathscr{P}(X) \rightarrow \mathscr{P}(Y)$ that assigns to a subset $A \in \mathscr{P}(X)$ the image of A under f. Note that $G V=\mathscr{P}$.)

3 Discussion

3.1 Variations

Example 11 (Subunital maps). Let $\mathbf{C}_{\mathrm{PsU}}^{*}$ be the category of C^{*}-algebras and the positive linear maps f between them that are subunitial, i.e. $f(1) \leq 1$. The morphisms of $\mathbf{C}_{\mathrm{PsU}}^{*}$ are called PsU-maps.

It is not hard to see that the products in $\mathbf{C}_{\mathrm{PsU}}^{*}$ are the same as in $\mathbf{C}_{\mathrm{MIU}}^{*}$, and that the equaliser in $\mathbf{C}_{\mathrm{MIU}}^{*}$ of a pair f, g of MIU-maps is the equaliser of f, g in $\mathbf{C}_{\mathrm{PsU}}^{*}$ as well. Thus the embedding $U: \mathbf{C}_{\mathrm{MIU}}^{*} \longrightarrow \mathbf{C}_{\mathrm{PsU}}^{*}$ preserves limits. Using the same argument as in Theorem 5 but with "PU-map" replaced by "PsU-map" one can show that U satisfies the Solution Set Condition. Hence U has a left adjoint by Freyd's Adjoint Function Theorem, say $F: \mathbf{C}_{\mathrm{PsU}}^{*} \longrightarrow \mathbf{C}_{\mathrm{MIU}}^{*}$.

Since $\mathbf{C}_{\mathrm{PsU}}^{*}$ has the same objects as $\mathbf{C}_{\mathrm{MIU}}^{*}$ (namely the C^{*}-algebras) the functor $U^{\mathrm{op}}:\left(\mathbf{C}_{\mathrm{MIU}}^{*}\right)^{\mathrm{op}} \longrightarrow$ $\left(\mathbf{C}_{\mathrm{PsU}}^{*}\right)^{\text {op }}$ is bijective on objects and thus Kleislian (by Th. 9).

Hence $\left(\mathbf{C}_{\mathrm{PsU}}^{*}\right)^{\text {op }}$ is Kleislian over $\left(\mathbf{C}_{\mathrm{MIU}}^{*}\right)^{\text {op }}$.
Example 12 (Bounded linear maps). Let $\mathbf{C}_{\mathrm{P}}^{*}$ be the category of positive bounded linear maps between C^{*}-algebras. We will show that $\left(\mathbf{C}_{\mathrm{P}}^{*}\right)^{\text {op }}$ is not Kleislian over $\left(\mathbf{C}_{\mathrm{MIU}}^{*}\right)^{\mathrm{op}}$. Indeed, if it were then $\left(\mathbf{C}_{\mathrm{P}}^{*}\right)^{\text {op }}$ would be cocomplete, but it is not: there is no ω-fold product of \mathbb{C} in $\mathbb{C}_{\mathrm{P}}^{*}$. To see this, suppose that there is a ω-fold product \mathscr{P} in $\mathbf{C}_{\mathrm{P}}^{*}$ with projections $\pi_{i}: \mathscr{P} \rightarrow \mathbb{C}$ for $i \in \omega$. Since π_{i} is a bounded linear map for $i \in \omega$, it has finite operator norm, say $\left\|\pi_{i}\right\|$. By symmetry, $\left\|\pi_{i}\right\|=\left\|\pi_{j}\right\|$ for all $i, j \in \omega$. Write $K:=\left\|\pi_{0}\right\|=\left\|\pi_{1}\right\|=\left\|\pi_{2}\right\|=\cdots$. Define $f_{i}: \mathbb{C} \rightarrow \mathbb{C}$ by $f_{i}(z)=i z$ for all $z \in \mathbb{C}$ and $i \in \omega$. Then f_{i} is a positive bounded linear map for each $i \in \omega$. Since \mathscr{P} is the ω-fold product of \mathbb{C}, there is a (unique positive) bounded linear map $f: \mathbb{C} \rightarrow \mathscr{P}$ such that $\pi_{i} \circ f=f_{i}$ for all $i \in \omega$. For each $N \in \omega$ we have

$$
N=\left\|f_{N}(1)\right\| \leq\left\|f_{N}\right\|=\left\|\pi_{N} \circ f\right\| \leq\left\|\pi_{N}\right\|\|f\|=K\|f\|
$$

Thus $K\|f\|$ is greater than any number, which is absurd.
Example 13 (Completely positive maps). For clarity's sake we recall what it means for a linear map f between C^{*}-algebras to be completely positive (see [8]). For this we need some notation. Given a C^{*} algebra \mathscr{A}, and $n \in \mathbb{N}$ let $M_{n}(\mathscr{A})$ denote the set of $n \times n$-matrices with entries from \mathscr{A}. We leave it to the
reader to check that $M_{n}(\mathscr{A})$ is a $*$-algebra with the obvious operations. In fact, it turns out that $M_{n}(\mathscr{A})$ is a C^{*}-algebra, but some care must be taken to define the norm on $M_{n}(\mathscr{A})$ as we will see below. Now, a linear map $f: \mathscr{A} \longrightarrow \mathscr{B}$ is called completely positive when $M_{n} f$ is positive for each $n \in \mathbb{N}$, where $M_{n} f: M_{n}(\mathscr{A}) \longrightarrow M_{n}(\mathscr{B})$ is the map obtained by applying f to each entry of a matrix in $M_{n}(\mathscr{A})$. Of course, " $M_{n} f$ is positive" only makes sense once we know that $M_{n}(\mathscr{A})$ and $M_{n}(\mathscr{B})$ are C^{*}-algebras.

Let \mathscr{A} be a C^{*}-algebra. We will put a C^{*}-norm on $M_{n}(\mathscr{A})$. Let \mathscr{H} be a Hilbert space and let $\pi: \mathscr{A} \longrightarrow \mathscr{B}(\mathscr{H})$, be an isometric MIU-map. We get a norm $\|-\|_{\pi}$ on $M_{n}(\mathscr{A})$ given by for $A \in M_{n}(\mathscr{A})$,

$$
\|A\|_{\pi}=\left\|\xi\left(\left(M_{n} \pi\right)(A)\right)\right\|,
$$

where $\xi\left(\left(M_{n} \pi\right)(A)\right): \mathscr{H}^{\oplus n} \rightarrow \mathscr{H}^{\oplus n}$ is the bounded linear map represented by the matrix $\left(M_{n} \pi\right)(A)$, and $\left\|\xi\left(\left(M_{n} \pi\right)(A)\right)\right\|$ is the operator norm of $\xi\left(\left(M_{n} \pi\right)(A)\right)$ in $\mathscr{B}\left(\mathscr{H}^{\oplus n}\right)$.

It is easy to see that $\|-\|_{\pi}$ satisfies the C^{*}-identity, $\left\|A^{*} A\right\|_{\pi}=\|A\|_{\pi}^{2}$ for all $A \in M_{n}(\mathscr{A})$. It is less obvious that $M_{n}(\mathscr{A})$ is complete with respect to $\|-\|_{\pi}$. To see this, first note that $\left\|A_{i j}\right\| \leq\|A\|_{\pi}$ for all i, j. So given a Cauchy sequence A_{1}, A_{2}, \ldots in $M_{n}(\mathscr{A})$ we can form the entrywise limit A, that is, $A_{i j}=\lim _{m \rightarrow \infty} A_{i j}$. We leave it to the reader to check that $A_{i j}$ is the limit of A_{1}, A_{2}, \ldots, and thus $M_{n}(\mathscr{A})$ is complete with respect to $\|-\|_{\pi}$. Hence $M_{n}(\mathscr{A})$ is a C^{*}-algebra with norm $\|-\|_{\pi}$.

The C^{*}-norm $\|-\|_{\pi}$ does not depend on π. Indeed, let \mathscr{H}_{1} and \mathscr{H}_{2} be Hilbert spaces and let $\pi_{1}: \mathscr{A} \longrightarrow \mathscr{B}\left(\mathscr{H}_{1}\right)$ and $\pi_{2}: \mathscr{A} \longrightarrow \mathscr{B}\left(\mathscr{H}_{2}\right)$ be isometric MIU-maps; we will show that $\|-\|_{\pi_{1}}=\|-\|_{\pi_{2}}$. Recall that the norm $\|-\|_{\pi_{i}}$ induces an order $\leq_{\pi_{i}}$ on $M_{n}(\mathscr{A})$ given by $0 \leq_{\pi_{i}} A$ iff $\|A-\| A\left\|_{\pi_{i}}\right\|_{\pi_{i}} \leq\|A\|_{\pi_{i}}$ where $A \in M_{n}(\mathscr{A})$. Since $\|A\|_{\pi_{i}}^{2}=\inf \left\{\lambda \in[0, \infty): A^{*} A \leq_{\pi_{i}} \lambda\right\}$ for all $A \in M_{n}(\mathscr{A})$, to prove $\|-\|_{\pi_{1}}=$ $\|-\|_{\pi_{2}}$ it suffices to show that the orders $\leq_{\pi_{1}}$ and $\leq_{\pi_{2}}$ coincide. But this is easy when one recalls that $A \in M_{n}(\mathscr{A})$ is positive iff A is of the form $B^{*} B$ for some $B \in M_{n}(\mathscr{A})$.

The completely positive linear maps that preserve the unit are called CPU-maps. Let $\mathbf{C}_{\mathrm{CPU}}^{*}$ be the category of CPU-maps between C^{*}-algebras. Since $M_{n}(f)$ is a MIU-map when f is a MIU-map and a MIU-map is positive, we see that any MIU-map is completely positive. Thus $\mathbf{C}_{\text {MIU }}^{*}$ is a subcategory of $\mathbf{C}_{\mathrm{CPU}}^{*}$. We claim that $\left(\mathbf{C}_{\mathrm{CPU}}^{*}\right)^{\text {op }}$ is Kleislian over $\left(\mathbf{C}_{\mathrm{MIU}}^{*}\right)^{\mathrm{op}}$.

Let us show that U preserves limits. To show that U preserves equalisers, let $f, g: \mathscr{A} \longrightarrow \mathscr{B}$ be MIUmaps. Then $\mathscr{E}:=\{x \in \mathscr{A}: f(x)=g(x)\}$ is a C^{*}-subalgebra of \mathscr{A} and the embedding $e: \mathscr{E} \rightarrow \mathscr{A}$ is an isometric MIU-map. Then e is the equalisers of f, g in $\mathbf{C}_{\text {MIU }}^{*}$; we will show that e is the equaliser of f, g in $\mathbf{C}_{\text {CPU }}^{*}$. Let \mathscr{C} be a C^{*}-algebra, and let $c: \mathscr{C} \rightarrow \mathscr{A}$ be a CPU-map such that $f \circ c=g \circ c$ Let $d: \mathscr{C} \rightarrow \mathscr{E}$ be the restriction of c. It turns out we must prove that d is completely positive. Let $n \in \mathbb{N}$ be given. We must show that $M_{n} d: M_{n} \mathscr{C} \rightarrow M_{n} \mathscr{E}$ is positive. Note that $M_{n} e$ is an injective MIU-map and thus an isometry. So in order to prove that $M_{n} d$ is positive it suffices to show that $M_{n} e \circ M_{n} d=M_{n}(e \circ d)=M_{n} c$ is positive, which it is since c is completely positive. Thus e is the equaliser of f, g in $\mathbf{C}_{\mathrm{CPU}}^{*}$. Hence U preservers equalisers.

To show that U preserves products, let I be a set and for each $i \in I$ let \mathscr{A}_{i} be a C^{*}-algebra. We will show that $\bigoplus_{i \in I} \mathscr{A}_{i}$ is the product of the \mathscr{A}_{i} in $\mathbf{C}_{\mathrm{CPU}}^{*}$. Let \mathscr{C} be a C^{*}-algebra, and for each $i \in I$, let $f_{i}: \mathscr{C} \rightarrow \mathscr{A}_{i}$ be a CPU-map. As before, let $f: \mathscr{C} \rightarrow \bigoplus_{i \in I} A_{i}$ be the map given by $f(x)(i)=f_{i}(x)$ for all $i \in I$ and $x \in \mathscr{C}$. Leaving the details to the reader it turns out that it suffices to show that f is completely positive. Let $n \in \mathbb{N}$ be given. We must prove that $M_{n} f: M_{n}(\mathscr{C}) \longrightarrow M_{n}\left(\bigoplus_{i \in I} \mathscr{A}_{i}\right)$ is positive. Let $\varphi: M_{n}\left(\bigoplus_{i \in I} \mathscr{A}_{i}\right) \longrightarrow \bigoplus_{i \in I} M_{n}\left(\mathscr{A}_{i}\right)$ be the unique MIU-map such that $\pi_{i} \circ \varphi=M_{n} \pi_{i}$ for all $i \in I$. Then φ is a MIU-isomorphism and thus to prove that $M_{n} f$ is positive, it suffices to show that $\varphi \circ M_{n} f$ is positive. Let $i \in I$ be given. We must prove that $\pi_{i} \circ \varphi \circ M_{n} f$ is positive. But we have $\pi_{i} \circ \varphi \circ M_{n} f=M_{n} \pi_{i} \circ M_{n} f=M_{n}\left(\pi_{i} \circ f\right)=M_{n} f_{i}$, which is positive since f is completely positive. Thus $\oplus_{i \in I} \mathscr{A}_{i}$ is the product of the \mathscr{A}_{i} in $\mathbf{C}_{\mathrm{CPU}}^{*}$ and hence U preserves limits.

With the same argument as in Theorem 9 the functor U satisfies the Solution Set Condition and thus U has a left adjoint. It follows that $U^{\text {op }}:\left(\mathbf{C}_{\text {MIU }}^{*}\right)^{\text {op }} \longrightarrow\left(\mathbf{C}_{\mathrm{CPU}}^{*}\right)^{\text {op }}$ is Kleislian.
Example 14 (W^{*}-algebras). Let $\mathbf{W}_{\text {NMIU }}^{*}$ be the category of von Neumann algebras (also called W^{*} algebras) and the MIU-maps between them that are normal, i.e., preserve suprema of upwards directed sets of self-adjoint elements. Let $\mathbf{W}_{\text {NPU }}^{*}$ be the category of von Neumann and normal PU-maps. Note that $\mathbf{W}_{\mathrm{NMIU}}^{*}$ is a subcategory of $\mathbf{W}_{\mathrm{NPU}}^{*}$. We will prove that $\left(\mathbf{W}_{\mathrm{NPU}}^{*}\right)^{\text {op }}$ is Kleislian over $\left(\mathbf{W}_{\mathrm{NMIU}}^{*}\right)^{\text {op }}$.

It suffices to show that U has a left adjoint. Again we follow the lines of the proof of Theorem 5 . Products and equalisers in $\mathbf{W}_{\text {NMIU }}^{*}$ are the same as in $\mathbf{C}_{\text {MIU }}^{*}$. It is not hard to see that the embedding $U: \mathbf{W}_{\text {NMIU }}^{*} \longrightarrow \mathbf{W}_{\text {NPU }}^{*}$ preserves limits. To see that U satisfies the Solution Set Condition we use the same method as before: given a von Neumann algebra \mathscr{A}, find a suitable cardinal κ such that the following is a solution set.

$$
\begin{array}{r}
I:=\{(\mathscr{C}, c): \mathscr{C} \text { is a von Neumann algebra on a subset of } \kappa \\
\text { and } c: \mathscr{A} \longrightarrow \mathscr{C} \text { is a normal PU-map }\},
\end{array}
$$

Only this time we take $\kappa=\#(\wp(\wp(\mathscr{A})))$ instead of $\kappa=\#\left(\mathscr{A}^{\mathbb{N}}\right)$. We leave the details to the reader, but it follows from the fact that given a subset X of a von Neumann algebra \mathscr{B} the smallest von Neumann subalgebra \mathscr{B}^{\prime} that contains X has cardinality at most $\#(\wp(\wp(X)))$. Indeed, if \mathscr{H} is a Hilbert space such that $\mathscr{B} \subseteq \mathscr{B}(\mathscr{H})$ (perhaps after renaming the elements of \mathscr{B}), then \mathscr{B}^{\prime} is the closure (in the weak operator topology on $\mathscr{B}(\mathscr{H})$) of the smallest $*$-subalgebra containing X. Thus any element of \mathscr{B}^{\prime} is the limit of a filter - a special type of net, see paragraph 12 of [9] - of $*$-algebra terms over X, of which there are no more than \#($\wp(\wp(X)))$.

By a similar reasoning one sees that the opposite $\left(\mathbf{W}_{\mathrm{NCPsU}}^{*}\right)^{\text {op }}$ of the category of normal completely positive subunital linear maps between von Neumann algebras is Kleislian over $\left(\mathbf{W}_{\text {NMIU }}^{*}\right)^{\text {op }}$. The existence of the adjoint to the inclusion $\mathbf{W}_{\text {NMIU }}^{*} \rightarrow \mathbf{W}_{\text {NCPsU }}^{*}$ is key in our construction of a model of Selinger and Valiron's quantum lambda calculus by von Neumann algebras, see [1].

3.2 Concrete description

In this note we have shown that the embedding $U: \mathbf{C}_{\mathrm{MIU}}^{*} \longrightarrow \mathbf{C}_{\mathrm{PU}}^{*}$ has a left adjoint F, but we miss a concrete description of $F \mathscr{A}$ for all but the simplest C^{*}-algebras \mathscr{A}. What constitutes a "concrete description" is perhaps a matter of taste or occasion, but let us pose that it should at least enable us to describe the Eilenberg-Moore category $\mathscr{E} \mathscr{M}(F U)$ of the comonad $F U$. More concretely, it should settle the following problem.
Problem 15. Writing BOUS for the category of positive linear maps that preserve the unit between Banach order unit spaces, determine whether $\mathscr{E} \mathscr{M}(F U) \cong$ BOUS.
(An order unit space is an ordered vector space V over \mathbb{R} with an element 1 , the order unit, such that for all $v \in V$ there is $\lambda \in[0, \infty)$ such that $-\lambda \cdot 1 \leq v \leq \lambda \cdot 1$. The smallest such λ is denoted by $\|v\|$. See [4] for more details. If $v \mapsto\|v\|$ gives a complete norm, V is called a Banach order unit space.)

3.3 MIU versus PU

A second "problem" is to give a physical description (if there is any) of what it means for a quantum program's semantics to be a MIU-map (and not just a PU-map). A step in this direction might be to define for a C^{*}-algebra \mathscr{A}, a PU-map $\varphi: \mathscr{A} \rightarrow \mathbb{C}$, and $a, b \in \mathscr{A}$ the quantity

$$
\operatorname{Cov}_{\varphi}(a, b):=\varphi\left(a^{*} b\right)-\varphi(a)^{*} \varphi(b)
$$

and interpret it as the covariance between the observables a and b in state φ of the quantum system \mathscr{A}. Let $T: \mathscr{A} \longrightarrow \mathscr{B}$ be a PU-map between C^{*}-algebras (so perhaps T is the semantics of a quantum program). Then it is not hard to verify that T is a MIU-map if and only if T preserves covariance, that is,

$$
\operatorname{Cov}_{\varphi}(T a, T b)=\operatorname{Cov}_{\varphi \circ T}(a, b) \quad \text { for all } a, b \in \mathscr{A} .
$$

4 Acknowledgements

Example 2 and Example 3 were suggested by Robert Furber. I'm grateful that Jianchao Wu and Sander Uijlen spotted several errors in a previous version of this text. Kenta Cho realised that the results of this paper might be used to construct a model of the quantum lambda calculus. I thank them, and Bart Jacobs, Sam Staton, Wim Veldman, and Bas Westerbaan for their help.

Funding was received from the European Research Council under grant agreement № 320571.

References

[1] Kenta Cho \& Abraham Westerbaan (2016): Von Neumann Algebras form a Model for the Quantum Lambda Calculus. arXiv:1603.02133v1 [cs.LO].
[2] Keith Devlin (1993): The joy of sets: fundamentals of contemporary set theory. Springer, doi 10.1007/978-1-4612-0903-4.
[3] Robert Furber \& Bart Jacobs (2013): From Kleisli categories to commutative C^{*}-algebras: Probabilistic Gelfand duality. In: Algebra and Coalgebra in Computer Science, Springer, pp. 141-157, doi 10.1007/978-3-642-40206-7_12.
[4] Richard V. Kadison (1951): A representation theory for commutative topological algebra. 7, American Mathematical Society, doi $10.1090 / \mathrm{memo} / 0007$.
[5] Stephen Lack (2010): A 2-categories companion. In: Towards higher categories, Springer, pp. 105-191, doi 10.1007/978-1-4419-1524-5_4.
[6] Saunders Mac Lane (1998): Categories for the working mathematician. 5, springer, doi 10.1007/978-1-4612-9839-7.
[7] B. Russo \& H. A. Dye (1966): A note on unitary operators in C^{*}-algebras. Duke Mathematical Journal 33(2), pp. 413-416, doi 10.1215/S0012-7094-66-03346-1
[8] W. Forrest Stinespring (1955): Positive functions on C^{*}-algebras. Proceedings of the American Mathematical Society 6(2), pp. 211-216, doi 10.2307/2032342.
[9] Stephen Willard (2004): General topology. Courier Dover Publications.

A Additional Proofs

Proof of Lemma 7 Define $L C:=F C$ for all objects C of $\mathscr{K} \ell(U F)$ and

$$
L f:=\varepsilon_{F C_{2}} \circ F f
$$

for $f: C_{1} \longrightarrow U F C_{2}$ from \mathbf{C}. We claim this gives a functor $L: \mathscr{K} \ell(U F) \longrightarrow \mathbf{D}$.
(L preserves the identity) Let C be an object of $\mathscr{K} \ell(U F)$, that is, an object of \mathbf{C}. Then the identity on C in $\mathscr{K} \ell(U F)$ is η_{C}. We have $L\left(\eta_{C}\right)=\varepsilon_{F C} \circ F \eta_{C}=\operatorname{id}_{F C}$.
(L preserves composition) Let $f: C_{1} \longrightarrow U F C_{2}$ and $g: C_{2} \longrightarrow U F C_{3}$ from \mathbf{C} be given. We must prove that $L(g \odot f)=L g \circ L f$. We have:

$$
\begin{aligned}
L(g \odot f) & =L\left(\mu_{C_{3}} \circ U F g \circ f\right) & & \text { by def. of } g \odot f \\
& =\varepsilon_{F C_{3}} \circ F \mu_{C_{3}} \circ F U F g \circ F f & & \text { by def. of } L \\
& =\varepsilon_{F C_{3}} \circ F U \varepsilon_{F C_{3}} \circ F U F g \circ F f & & \text { by def. of } \mu_{C_{3}} \\
& =\varepsilon_{F C_{3}} \circ F g \circ \varepsilon_{F C_{2}} \circ F f & & \text { by nat. of } \eta \\
& =L g \circ L f & & \text { by def. of } L
\end{aligned}
$$

Hence L is a functor from $\mathscr{K} \ell(U F)$ to \mathbf{D}.
Let us prove that $U \circ L=G$. For $f: C_{1} \longrightarrow U F C_{2}$ from \mathbf{C} we have

$$
\begin{aligned}
U L f & =U\left(\varepsilon_{F C_{2}} \circ F f\right) & & \text { by def. of } L \\
& =U \varepsilon_{F C_{2}} \circ U F f & & \\
& =\mu_{C_{2}} \circ U F f & & \text { by def. of } \mu_{C_{2}} \\
& =G f & & \text { by def. of } G f .
\end{aligned}
$$

Let us prove that $L \circ V=F$. For $f: C_{1} \longrightarrow C_{2}$ from \mathbf{C} be given, we have

$$
\begin{aligned}
L V f & =L\left(\eta_{C_{2}} \circ f\right) & & \text { by def. of } V \\
& =\varepsilon_{F C_{2}} \circ F \eta_{C_{2}} \circ F f & & \text { by def. of } L \\
& =F f & & \text { by counit-unit eq. }
\end{aligned}
$$

We have proven that there is a functor $L: \mathscr{K} \ell(U F) \rightarrow \mathbf{D}$ such that $U \circ L=G$ and $L \circ V=F$. We must still prove that it is as such unique.

Let $L^{\prime}: \mathscr{K} \ell(U F) \rightarrow \mathbf{D}$ be a functor such that $U \circ L^{\prime}=G$ and $L^{\prime} \circ V=F$. We must show that $L=L^{\prime}$. Let us first prove that L^{\prime} and L agree on objects. Let C be an object of $\mathscr{K} \ell(U F)$, i.e., C is an object of \mathbf{C}. Since $L^{\prime} \circ V=F$ and $V C=C$ we have $L^{\prime} C=L^{\prime} V C=F C=L C$. Now, let $f: C_{1} \rightarrow U F C_{2}$ from \mathbf{C} be given (so f is a morphism in $\mathscr{K} \ell(U F)$ from C_{1} to C_{2}). We must show that $L^{\prime} f=L U \equiv \varepsilon_{F C_{2}} \circ F f$. Note that since F is the left adjoint of U there is a unique morphism $\bar{f}: F C_{1} \longrightarrow F C_{2}$ in \mathbf{D} such that $U \bar{f} \circ \eta_{C_{1}}=f$. To prove that $L^{\prime} f=L f$, we show that both $L f$ and $L^{\prime} f$ have this property. We have

$$
\begin{aligned}
U L^{\prime} f \circ \eta_{C_{1}} & =G f \circ \eta_{C_{1}} & & \text { as } U \circ L^{\prime}=G \text { by assump. } \\
& =\mu_{C_{2}} \circ U F f \circ \eta_{C_{1}} & & \text { by def. of } G \\
& =\mu_{C_{2}} \circ \eta_{U F C_{2}} \circ f & & \text { by nat. of } \eta \\
& =f & & \text { as } U F \text { is a monad. }
\end{aligned}
$$

By a similar argument we get $U L f \circ \eta_{C_{1}}=f$. Hence $L f=L^{\prime} f$.
Proof of Theorem 9 We use the symbols from Notation 6
(i) (ii) Suppose that L is an isomorphism. We must prove that F is bijective on objects. Note that $F=L \circ V$, so it suffices to show that both L and V are bijective on objects. Clearly, L is bijective on objects as L is an isomorphism, and $V: \mathbf{C} \longrightarrow \mathscr{K} \ell(U F)$ is bijective on objects since the objects of $\mathscr{K} \ell(U F)$ are those of \mathbf{C} and $V C=C$ for all C from \mathbf{C}.
(ii) (i) Suppose that (ii) holds. We prove that L is an isomorphism by giving its inverse. Let D be an object from \mathbf{D}. Note that since F is bijective on objects there is a unique object C from \mathbf{C} such that $F D=C$. Define $K C:=D$.

Let $g: D_{1} \rightarrow D_{2}$ from \mathbf{D} be given. Note that by definition of K we have:

$$
K D_{1} \xrightarrow{\eta_{K D_{1}}} U F K D_{1}=U D_{1} \xrightarrow{U g} U D_{2}=U F K D_{2}
$$

Now, define $K g: K D_{1} \rightarrow U F K D_{2}$ in \mathbf{D} by $K g:=U g \circ \eta_{K D_{1}}$.
We claim that this gives a functor $K: \mathbf{D} \longrightarrow \mathscr{K} \ell(U F)$.
(K preserves the identity) For an object D of \mathbf{D} we have

$$
K \operatorname{id}_{D}=U \operatorname{id}_{D} \circ \eta_{K D}=\eta_{K D},
$$

and $\eta_{K D}$ is the identity on $K D$ in $\mathscr{K} \ell(U F)$.
(K preserves composition) Let $f: D_{1} \longrightarrow D_{2}$ and $g: D_{2} \longrightarrow D_{3}$ from \mathbf{D} be given. We must prove that $K(g \circ f)=K(g) \odot K(f)$. We have

$$
\begin{aligned}
K(g) \odot K(f) & =\mu_{K D_{3}} \circ U F K g \circ K f & & \text { by def. of } \odot \\
& =\mu_{K D_{3}} \circ U F U g \circ U F \eta_{K D_{2}} \circ U f \circ \eta_{K D_{1}} & & \text { by def. of } K \\
& =U \varepsilon_{D_{3}} \circ U F U g \circ U F \eta_{K D_{2}} \circ U f \circ \eta_{K D_{1}} & & \text { by def. of } \mu \\
& =U g \circ U \varepsilon_{D_{2}} \circ U F \eta_{K D_{2}} \circ U f \circ \eta_{K D_{1}} & & \text { by nat. of } \varepsilon \\
& =U g \circ U f \circ \eta_{K D_{1}} & & \text { by counit-unit eq. } \\
& =K(g \circ f) & & \text { by def of } K .
\end{aligned}
$$

Hence K is a functor from \mathbf{D} to $\mathscr{K} \ell(U F)$. We will show that K is the inverse of L. For this we must prove that $K \circ L=\operatorname{id}_{\mathbf{D}}$ and $L \circ K=\operatorname{id}_{\mathscr{K} \ell(U F)}$.

For a morphism $g: D_{1} \longrightarrow D_{2}$ from \mathbf{D}, we have

$$
\begin{aligned}
L K g & =L\left(U g \circ \eta_{K D_{1}}\right) & & \text { by def. of } K \\
& =\varepsilon_{F K D_{2}} \circ F U g \circ F \eta_{K D_{1}} & & \text { by def. of } L \\
& =g \circ \varepsilon_{F K D_{1}} \circ F \eta_{K D_{1}} & & \text { by nat. of } \varepsilon \\
& =g & & \text { by counit-unit eq. }
\end{aligned}
$$

For a morphism $f: C_{1} \longrightarrow U F C_{2}$ in \mathbf{C} we have

$$
\begin{aligned}
K L f & =K\left(\varepsilon_{F C_{2}} \circ F f\right) & & \text { by def. of } L \\
K L f d d & =U \varepsilon_{F C_{2}} \circ U F f \circ \eta_{K F C_{1}} & & \text { by def. of } K \\
& =U \varepsilon_{F C_{2}} \circ \eta_{U F C_{2}} \circ f & & \text { by nat. of } \eta \\
& =f & & \text { by counit-unit eq. }
\end{aligned}
$$

Hence K is the inverse of L, so L is an isomorphism.

[^0]: ${ }^{1}$ See Corollary 1 of [7].

[^1]: ${ }^{2}$ Although it has no bearing on the validity of the proof one might wonder if the simpler statement $\# \mathscr{B}^{\prime} \leq \# \mathscr{A}$ holds as well. Indeed, if $\# \mathscr{A}=\# \mathbb{C}$ or $\# \mathscr{A}=\#\left(2^{X}\right)$ for some infinite set X, then we have $\# \mathscr{A}=\#\left(\mathscr{A}^{\mathbb{N}}\right)$, and so $\# \mathscr{B}^{\prime} \leq \# \mathscr{A}$. However, not every uncountable set is of the form 2^{X} for some infinite set X, and in fact, if $\# \mathscr{A}=\mathfrak{\aleph}_{\omega}$, then $\#\left(\mathscr{A}^{\mathbb{N}}\right)>\# \mathscr{A}$ by Corollary 3.9.6 of [2]

