Stochastic Relational Presheaves and Dynamic Logic for Contextuality

Kohei Kishida
(University of Oxford)

Presheaf models provide a formulation of labelled transition systems that is useful for, among other things, modelling concurrent computation. This paper aims to extend such models further to represent stochastic dynamics such as shown in quantum systems. After reviewing what presheaf models represent and what certain operations on them mean in terms of notions such as internal and external choices, composition of systems, and so on, I will show how to extend those models and ideas by combining them with ideas from other category-theoretic approaches to relational models and to stochastic processes. It turns out that my extension yields a transitional formulation of sheaf-theoretic structures that Abramsky and Brandenburger proposed to characterize non-locality and contextuality. An alternative characterization of contextuality will then be given in terms of a dynamic modal logic of the models I put forward.

In Bob Coecke, Ichiro Hasuo and Prakash Panangaden: Proceedings of the 11th workshop on Quantum Physics and Logic (QPL 2014), Kyoto, Japan, 4-6th June 2014, Electronic Proceedings in Theoretical Computer Science 172, pp. 115–132.
Published: 28th December 2014.

ArXived at: http://dx.doi.org/10.4204/EPTCS.172.9 bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org