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André Ranchin
University of Oxford, Department of Computer Science, Quantum Group

Imperial College London, Department of Physics, Controlled Quantum Dynamics

We generalize the ZX calculus to quantum systems of dimension higher than two. The resulting
calculus is sound and universal for quantum mechanics. We define the notion of a mutually unbiased
qudit theory and study two particular instances of these theories in detail: qudit stabilizer quantum
mechanics and Spekkens-Schreiber toy theory for dits. The calculus allows us to analyze the structure
of qudit stabilizer quantum mechanics and provides a geometrical picture of qudit stabilizer theory
using D-toruses, which generalizes the Bloch sphere picture for qubit stabilizer quantum mechanics.
We also use our framework to describe generalizations of Spekkens toy theory to higher dimensional
systems. This gives a novel proof that qudit stabilizer quantum mechanics and Spekkens-Schreiber
toy theory for dits are operationally equivalent in three dimensions. The qudit pictorial calculus
is a useful tool to study quantum foundations, understand the relationship between qubit and qudit
quantum mechanics, and provide a novel, high level description of quantum information protocols.

1 Introduction

An interesting approach to understanding the foundations of quantum mechanics is to study sets of
alternative theories which exhibit similar structural or physical features as quantum theory. Several
mathematical formalisms for operational physical theories have been proposed [1, 3] which encompass
quantum mechanics as one possible theory within a space of different potential theories. These provide a
setting in which we can determine which features are truly particular to quantum theory and which ones
are more generic. This approach can pave the way towards novel axiomatizations of quantum mechanics
and could yield precious clues about future physical theories which may supersede quantum theory, such
as a theory of quantum gravity. As Lewis Carroll aptly put it: “If you don’t know where you are going,
any road will get you there”.

Symmetric monoidal categories (SMCs) provide a general framework for physical theories since
they contain two interacting modes, ⊗ and ◦, of composing systems and processes. Previous work has
investigated which additional structure must be imposed on a SMC in order to recover the structure of
quantum theory [1]. This approach has yielded an intuitive graphical language, called the ZX calculus,
which allows us to explicitly formulate quantum mechanics within a symmetric monoidal category [9].

More precisely, the ZX calculus is a two coloured pictorial calculus for qubits whose diagrams are
generated by composing basic process diagrams and which has a set of rule equations specifying how one
diagram can be transformed into another. The calculus is sound and universal for quantum mechanics and
it has been shown that it is complete for stabilizer quantum mechanics, given a certain choice of phases
[2]. The ZX calculus has proven useful in the study of quantum foundations [6], quantum computation
[16] and quantum error-correction [23].

In the present article, we generalize the ZX calculus to qudit systems and show that the resulting
calculus is universal for quantum mechanics. We anticipate that the new calculus will provide a practical
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tool to study quantum information and computation from a high-level point of view. For example, the
qudit calculus for dimensions higher than two should be well suited to understanding structural proper-
ties of quantum algorithms, quantum key distribution and quantum error-correction. Moreover, as the
complexity of the quantum systems we study will grow, computer software such as Quantomatic [26],
which allows automated reasoning within the calculus, may play an important role in the design of future
quantum networks.

For the time being, we focus on using key ideas from the ZX qudit calculus to study quantum foun-
dations. In particular, we define the notion of a mutually unbiased qudit theory (MUQT), which
corresponds to a symmetric monoidal category whose observable structures are all mutually unbiased.
These MUQTs can be classified in terms of a particular Abelian group, called the phase group.

Previous work has shown that in the case of qubits [10], there are essentially two MUQTs: stabilizer
quantum mechanics [20], which has phase group Z4, and Spekken’s toy theory for bits [33], which has
phase group Z2×Z2. Furthermore, the phase groups of these theories determine whether or not they
admit a local hidden variable model. We aim to generalize this work to higher dimensional systems.

This article focuses on the study of two interesting families of MUQTs, corresponding to stabilizer
quantum theory for qudits [21] and Spekkens-Schreiber’s toy theory for dits [30]. This is a first step
towards a full classification of MUQTs and a thorough study of the relationship between physical features
of these theories and the properties of their phase groups.

2 The ZX calculus for qudit quantum mechanics:

We now present the ZX calculus for qudit quantum mechanics. This is a generalization of the standard
qubit ZX calculus [8]. The mathematical background upon which the calculus is built is presented in Ap-
pendix A. We briefly repeat a few essential definitions. An observable structure, which is a generalization

of the Hilbert space concept of an orthonormal basis, consists of a copying map δ : and a deleting

map ε : satisfying certain algebraic conditions. A state (or point) ψ is classical (or an eigenstate) for

an observable structure if it is copied by the copying map and deleted by the deleting map. ψ is unbiased
with respect to an observable structure if: s(δ † ◦ (ψ⊗ψ?)) = ε† for some scalar s.

Given an observable structure, each state ψ has a corresponding phase map: Λ(ψ) := δ † ◦ (ψ ⊗ I).
The set of all phase maps corresponding to unbiased states for an observable structure, together with map
composition, form a group called the phase group. We will now present the rules of the calculus and its
relationship to quantum theory.

General network diagrams are built out of parallel (tensor product) and downward compositions of
generating diagrams from Figure 1.

F

...

...

...

...

; ; ;; ;F† α1, ..., αD−1 β1, ..., βD−1 ;
s ∈ C

scalar terms

Figure 1: Generating diagrams for the ZX network.

The rules of the qudit ZX calculus are the (S), (D), (B), (K), and (F) rules below (and their reversed



70 Qudit ZX calculus and MUQT

colour counterparts), together with a (T) rule which states that after identifying the inputs and outputs of
any part of a ZX network, any topological deformation of the internal structure does not matter.

= (B2)

(K1)

...

(S2)

...

=... (S1)

... ...

=

...

...

= (B1)

k
k =

k

α1 +β1, α2 +β2, ..., αD−1 +βD−1

α1, α2, ..., αD−1

β1, β2, ..., βD−1

:=

F

F

F†

...

F

F†

...

α1,α2, ...,αD−1

F†

...

F† F†

=

=

F
(F2)

...
F

=

(F1)α1,α2, ...,αD−1

F

F†

(K2)
Neg(α1, ...,αD−1)

kα1,α2, ...,αD−1

k
=

0, ..., 0 = (D)
√

D= =and

where Neg(α1, ...,αD−1) := αk+1−αk,αk+2−αk, ...,αD−1−αk,−αk,α1−αk, ...,αk−1−αk, and where

there are D-1 different red k vertices which have phases α1, ...,αD−1 such that k are the phase maps

corresponding to the D-1 classical points for Z whose phases are not all zero. In higher dimensions, the
(K) rules give rise to more intricate interference phenomena, since the D classical points of an observable
structure each permute the phase group elements.

Diagrammatic reasoning in the qudit calculus is identical to reasoning in the qubit calculus. As
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before, two network diagrams can be shown to be equal by locally replacing some part of a diagram with
a diagram equal to it.

Note that the restricted case of the ZX calculus for qutrits has been studied independently (and
synchronously) in [35].

As with the qubit case, we can model the calculus in Hilbert space. We interpret all diagram edges
by CD and elements of the qudit calculus correspond to the following Hilbert space elements:

= ID×D := ∑
D−1
k=0 |k〉〈k| ; = SWAPa,b := ∑

D−1
j,k=0 |k〉〈 j|a⊗| j〉〈k|b

F = Fourier := 1√
D ∑

D−1
j,k=0 η jk | j〉〈k| ; F† =Fourier†.

= |0〉 :=
√

D


1
0
...
0

 ; = |+〉 :=


1
1
...
1

 ; = εX := 〈0| ; = εZ:= 〈+|

= δX :=


ID×D

P1(ID×D)
...

PD−1(ID×D)

 ; = δZ :=
(

e1| e2| ... |eD
)

α1, ...,αD−1 = ΛX(α1,α2, ...,αD−1) := 1
D


c0 cD−1 cD−2 ... c2 c1
c1 c0 cD−1 ... c3 c2
c2 c1 c0 ... c4 c3
... ... ... ... ... ...

cD−1 cD−2 cD−3 ... c1 c0



α1, ...,αD−1 = ΛZ(α1,α2, ...,αD−1) :=


1 0 0 ... 0
0 eiα1 0 ... 0
0 0 eiα1 ... ...
... ... ... ... 0
0 0 ... 0 eiαD−1



= CNOTa,b :=∑
D−1
j,k=0 |k〉〈 j|a⊗|k〉〈k+ j|b =


ID×D 0 0 ... 0

0 P1(ID×D) 0 ... 0
0 0 P2(ID×D) ... ...
... ... ... ... 0
0 0 ... 0 PD−1(ID×D)


Figure 2: Hilbert space interpretation of the qudit ZX calculus elements.

where Pj(ID×D) (j=1,2, ... D-1) are D×D matrices corresponding to the identity matrix ID×D, with
all its rows permuted to the right by j and where ei are the vectors which have one 1 in row D×(i−1)+ i
and D-1 zeros in all the other rows.

The c j elements of the ΛX matrix are defined by: |+〉+∑
D−1
k=1 eiαk |+k〉 = 1√

D
(c0 |0〉+∑

D−1
j=1 c j | j〉)

where |+k〉 are the D eigenvectors of the X = ∑
D−1
j=0 | j〉〈 j+1| matrix.

We now proceed to show the universality of the qudit ZX calculus for quantum mechanics. We will
combine the following important results, due to Muthukrishnan and Stroud [28] and Brylinski [5] into a
theorem:
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Theorem 1: The following set of qudit quantum gates are universal for quantum computing:
(a) The two following families of D-dimensional transforms (which are universal for single qudit quan-
tum mechanics)[28]:

Z j(b0,b1...,bD−1) : b0 |0〉+b1 |1〉+ ...+bD−1 |D−1〉 7→ | j〉 (1)

for j ∈ {0,1, ...,D−1}.

X j(φ) : b0 |0〉+b1 |1〉+ ...+bD−1 |D−1〉 7→ b0 |0〉+ ...+ eiφ b j | j〉+bD−1 |D−1〉 (2)

for j ∈ {0,1, ...,D−1}.
(b) Any imprimitive 2 qudit gate[5], where a 2 qudit gate is called imprimitive if there exist no single

qudit gates S and T such that: V = S⊗T or V = (S⊗T )SWAP where SWAP |xy〉= |yx〉.

Theorem 2: The qudit ZX calculus is universal for quantum mechanics.

Proof. (a) Single qudit universality:
We can show that all 2D maps Z0, Z1, ..., ZD−1, X0(φ0), X1(φ1), ..., and XD−1(φD−1) are included in

the qudit ZX calculus.
One can easily check that (up to global phase): X0(φ0)=ΛZ(−φ0, ...,−φ0), X j(φ j)=ΛZ(0, ...,0,α j =

φ j,0, ...,0) for j 6= 0.
Next, we show that the d maps Z j(b0,b1, ...,bD−1) can be written (up to global phase) as ΛX(α1,α2, ...,αD−1)

for some set {α1,α2, ...,αD}.
First of all, note that since ΛX(α1,α2, ...,αD−1) is unitary for any values of {α1,α2, ...,αD−1}:

det(ΛX(α1,α2, ...,αD−1)) = 1 6= 0 (3)

This means that there exists a unique solution set {b0,b1, ...,bD−1} to the equation:

ΛX(α1,α2, ...,αD−1).(b0,b1, ...,bD−1)
T = e j (4)

for each vector e j = (0, ...,0,1,0, ...,0)T with a single 1 in the jth column.
Using the definition of ΛX , this means that there exists a unique set of {b0,b1, ...,bD−1} such that:

c jb0 + c j−1b1 + ...+ c0b j + cD−1b j+1 + ...+ c j+1bD−1 = D (5)

ckb0 + ck−1b1 + ...+ c0bk + cD−1bk+1 + ...+ ck+1bD−1 = 0;∀k 6= j (6)

Since we know that: ∑
D−1
k=0 ηk = 0, where η = e

2πi
D , and that ∑

D−1
k=0 b?kbk = 1 this means that there is a

unique solution to the set of equations:

c j = Db?0,c j−1 = Db?1, ...,c0 = Db?j , ...,c j+1 = Db?D−1 (7)

consistent with (5,6).
But all the b?k (k = 0,1, ...,D−1) are complex numbers of unit norm and by definition the ck can be

written as: ck = 1+∑
D−1
l=1 ηrk(l)eiαl where rk permutes the entries l (there is one rk for each k). Therefore,

up to global phase, it is always possible to find values for {α1, ...,αD−1} such that (7) is satisfied. This
means that each map ZD(b0, ...,bD−1) (each one corresponding to a value of j in (4)) can be written in
the form ΛX(α1,α2, ...,αD−1) for some set {α1,α2, ...,αD}.
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Using theorem 1, this shows that the qudit ZX calculus contains all single qudit unitary transforma-
tions.

(b) The qudit CNOT gate is an imprimitive 2 qudit gate which is contained within the qudit calculus.

Note also that any map from n qudits to m qudits can be constructed by using diagrammatic map-
state duality [1]. Therefore, any qudit quantum state and (post-selected) measurement and any quantum
gate can be written in the qudit ZX calculus and therefore it is universal for quantum mechanics.

To illustrate the proof for single qudit universality, note that in the qutrit case, we can explicitly find
an assignment of the α values such that (up to global phase):

Z0(b0,b1,b2) = ΛX (−i log

(
(b0 +b1 +b2)(b0η−b1(η +1)+b2)

η
(
b2

0(−η)(η +1)−b0(b1 +b2)+b2
1 +b1b2η(η +1)+b2

2

)) ,

−i log

(
(b0 +b1 +b2)(b0η +b1−b2(η +1))

η
(
b2

0(−η)(η +1)−b0(b1 +b2)+b2
1 +b1b2η(η +1)+b2

2

))) (8)

Z1(b0,b1,b2) = ΛX (−i log

(
(b0 +b1 +b2)(b0 +b1η−b2(η +1))

η
(
b2

0 +b0(b2η(η +1)−b1)− (b1η +b1−b2)(b1η +b2)
)) ,

−i log

(
− (b0 +b1 +b2)(b0η +b0−b1η−b2)

η
(
b2

0 +b0(b2η(η +1)−b1)− (b1η +b1−b2)(b1η +b2)
))) (9)

Z2(b0,b1,b2) = ΛX (−i log

(
− (b0 +b1 +b2)(b0η +b0−b1−b2η)

η
(
b2

0 +b0(b1η(η +1)−b2)+(b1 +b2η)(b1−b2(η +1))
)) ,

−i log

(
(b0 +b1 +b2)(b0−b1(η +1)+b2η)

η
(
b2

0 +b0(b1η(η +1)−b2)+(b1 +b2η)(b1−b2(η +1))
))) (10)

where η = e
2πi
3 .

By construction, any equation which can be shown to be true using the qudit ZX calculus is true in
quantum mechanics so the qudit ZX calculus is sound for quantum mechanics. Moreover, extending the
qudit ZX calculus to account for mixed states and general quantum evolution described by completely
positive maps can be achieved by using the same standard constructions [31, 7, 16] as in the qubit case.

We know that [2] the qubit ZX calculus is complete for qubit stabilizer quantum theory, in the sense
that any two equivalent qubit stabilizer processes can be shown to be equal by using the qubit ZX cal-
culus. Backens’ proof of this result [2], however, relies on results for qubit graph states and it is unclear
whether it can be generalized to show completeness of the qudit ZX calculus for qudit stabilizer theory.
Therefore, we leave this as an open question:
Is the qudit ZX calculus, with additional rules analogous to the Euler decomposition of the Hadamard
vertex, complete for qudit stabilizer quantum mechanics? If it is not, then which other rules need to be
added for completeness?

Another important question is how the qudit and qubit ZX calculi are related. More generally, it
would be interesting to understand exactly how the ZX calculus for qudits of dimension m is related to



74 Qudit ZX calculus and MUQT

the ZX calculus of dimension n > m. Perhaps, we could introduce maps which “create” and “annihilate”
dimensions. This could lead to an interesting structure and provide insight into the relationship between
qubit and qudit quantum mechanics.

3 Mutually unbiased qudit theories

One of the main goals of the present article is to use the abstract structures we introduced to study the
foundation of quantum theory. In this respect, we aim to define a class of theories which exhibit many
key features of quantum mechanics, within a single mathematical framework.

Therefore, we will generalize the previous approach of studying mutually unbiased qubit theories
using dagger compact symmetric monoidal categories [10, 17] to the case of qudits.

Definition: A mutually unbiased qudit theory is a dagger symmetric monoidal category with ob-
servable structures such that:

(i) The objects of the category are the unit and finite tensor products of qudit-like systems Q.
(ii) The observables on a given object are all mutually unbiased, have the same number of eigenstates

and have the same phase groups.
(iii) All states of Q are eigenstates of some observable.
We will study mutually unbiased qudit theories for dimensions higher than two. In the following

two sections, we analyze in detail two key examples of mutually unbiased qudit theories: qudit stabilizer
quantum mechanics and Spekkens-Screiber theory for dits.

4 Picturing stabilizer quantum mechanics

We define the process category DStab as the †-compact symmetric monoidal subcategory of FHilb
corresponding to qudit stabilizer quantum mechanics (see Appendix B) which is generated by the unit,
n-fold tensor products of CD, single qudit Clifford operations and the quantum copying and deleting
maps. DStab can be depicted using the qudit ZX diagrams, where the allowed phases are restricted
according to the phase group.

In the case of the standard qubit stabilizer quantum mechanics, the phase group is the cyclic group
Z4, which is a finite subgroup of the quantum qubit phase group S1 (the circle group). Since the unbi-
ased circles for the Z and X observables coincide on the points corresponding to |+i〉 and |−i〉, we can
completely picture single qubit stabilizer quantum theory using the Bloch sphere.

Can one find an analogous picture for qutrit quantum mechanics?
Let {|0〉, |1〉, |2〉} and {|+〉, |>〉, |⊥〉} be the eigenbases for the qutrit Z and X observables respectively.
Then the unbiased states for the Z and X observable:

|{α1,α2}Z〉= |0〉+ eiα |1〉+ eiα2 |2〉 ; |{α1,α2}X〉= |+〉+ eiα |>〉+ eiα2 |⊥〉 (11)

under pairwise addition of phases form a torus group S1×S1.
All the single qutrit stabilizer states, corresponding to the eigenstates of the qutrit X, Z, XZ and XZ2
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operators, can be written as unbiased states for either the Z basis or the X basis since:

|0〉= |{0,0}X〉 , |1〉=
∣∣∣∣{4π

3
,
2π

3
}X

〉
, |2〉=

∣∣∣∣{2π

3
,
4π

3
}X

〉
;

|+〉= |{0,0}Z〉 , |>〉=
∣∣∣∣{2π

3
,
4π

3
}Z

〉
, |⊥〉=

∣∣∣∣{4π

3
,
2π

3
}Z

〉
;

|−〉=
∣∣∣∣{4π

3
,
4π

3
}Z

〉
=

∣∣∣∣{2π

3
,
2π

3
}X

〉
, |`〉=

∣∣∣∣{0, 2π

3
}Z

〉
=

∣∣∣∣{4π

3
,0}X

〉
, |a〉=

∣∣∣∣{2π

3
,0}Z

〉
=

∣∣∣∣{0, 4π

3
}X

〉
;

|×〉=
∣∣∣∣{2π

3
,
2π

3
}Z

〉
=

∣∣∣∣{4π

3
,
4π

3
}X

〉
, |h〉=

∣∣∣∣{4π

3
,0}Z

〉
=

∣∣∣∣{2π

3
,0}X

〉
, |i〉=

∣∣∣∣{0, 4π

3
}Z

〉
=

∣∣∣∣{0, 2π

3
}X

〉
(12)

(a) Qutrit stabilizer states on the unbiased
torus for the Z observable.

(b) Qutrit stabilizer states on the unbiased
torus for the X observable.

Figure 3: Depicting qutrit stabilizer theory on two tori.

Single qutrit stabilizer operations take subsets of these 12 states to other subsets of these 12 states.
This shows that the phase group for qutrit stabilizer quantum mechanics is Z3×Z3.

Therefore, single qutrit stabilizer quantum theory can be pictured using 12 points on two toruses,
which is a direct generalization of the Bloch sphere case, where the 4 elements on each of the two
unbiased circles (coinciding on two elements) visualized in three dimensions are replaced by 9 elements
on each of two unbiased toruses coinciding on six points (the blue and yellow points in Figures (3a,
3b)).

In fact, this picture can easily be generalized to higher dimensional qudit stabilizer theories for prime
dimensions. In that case, the single qudit states of qudit stabilizer quantum theory correspond to the
vectors in the D+1 mutually unbiased eigenbases of the single qudit operators: X ,Z,XZ,XZ2, ...,XZD−1.
The mutually unbiased points with respect to each of these bases forms a D-torus. If we chose an
observable structure, whose eigenstates are a basis, then all the other stabilizer states are on the unbiased
D-torus of the chosen basis. In this way, qudit stabilizer theory for prime dimension D can be pictured



76 Qudit ZX calculus and MUQT

using D2 points on each of two D-toruses (unbiased toruses for the Z and X operators for example),
which coincide on D2−D points and can be visualized in D+1 dimensions .

In general, the phase group for qudit stabilizer quantum theory of dimension D > 3 is an Abelian
subgroup of the group ZD×ZD× ...×ZD (D-1 times). In fact, every finite dimensional closed subgroup
of the torus group is isomorphic to a product of finite cyclic groups. Therefore, the phase group for
mutually unbiased qudit theories which are also subtheories of quantum mechanics must be of the form
Zn1 × Zn2 × ...× Znk for positive integers n1, ...,nk. In further work, we will study how these integers
n1, ...,nk for stabilizer phase groups depend on the dimension D. In general, we would like a physical
classification of all the mutually unbiased qudit subtheories of quantum mechanics in terms of n1, ...,nk.
Once we have determined their phase group, the qudit ZX calculus allows us to fully describe these
physical theories.

5 Depicting Spekkens-Schreiber toy theory for dits

We define the category FRel whose objects are finite sets and whose morphisms are relations. By taking
the Cartesian product of sets as the tensor product, the single element set {?} as the identity object and
the relational converse as the dagger, FRel can be viewed as a SMC with dagger structure.

We can then define the category DSpek as a subcategory of FRel whose objects are the single element
set I = {?} and n-fold Cartesian products of the D2-element set: D := {1,2, ...,D2}.

The morphisms of DSpek are those generated by composition, Cartesian product and relational con-
verse from the following relations:

(a) All (D2)! permutations σi : D →D of the D2- element set.
(b) The copying relation: δZ : D →D×D defined as:

1 2 ... D
D 1 ... D-1
... ... ... ...
2 3 ... 1

D+1 D+2 ... 2D
2D D+1 ... 2D-1
... ... ... ...
D+2 D+3 ... D+1

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...
D(D-1)+1 D(D-1)+2 ... D2

D2 D(D-1)+1 ... D2-1
... ... ... ...
D(D-1)+2 D(D-1)+3 ... D(D-1)+1

where there is x in the (y,z) location of the grid iff δZ : x∼ (y,z).
(c) The deleting relation: εZ : D → I defined as: {1,D+1,2D+1, ...,D(D−1)+1} ∼ ?.
(d) The relevant unit, associativity and symmetry natural isomorphisms.
If we interpret relations from I to n-fold tensor products of D as epistemic states on phase space then

this category corresponds to Spekkens-Schreiber theory for dits with only states of maximal knowledge.
Adding the maximally mixed state ⊥D:: {?} ∼ {1,2, ...,D2} to DSpek yields the category MDSpek,
corresponding to Spekkens-Schreiber theory for dits of dimension D (See Appendix C).
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DSpek and MDSpek inherit symmetric monoidal and †-compact structure from FRel since we can
define Bell states (corresponding to compact structures) as:

µD := δZ ◦ ε
†
Z : I→D×D :: ?∼ {(1,1),(2,2), ...,(D2,D2)} (13)

We can define the other copying map as:

δX = (ΠD−1
k=1 σ(k+1,(kD)+1)⊗Π

D−1
k=1 σ(k+1,(kD)+1))◦δZ ◦ (ΠD−1

k=1 σ(k+1,(kD)+1)) (14)

where σ( j,k) permutes entries j and k of the input D2-element set (epistemic state). This map is explicitly:
δX : D →D×D such that: δX : x∼ (y,z) iff there is x in the (y,z) location of the following grid:

1 D+1 ... ... ... ... D(D-1)+1
2 D+2 ... ... ... ... D(D-1)+2

... ... ... ... ... ... ...
D 2D ... ... ... ... D2

D(D-1)+1 1 ... ... ... ... D(D-2)+1
D(D-1)+2 2 ... ... ... ... D(D-2)+2

... ... ... ... ... ... ...
D2 D ... ... ... ... D(D-1)

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
D+1 2D+1 ... ... ... ... 1

D+2 2D+2 ... ... ... ... 2
... ... ... ... ... ... ...

2D 3D ... ... ... ... D

and the other erasing map as: εX : D → I such that: {1,2,3, ...,D} ∼ ?. It is easy to check that this
then gives us two strongly complementary observable structures, analogous to the Z and X observable
structures in quantum theory.

In fact, we can use the fact that 3Spek can be depicted in the qutrit ZX calculus to provide a novel
proof of the following known result:

Theorem 3[22, 30]: Spekkens-Schreiber theory for trits is operationally equivalent to stabilizer the-
ory for qutrits.

Proof. We can define the Z and X observable structures (D ,δ
(trit)
Z ,ε

(trit)
Z ) and (D ,δ

(trit)
X ,ε

(trit)
X ) for 3Spek

as described above.
The Z observable structure has three classical states:

z0 :: ?∼ {1,2,3} ; z1 :: ?∼ {4,5,6} ; z2 :: ?∼ {7,8,9} (15)

and nine unbiased states:

x0 :: ?∼ {1,4,7} ; x1 :: ?∼ {2,5,8} ; x2 :: ?∼ {3,6,9}

(xz)0 :: ?∼ {1,6,8} ; (xz)1 :: ?∼ {2,4,9} ; (xz)2 :: ?∼ {3,5,7}

(xz2)0 :: ?∼ {1,5,9} ; (xz2)1 :: ?∼ {2,6,7} ; (xz2)2 :: ?∼ {3,4,6} (16)

The X observable also has 3 classical states x0,x1,x2 and nine unbiased states z0,z1,z2, (xz)0,(xz)1,(xz)2,
(xz2)0,(xz2)1 and (xz2)2.
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Similarly, one could define two other observable structures corresponding to “XZ” and “XZ2” which
each have three classical states and nine unbiased states. Therefore, 3Spek contains 4 observable struc-
tures and 12 single trit states. Also, there are 12 (measurement) effects, corresponding to taking the
converse relations of the 12 states.

If we define phase maps: ΛZ(ψ) := (δ
(trit)
Z )†(ψ ⊗ 1D) : D → D and ΛX(ψ) := (δ

(trit)
X )†(ψ ⊗ 1D) :

D →D , then it is clear that the phase group of 3Spek is Z3×Z3.

Therefore, both 3Spek and 3Stab can be expressed in the qutrit ZX calculus as mutually unbiased
qutrit theories with twelve states and phase group Z3×Z3. This uniquely determines all the allowable
preperations, measurements and transformations (compositions of spiders with phases adding according
to Z3×Z3).

Explicitly, we can associate the twelve single trit states of 3Spek with those of 3Stab according to:

[[z0]]≡ |0〉=
0,0

; [[z1]]≡ |1〉=
4π

3 , 2π

3 ; [[z2]]≡ |2〉=
2π

3 , 4π

3 ;

[[x0]]≡ |+〉=
0,0

; [[x1]]≡ |>〉=
2π

3 , 4π

3 ; [[x2]]≡ |⊥〉=
4π

3 , 2π

3 ;

[[(xz)0]]≡ |−〉=
4π

3 , 4π

3 ; [[(xz)1]]≡ |`〉=
0, 2π

3 ; [[(xz)2]]≡ |a〉=
2π

3 ,0
;

[[(xz2)0]]≡
2π

3 , 2π

3 ; [[(xz2)1]]≡ |h〉=
4π

3 ,0
; [[(xz2)2]]≡ |i〉=

0, 4π

3

(17)

The post-selected measurements (indicator functions) are the adjoints of these and the reversible
transformations in 3Spek are mapped to the reversible of 3Stab corresponding to the same spider di-
agram. This means that our previous discussion of qutrit stabilizer quantum theory carries through to
3Spek.

In future, we can find the phase group of Spekkens-Schreiber theory for dits in any dimension D.
This should allow us to depict these theories using (a version of) the qudit ZX calculus. We would then
be able to study the relationship between Spekkens-Schreiber theory for dits and qudit stabilizer theory
in the general case. We will return to address this question and the issue of analyzing mutually unbiased
qudit theories with arbitrary Abelian phase groups in another article.

6 Further work

We will conclude this paper with a brief outline of possible avenues of research which follow from the
work presented here. As we mentioned earlier, understanding how the qubit calculus fits into the general
qudit calculus and proving the completeness of the generalized qudit ZX calculus for stabilizer quantum
mechanics would certainly provide new insights into qudit stabilizer quantum mechanics. This might
lead to modifications of the qudit ZX calculus before it reaches its final form.

For example, the relation between phase group structure and graph structure is still unclear. Can the
qudit ZX calculus be expressed without angles by adding axioms relating to graph structure [15]? It
might be interesting to analyze alternative calculi with multiple edges between vertices. This approach
could simplify proofs of completeness or provide a graphical depiction of non-locality.

Another possible mathematical framework for studying the qudit ZX calculus would be to use prod-
uct and permutation categories (PROPs). This approach may allow an elegant synthetic axiomatization
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of numerous physical process theories and could provide new completeness theorems for corresponding
graphical calculi.

On a more practical note, the calculus for qudit stabilizer quantum theory can help describe quantum
information protocols in a new light. One may generalize qubit protocols to qudits and try to understand
new features of familiar quantum processes. For example, the formalism could be used to give a general
description of error correction and fault tolerance for qudits. This could then be related to qubit error
correction and links might be made between error correction in various dimensions. Furthermore, getting
new insights into the abstract structure of qudit quantum mechanics could play a pivotal role in the
development of new quantum algorithms.

There are also a number of quantum foundations questions which could be addressed next. For in-
stance, we know that the single qudit stabilizer theory is operationally equivalent to Spekkens-Schreiber
theory for dits for finite odd dimensions and therefore admits a non-contextual, local hidden variable
model in those cases. But what is the relationship between qudit stabilizer theory and Spekkens-Schreiber
toy theory in general? We could also study van Enk’s toy model[34] as a MUQT and find its phase group.

More generally, it would be useful to classify all the mutually unbiased qudit theories and determine
which quantum-like features each one exhibits. For example, what is the relationship between a theory’s
phase group and whether it admits a local hidden variable interpretation? The study of the qudit ZX
calculus with different Abelian phase groups should produce a large class of interesting toy models.
In the future, we could also consider theories where distinct observable structures have different phase
groups.

Moreover, the qubit ZX calculus, by providing a clear description of complementarity and phase,
has helped clarify the relationship between complementarity and non-locality[6]. The qudit ZX calculus
provides the ideal framework to study other similar foundational questions related to complementarity.
We could, for example, use the categorical framework to study how various notions of complementarity
arise in different dimensions. Can one find a pictorial calculus (say a ZXY calculus for qudits) which
captures complementarity of more than two observables?

Finally, it would be interesting to understand the interpretation of the D-torus phase groups for qudit
quantum mechanics observables from a physical point of view. What properties of the quantum phase
group lead to specific quantum features? Perhaps studying the operational interpretation of phase [18]
in physical theories could help us find the physical reason for each phase group taking the form it does.
The study of phase and complementarity from an operational point of view may also provide insight into
the relationship between categorical quantum mechanics and generalized probabilistic theories.

Acknowledgments

I would like to thank both of my supervisors Bob Coecke and Terry Rudolph for insightful discussions. I
am also very grateful to Mihai Vidrighin for his help with the illustrations and for his valuable comments.
This research is funded by the EPSRC.



80

Appendices
A Derivation of the qudit ZX calculus

A symmetric monoidal category (SMC) consists of a category C, a bifunctor −⊗-: C×C→ C, a unit
object I and natural isomorphisms (with coherence conditions[27]):

λA : A∼= I⊗A, ρA : A∼= A⊗ I, αA,B,C : A⊗ (B⊗C)∼= (A⊗B)⊗C, σA,B : A⊗B∼= B⊗A

Monoidal categories are ideal for describing very general compositional theories of systems and
processes [1], since they contain two interacting modes ⊗ and ◦ of composition. These lead to a very
simple diagrammatic calculus [32] where arrows are represented by boxes and the objects are vertical
inputs/outputs. The ⊗ and ◦ operations are respectively represented as boxes juxtaposed next to each
other and attached in vertical sequence.

A dagger compact symmetric monoidal category (†-CSMC) C is a SMC with an identity-on-objects
contravariant dagger functor † : C→C such that:

( f ◦g)† = g† ◦ f †, ( f ⊗g)† = f †⊗g†, id†
A = idA, ( f †)† = f

which is also compact, meaning that each object A ∈ |C| has a dual object Ā ∈ |C| (note that we will
always use A = Ā) and arrows: ηA : I→ Ā⊗A and εA : A⊗ Ā→ I such that:

(εA⊗ idA)◦ (idA⊗ηA) = idA and (idĀ⊗ εA)◦ (ηA⊗ Ā) = idĀ

We define a state of a system A as a morphism: ψ : I → A, an effect as: π : A→ I and scalars as
s : I→ I. The inner product between states is then the scalar: ψ† ◦φ : I→ I. The dimension of an object
A is defined as: dim(A) := η

†
A ◦ηA.

If we add to the previous graphical calculus a vertical involutive asymmetry in the boxes representing
arrows and the rule that taking the adjoint reflects the boxes vertically, then we get the following key
theorem which allows us to use graphical reasoning:

Theorem A1: An equational statement between formal expressions in the language of †-CSMC holds
if and only if it holds up to isotopy in the graphical calculus. [25, 31]

Important examples of †-CSMCs are FHilb, the category of finite dimensional Hilbert spaces and
bounded linear maps with the usual tensor product, and FRel, the category of finite sets and relations
with the Cartesian product of sets as the tensor product.

We can describe bases and observables in the general context of †-CSMC by noting that the contra-
positive of the no cloning [36] and no deleting theorems [29] states that orthonormal basis states are the
only ones which can be copied and erased.

An observable structure is a †-special commutative Frobenius algebra on a †-CSMC C [13]. This is
a triple

{ A ∈ |C|, δ : A→ A⊗A (copying map), ε : A→ I (erasing map) }

satisfying:

(δ ⊗ idA)◦δ = (idA⊗δ )◦δ ; λ
−1
A ◦ (ε⊗ idA)◦ δ = ρ

−1
A ◦ (idA⊗ ε)◦δ = idA; σA,A ◦δ = δ ;
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(δ †⊗ idA)◦ (idA⊗δ ) = δ ◦δ
†; δ

† ◦δ = idA

In FHilb, orthonormal bases are in a one to one correspondence with †-special commutative Frobe-
nius algebras [12]. This definition for observable structures has been shown [11] to be equivalent to the
spider laws depicted below.

...

...

...

=

...

... ...

...

; =

We define a classical point for an observable structure (A, δ , ε) as a self conjugate morphism

k: I→ A
k

obeying:

=
kk

k
and =

k

This means that classical points are those which get copied by the copying map and deleted by the
deleting map. In FHilb, for example, they are the basis states corresponding to the observable structure.

We will now introduce a notion of phase relative to a given basis [8] which allows us to study
unbiasedness and the interplay between several bases.

Let (A, δ , ε) be an observable structure. For any two points ψ , φ : I→ A, we define a multiplication
operation:

ψ�φ = δ
† ◦ (ψ⊗φ)◦λI (18)

Note that this multiplication on points is commutative, associative and ε†�ψ = ψ for any point ψ .
A point α : I → A is called unbiased relative to an observable structure (A, δ , ε) if there exists a

scalar s: I→ I such that: s.α �α? = ε†. This is a generalization of the usual definition of an unbiased
vector with respect to a basis.

For each state and observable structure (A, δ , ε), we introduce a phase map Λ which takes each point
ψ: I→ A, to the morphism:

Λ(ψ) = δ
† ◦ (ψ⊗1A) : A→ A (19)

The phase map satisfies several properties:
(i)Λ(ψ � φ) = Λ(ψ) ◦Λ(φ) (ii) Λ(ε†) = 1A (iii) Λ(ψ) = Λ(ψ)† (iv) Phase maps commute freely with
the observable structure since: Λ(ψ)◦δ † = δ † ◦ (1A⊗Λ(ψ)) = δ † ◦ (Λ(ψ)⊗1A).

We can extend the spider laws to account for phases relative to an observable structure.
Theorem A2: Any morphism A⊗n→ A⊗m generated from an observable structure (A, δ , ε), together

with one occurrence of each unbiased point αi : I→ A can be written in the form [8]:

...

...

:=

...

...

⊙
i αi

⊙
i αi where:

⊙
i αi is the phase map Λ(

⊙
i αi).
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These spider maps compose according to the generalized spider law:

...

...

...

=

...

... ...

...

α�β

β

α

.

This theorem follows from the spider laws together with the fact that the phase maps commute freely
with the observable structure (property (iv) given above).

Let α: I→ A be a point satisfying α† ◦α = dim(A). Then α is unbiased iff Λ(α) is unitary.
Note that the choice of α† ◦α = dim(A) is taken for unbiased points from this point onwards.

All the points which are unbiased with respect to the basis corresponding to the observable structure
(A,δ , ε) form an Abelian group U with respect to the multiplication �. This is clear since � is closed
for unbiased points, commutative, associative, admits the unique identity point ε† and each point has a
unique inverse, its conjugate.

The phase maps, restricted to act on unbiased points relative to the observable structure, form an
abelian group with map composition as the group operation, which is isomorphic to U . We call this the
phase group Π.

Note that, for each unbiased point α we can define a new observable structure (A, δα , εα ) where:

δα= α := (Λ(α)⊗Λ(α))◦δ ◦Λ(α)† and εα=
α

:= ε ◦Λ(α)†.

We use the phase group for observable structures as a tool to study physical theories from an abstract
algebraic perspective.

We now proceed to study how two complementary observable structures interact[8]. In general, we
cannot assume that the dagger compact structures of two distinct observable structures coincide [14].

Therefore, we define the dualizer of observable structures (A,δZ,εZ) and (A,δX ,εX) as:

:=S

By dagger compactness, we can see that the dualizer is unitary. This shows that the dimension of a
dagger symmetric monoidal category does not depend on the choice of observable structure[8] since:

dim(A):= == =S†

S

In a Hilbert space of D dimensions, two orthonormal bases {u1,u2, ...,uD} and {v1,v2, ...,vD} are
called unbiased if:

D
∣∣〈vi,u j〉

∣∣2 = 1,∀i, j{1,2, ...,D} (20)
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If a quantum system is prepared in a state corresponding to a vector in one of these bases, then
all the outcomes of a measurement with respect to the other mutually unbiased basis will occur with
equal probabilities. No information can be retrieved by performing such a measurement. In this sense,
two mutually unbiased bases corresponding to eigenstates of two non-degenerate quantum observables
describe mutually exclusive physical measurement procedures.

This provides a mathematical expression for Bohr’s principle of complementarity that: “evidence
obtained under different experimental conditions cannot be comprehended within a single picture, but
must be regarded as complementary in the sense that only the totality of the phenomena exhausts the
possible information about the objects”.

Two observable structures (A,δZ,εZ) and (A,δX ,εX) are called complementary if:

(i) whenever a point z: I→ A
z

is classical for (δZ,εZ) it is unbiased for (δX ,εX)).

(ii) whenever a point x: I→ A
x

is classical for (δX ,εX) it is unbiased for (δZ,εZ)).

This definition of complementarity could easily be generalized to more than two observable struc-
tures by requiring that whenever a point is classical for one observable structure, it must be unbiased for
all the other observable structures. One can show the following theorem[8], assuming that at least one of
the observable structures describes a basis:

Theorem A3: Two observable structures are complementary iff they obey:

S =

Two observable structures (A,δZ,εZ) and (A,δX ,εX) are called coherent if the erasing point for each
observable structure is a classical point for the other observable structure. This can be pictured as:

= and =

In line with qudit quantum theory, states and erasing points are defined such that:

=

The classical points KZ of an observable structure {A,δZ,εZ} are called closed for an observable
structure {A,δX ,εX} if for all k,k′ ∈ KZ we have k�X k′ = δX ◦ (k⊗ k′) ∈ KZ .

One can easily show[8] that for every Hilbert space we can find a pair of coherent, closed, com-
plementary observable structures. In fact, the observable structures corresponding to the Z and X qudit
operators are closed, coherent and complementary.

Two observables structures {A,δZ,εZ} and {A,δX ,εX} are said to be strongly complementary if:

=



84

This condition is called strong complementarity since:
Theorem A4[8]: A pair of coherent, strongly complementary observable structures are complementary.

One can show that:
Theorem A5[8]: If {A,δZ,εZ} and {A,δX ,εX} are coherent strongly complementary observable struc-

tures and the set KX of classical points for {A,δX ,εX} is finite, then KX is a subgroup of the group
(UZ,�Z) of unbiased points for {A,δZ,εZ}.

The ZX calculus for qubits is restricted to two dimensions. However, since this algebraic charac-
terization of bases applies to arbitrary dimensions, we can generalize the pictorial calculus to higher
dimensional quantum systems.

As with the qubit ZX calculus, the use of graphical notation is justified since FHilb is a †-CSMC. We
let all the edges be implicitly labeled by CD and focus on a pair of observable structures corresponding
to the Z and X observables from qudit quantum mechanics.

The green observable structure, corresponding to the qudit observable Z = ∑
D−1
j=0 η j | j〉〈 j| is defined

via the copying and deleting maps:
δZ =

(
e1| e2| ... |eD

)
and εZ = 1

D(1,1, ...,1).
Where δZ is a D2×D matrix with D columns ei which have one 1 in row D× (i−1)+ i and zeros in

all the other rows.
Unbiased points for the green observable structure are in the form: |{α1,α2, ...,αD−1}Z〉 = |0〉+

∑
D−1
j=1 eiα j | j〉 and therefore, the phase group consists of matrices of the form:

ΛZ(α1,α2, ...,αD−1) =


1 0 0 ... 0
0 eiα1 0 ... 0
0 0 eiα1 ... ...
... ... ... ... 0
0 0 ... 0 eiαD−1

 (21)

Therefore the phase group for the green observable ΠZ and the group of unbiased points (UZ,�Z)
are both the D-torus group, corresponding to the direct product of D circle groups S1× ...×S1.

The green part of the ZX calculus for qudits follows from the generalized green spider law.
The red observable structure, corresponding to the qudit observable X = ∑

D−1
j=0 | j〉〈 j+1| is defined

via the copying and deleting maps:

δX =


ID×D

P1(ID×D)
...

PD−1(ID×D)

 and εZ = 1√
D
(1,0, ...,0).

Where δX is a D2×D matrix composed of D matrix blocks ID×D and Pj(ID×D) (j=1,2, ... D-1), which
are D×D matrices corresponding to the identity matrix ID×D, with all its rows permuted to the right by
j.

Unbiased points for the red observable structure are in the form: |{α1,α2, ...,αD−1}X〉 = |+0〉+
∑

D−1
k=1 eiαk |+k〉= 1√

D
(c0 |0〉+∑

D−1
j=1 c j | j〉), where |+k〉 are the D eigenvectors of the X matrix. Therefore,

the phase group consists of matrices of the form:

ΛX(α1,α2, ...,αD−1) =
1
D


c0 cD−1 cD−2 ... c2 c1
c1 c0 cD−1 ... c3 c2
c2 c1 c0 ... c4 c3
... ... ... ... ... ...

cD−1 cD−2 cD−3 ... c1 c0

 (22)
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Which can be shown to be unitary and which satisfy:

ΛX(β1,β2, ...,βD−1)◦ΛX(α1,α2, ...,αD−1) = ΛX(α1 +β1,α2 +β2, ...,αD−1 +βD−1) (23)

Therefore the phase group for the red observable ΠX and the group of unbiased points (UX ,�X) are
both the D-torus group, corresponding to the direct product of D circle groups S1× ...×S1.

The red part of the ZX calculus for qudits follows from the generalized red spider law.
Note that the red and green observable structures do not induce the same compact structure since:

ηZ = δZ ◦ ε
†
Z 6= δX ◦ ε

†
X = ηX (24)

The classical points of the green Z observable are k, where k corresponds to phase values {α1, ...,αD−1},
{β1, ...,βD−1}, ... such that the red unbiased points |{α1, ...,αD−1}X〉 , |{β1, ...,βD−1}X}〉 , ... are the clas-
sical points (eigenvectors) |0〉 , |1〉 , ..., |D−1〉 of the green observable Z. By theorem A5, these D points
form an abelian subgroup of the D-torus group (UX ,�X), where |0〉 is the identity.

Similarly, the classical points of the red X observable are k, where k corresponds to phase values
{α1, ...,αD−1}, {β1, ...,βD−1}, ... such that the green unbiased points |{α1, ...,αD−1}Z〉 ,|{β1, ...,βD−1}Z〉 , ...
correspond to the classical points (eigenvectors) |+0〉 , |+1〉 , ..., |+D−1〉 of the red observable X. By the-
orem A5, these D points form an abelian subgroup of the D-torus group (UZ,�Z), where |+0〉 is the
identity.

Therefore, the red and green observable structures are a closed pair of coherent observable structures.
The (D), (B1) and (B2) rules then follow as before. The (K1) rule becomes:

= =;k

k k k

k
(K1)

There are 2D− 2 equations in (K1), one equation for each of the D classical points of each colour
(except the (0,0,..., 0), phaseless points of each colour). Note that if you add to (K1) the case where k
corresponds to the (0,0,..., 0), phaseless points of each colour then the rule (B1) follow as a special case
of (K1).

We obtain the (K2) rule, by calculating the action of the three non trivial red (or green) maps of either
colour, corresponding to classical points in KZ (or KX ), on the unbiased green (or red) points in UZ (or
UX ). One can then see that the (K2) rule is:

=
α1,α2, ...,αD−1

k

k

=
α1,α2, ...,αD−1

αk+1−αk,αk+2−αk, ...,αD−1−αk,k

k

(K2)

−αk,α1−αk, ...,αk−1−αk

−αk,α1−αk, ...,αk−1−αk

αk+1−αk,αk+2−αk, ...,αD−1−αk,
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There are 2D-2 equations in (K2) corresponding to the the D phase maps k associated to the D

classical points for Z and the D phase maps k associated to the D classical points for X (except the

(0,0,..., 0) phaseless maps for each colour).
For clarity, we illustrate this rule for the case of qudits of dimension four. This requires us to calculate

the action of KZ on UZ:

Λ
X (

∣∣∣∣{π

2
,π,

3π

2
}X

〉
)(|{α1,α2,α3}Z〉)=


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0




1
eiα1

eiα2

eiα3

= eiα1


1

ei(α2−α1)

ei(α3−α1)

ei(−α1)

=(|{α2−α1,α3−α1,−α1}Z〉)

(25)

Λ
X (|{π,0,π}X 〉)(|{α1,α2,α3}Z〉) =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




1
eiα1

eiα2

eiα3

= eiα2


1

ei(α3−α2)

ei(−α2)

ei(α1−α2)

= (|{α3−α2,−α2,α1−α2}Z〉)

(26)

Λ
X (

∣∣∣∣{3π

2
,π,

π

2
}X

〉
)(|{α1,α2,α3}Z〉)=


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0




1
eiα1

eiα2

eiα3

= eiα3


1

ei(−α3)

ei(α1−α3)

ei(α2−α3)

=(|{−α3,α1−α3,α2−α3}Z〉)

(27)

The action of KX on UX is exactly dual to this.
The last rule will correspond to the definition of the Fourier gate F = 1√

D ∑
D−1
j,k=0 η jk | j〉〈k| in the

calculus. In general, one can show that:

(F⊗F)◦δZ ◦F† = δX (28)

and:
F(|{α1,α2, ...}Z〉) = |{α1,α2, ...}X〉 (29)

where F is the unitary Fourier matrix. This holds for all dimensions and allows us to introduce the Fourier
gate in the qudit ZX calculus in much the same way as the Hadamard matrix was introduced in the qubit
ZX calculus[8], except that the Fourier gate corresponds to box with a vertical (involutive) asymmetry.
This gives us the (F) rules of the qudit ZX calculus:

...

...

(F1)

(F2)=

α1,α2, ...,αD−1

F†

F F†

F
=

F† F† F† F†

F F F F

...

...

α1,α2, ...,αD−1=
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Therefore, we have justified all the rules of the qudit ZX calculus from the algebraic properties of the
Z and X observables and of the Fourier map. This construction, together with Theorem A1, shows that
qudit ZX calculus is sound for quantum mechanics.

B Qudit stabilizer quantum mechanics

We describe the generalization of qubit stabilizer quantum mechanics [20] to quantum systems of di-
mension D, where D can be higher[21] than 2. Stabilizer states are eigenstates with eigenvalue 1 of each
operator in a subgroup of the generalized Pauli group of operators acting on the Hilbert space of n qudits:

PD,n := {
√

η
λ g1⊗ ...⊗gn : η = e

2πi
D ∧λ ∈ Z2D} (30)

with: gk = Xxk Zzk and xk,zk ∈ ZD;∀k ∈ {1, ...,n}. Note that sums and multiplication are all modulo D
and ZD are integers modulo D.

The single qudit Z and X operators are:

Z =
D−1

∑
j=0

η
j | j〉〈 j| and X =

D−1

∑
j=0
| j〉〈 j+1| (31)

One can easily see that: XZ = ηZX and ZD = XD = I.

The generalized Clifford group on n qudits consists of the unitary operations that leave Pauli opera-
tors invariant under conjugation:

Cn := {U : UgU† ∈PD,n,∀g ∈PD,n} (32)

The following gates are generalizations of standard qubit gates to higher dimensions [19].

The generalization of the Hadamard gate is the Fourier gate: F := 1√
D ∑

D−1
j,k=0 η jk | j〉〈k|. Another

important set of qudit gates are the multiplicative gates: Sq := ∑
D−1
j=0 | j〉〈 jq|, where q ∈ ZD such that

∃q̄ ∈ ZD with qq̄ = 1.
We define the qudit controlled NOT and controlled phase gates between control qudit a and target

qudit b as:

CNOTa,b :=
D−1

∑
j,k=0
|k〉〈 j|a⊗|k〉〈k+ j|b and CPa,b :=

D−1

∑
j,k=0

η
jk | j〉〈 j|a⊗|k〉〈k|b (33)

The swap gate is: SWAPa,b := ∑
D−1
j,k=0 |k〉〈 j|a⊗| j〉〈k|b. Note that the SWAP gate can be decomposed as:

SWAPa,b =CNOTa,bCNOT †
b,aCNOTa,b(F2

a ⊗ Ib) (34)

Similarly to the qubit case, the controlled phase gate can be decomposed as:

CPa,b = (Ia⊗Fb)
†CNOTa,b(Ia⊗Fb) (35)

The generalized Clifford group is generated [19, 24] by the set of three gates: {F,Sq,CNOTa,b}.
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Stabilizer quantum mechanics [20] includes state preparations in the computational basis {|0〉 , |1〉 , |2〉 , ...},
generalized Clifford unitaries and measurements of observables in the generalized Pauli group. In addi-
tion to its foundational importance, the theory of qudit stabilizer quantum mechanics plays a key role in
quantum information theory, in quantum key distribution and in quantum error correction.

Extending the Gottesman-Knill theorem shows that qudit stabilizer quantum mechanics can be ef-
ficiently simulated by a classical computer. Indeed, a group of order K has at most log(K) generators
therefore the qudit stabilizer group can be compactly described using the group generators. One can show
that if D is prime then any n-dimensional stabilizer group can be described using at most n generators
[21]. In composite dimensions one can have more than n generators but no more than 2n [19].

C Spekkens toy theory in higher dimensions

Previous work in quantum foundations [33, 4, 30] has shown that considering a classical statistical theory
together with a fundamental restriction on the allowed statistical distributions over phase space allows
one to reproduce a large part of operational quantum mechanics. We will now introduce some of this
work for physical systems with discrete degrees of freedom [30]. We call the theory described here
Spekkens-Schreiber toy theory for dits.

Let phase space Ω = (Zd)
2n consist of a set of points (ontic states) m≡ (x1, p1, ...,xn, pn) ∈Ω.

We can then define functionals on phase space F : Ω→ Zd and a Poisson bracket of functionals:

{F,G}(m) :=
n

∑
j=1

(F [m+ ex j ]−F [m])(G[m+ ep j ]−G[m])− (F [m+ ep j ]−F [m])(G[m+ ex j ]−G[m])

(36)
where ex j and ep j have a 1 in position x j and p j respectively and zeros everywhere else.
We define canonical variables as the linear functionals:

F = a1X1 +b1P1 + ...+anXn +bnPn (37)

G = c1X1 +d1P1 + ...+ cnXn +dnPn (38)

where Xk(m) = xk, Pk(m) = pk and a j,b j,c j,d j ∈ Zd , ∀ j ∈ {1, ...,n}.
These form the dual space Ω? ≡ (Zd)

2n such that: F = (a1,b1, ...,an,bn),G = (c1,d1, ...,cn,dn)∈Ω?.
We can then write the Poisson bracket of canonical variables as a sympectic inner product of vectors:

{F,G}(m) =
n

∑
j=1

(a jd j−b jc j) = FT JG (39)

where:

J =
n⊕

k=1

(
0 −1
1 0

)
(40)

We then define the principle of classical complementarity in the following way: an observer can
only have knowledge of the values of a commuting set of canonical variables (whose Poisson brackets
all vanish) and is maximally ignorant otherwise.

The Spekkens-Schreiber toy theory for dits can then be described in the following way:
(a) Valid epistemic states are specified by isotropic subspaces V ⊆Ω?, such that {F,G}= 0; ∀F,G ∈

V , together with a valuation vector v : V → Zd (v ∈ V ?) such that: v(F) = FT v; ∀F ∈ V . Therefore,
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V specifies which set of canonical variables are known and v describes what is known about them (in
analogy with the commuting set of eigenoperators of the quantum state, together with their eigenvalues).

Epistemic states can also be characterized by a probability distribution over phase space Ω. We can
define the orthogonal complement of V as:

V⊥ := {m ∈Ω|PV m = 0} (41)

where PV is the projector onto V. Note that the phase space points m ∈ Ω which are consistent with an
epistemic state associated to the isotropic subspace V and valuation vector v are those which satisfy:

FT m = FT v, ∀F ∈V (42)

Therefore, the probability distribution for the epistemic state associated to the isotropic subspace V
and valuation vector v is: pV,v : Ω→ [0,1] such that:

pV,v(m) =
1
|V⊥|

δV⊥+v(m) (43)

where |V⊥| is the cardinality of V⊥ and δV⊥+v(m) is 1 if m ∈V⊥+ v and zero otherwise.
(b) Valid reversible transformations correspond to all the symplectic, affine transformations (ana-

logues of the Clifford operations). These are the phase space maps C : Ω→Ω such that: C(m) = Sm+a
where a ∈Ω and {Su,Sv}= {u,v},∀u,v ∈ (Zd)

2n.
(c) Valid measurements are described by sets of indicator functions ξk : Ω→ [0,1] such that ∑k ξk = u

(where u is a function mapping every point of phase space to 1) which correspond to some choice of a
set of non-conjugate variables. The outcome probability can then be obtained by:

pk = ∑
λ

µ(λ )ξk(λ ) (44)

where µ(λ ) is the epistemic state.
The Spekkens-Schreiber theory for any number of dits of any dimension can be represented using

matrices to describe the valid epistemic states, transformations and measurements. This corresponds to
the subcategory of FRel which we described earlier.

Note that Spekkens toy model for bits [33] is a special instance of Spekkens-Schreiber theory for
dimension 2 and that the ‘knowledge balance principle’ is superseded by the principle of classical com-
plementarity described above.
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