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We define an infinite dimensional modification of lower-semicomputability of density operators by
Gács with an attempt to fix some problem in the paper. Our attempt is partly achieved by showing
the existence of universal operator under some additional assumption. It is left as a future task
to eliminate this assumption. We also see some properties and examples which stimulate further
research. In particular, we show that universal operator has certain nontrivial form if it exists.

1 Preliminaries

Kolmogorov complexity is the notion of actual information content of finite string in computational
point of view. This notion has been proposed by Kolmogorov - Solomonoff - Chaitin in 1960s and used
in various areas as a basic tool to represent descriptive complexity. On the other hand, Since Shor’s
algorithm [1] has been discovered, the research on quantum information has made a great progress and
produced various proposals on application to quantum information technology.

Quantum Kolmogorov complexity is one of these branches appeared in early 2000s. Several different
definitions are proposed so far [2-4], and some applicationsto quantum information are recently emerg-
ing [5-6]. However, it seems that there is very little progress in this area despite a decade has passed
since these suggestions have been made, and a number of elementary facts are still not investigated.

In particular, relationships between them are not clarified. In classical domain, there are several
definitions of descriptive complexity and some of them are known as equivalent notions (Levin’s coding
theorem). This theorem, in some sense, guarantees that these notions are reliable.

It naturally leads us to the following question: can we find any good relationship between these
quantum complexities? In particular, if it turns out that some of them are equivalent, it would be helpful
to make these notions more reliable and more applicable to other research subject such like quantum
information theory.

We particularly have interest on those by Berthiaume et al. [2] and Gács [3] since they are the
quantum extension of plain Kolmogorov complexity and universal semimeasure, respectively. Levin’s
coding theorem claims that prefix Kolmogorov complexity anduniversal semimeasure are equivalent, so
they are expected to be nearly equivalent.

For Berthiaume’s definition, there are several results about fundamental facts such like its invariance
and relation between classical complexity [7-9]. As compared to this, there are not so much subsequent
research of Gács’ approach, so we mainly treat his definition.

∗Most part of this research was carried out without knowing about Tadaki’s work [15]. Quite recently, in March 2014, Prof.
Tadaki draw our attention to his work and we noticed that there are substantial overlaps between Tadaki’s work and ours. As
far as we know, his work seems to be the first one providing an extension of Gacs’ work to the infinite-dimensional setting. In
the present paper, we tried to reflect Tadaki’s results as possible as we can. Interested readers should consult Tadaki’sarticle
[15]. We are very grateful to Prof. Tadaki for his advices.

http://dx.doi.org/10.4204/EPTCS.172.14
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


Toru Takisaka 205

In [3], the quantum analogue of lower-semicomputable semimeasure which is namedlower-semicomputable
semi-density matrixis introduced. In the paper, though, proofs of two crucial theorems have some flaw.

Conjecture 1.1. There is a lower-semicomputable semi-density matrixµ dominating all other such ma-
trices in the sense that for every other such matrixρ there is a constant c> 0 with ρ ≤ cµ.

Conjecture 1.2. Let |1〉, |2〉, . . . be a computable orthogonal sequence of states. Also LetH and H be
real-valued functions defined as

H(|ψ〉) = −〈ψ|(logµ)ψ〉 , H(|ψ〉) = − log〈ψ|µψ〉 .

Then for H= H or H = H we have
H(|i〉) = K(i)+O(1).

Here, K(i) is the prefix Kolmogorov complexity of i.

The former is indispensable to define quantum algorithmic entropy, and the latter is expected to be
true when we wish to compare Gács’ quantum algorithmic entropy and the qubit complexity defined by
Berthiaume et al [2].

In this paper, we introduce an infinite dimensional modification of Gács’ definition to fix these prob-
lems. Our attempt is partly achieved by showing the existence of universal operator under some ad-
ditional assumption. This is an analogous approach to the one of Tadaki [15], in which the notion of
lower-computable semi-POVMis introduced, and it is shown that a universal semi-POVM does exist.
Still, it seems that this assumption should be derived from our definition itself, so checking whether it
is possible or not is our future task. It turns out that, in ourmodification, if we assume the existence
of universal operator then Conjecture 1.2 is also true. We also see some properties and examples which
stimulate further research.

Contents of this paper are as follows: in section 2, we recallsome classical notions of descriptive
complexity for preparation. In section 3, we propose an infinite dimensional modification of lower-
semicomputable semi-density matrix, which is defined by Gács to define his quantum algorithmic en-
tropy. We prove some of their properties, and consider the problem about the existence of universal
operator.

We assume the readers are familiar with the basic ideas and technics of quantum information the-
ory. The most famous textbook of this area would be Nielsen and Chuang [17], but we also suggest
Heinosaari and Ziman [18] as an introduction, which is fairly readable and includes knowledge for infi-
nite dimensional cases. For more exhaustive learning of functional analysis, see Conway [19].

2 Classical notions of descriptive complexity

In this section, we review two classical notions about descriptive complexity which are equivalent in
some sense. Proof of any theorem in this section can be found in [12].

2.1 Kolmogorov complexity

(Plain) Kolmogorov complexity CM(w) of finite binary stringw with respect to a Turing machineM is
the length of a shortest program which makesM outputw:

CM(w) =min{ l(v) | M(v) = w} .
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M is called areference machine. In many cases, some optimal universal Turing machineM0 is
employed as a fixed reference machine andC(w)≔CM0(w) is just called Kolmogorov complexity ofw.
Here, we sayM0 is optimal if for any Turing machineM there existscM > 0 such that

CM0(w) ≤CM(w)+cM.

A ⊂ {0,1}∗ is a prefix setif for any two disjoint elementsw,v ∈ A, w is not a prefix ofv, and vice
versa: that is,w, vu andv, wu for anyu ∈ {0,1}∗. We call a Turing machineT Prefix Turing machine
if domT is a prefix set. We can enumerate all prefix Turing machines effectively, and there exists an
optimal universal prefix Turing machine. For detail, see [12]. We fix some optimal universal prefix
Turing machineM1 and callK(w)≔CM1(w) prefix Kolmogorov complexityof w.

2.2 Lower-semicomputable semimeasure

A nonnegative real functionf (w) on strings is calleda semimeasureif
∑

w f (w) ≤ 1, and ameasureif
the sum is 1.f is lower-semicomputableif there is a computable functioñf : {0,1}∗ ×N→ Q such that

f̃ (w,k) ≤ f̃ (w,k+1) for everyw ∈ {0,1}∗, k ∈ N, and f̃ (w,k)
k→∞−−−−→ f (w) for everyw. We call f̃ a lower-

approximationof f (we use this notation for convenience, but probably this function does not have any
widely accepted name).

Theorem 2.1. We can enumerate all lower-semicomputable semimeasures effectively. Namely, there
existsm̃ : {0,1}∗×N2→ Q which satisfies following two conditions:

1. for any n∈ N, m̃(−,−,n) is a lower-approximation of some lower-semicomputable semimeasure;

2. for given lower-semicomputable semimeasure m′, there is n∈ N such thatm̃(−,−,n) is a lower-
approximation of m′.

It is well known that there exists a universal semimeasure inthe following sense.

Theorem 2.2. There is a semicomputable semimeasurem with the property that for any other semicom-
putable semimeasure m′ there is a constant c> 0 such that for all w we have cm′(w) ≤m(w).

Proof. We can easily show that

m(w)≔
∞
∑

n=1

2−nmn(w)

is a universal semimeasure, where{mn }∞n=1 is an effective enumeration of all lower-semicomputable
semimeasures. �

We conclude this section with a theorem due to Levin. It indicates that the notion of universal
semimeasure is somewhat equivalent to that of Kolmogorov complexity.

Theorem 2.3(Levin’s coding theorem). K(w) = − logm(w)+O(1).

3 Quantization of lower-semicomputable semimeasure

In this section, we define an infinite dimensional modification of lower-semicomputable semi-density
matrix defined by Gács [3], and see some properties, examples, and problems.
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3.1 Definition and some properties

As a quantum analogue of the set of all binary strings, we introduce the space of indeterminate-length
qubit strings,H ≔

⊕∞
n=0(C2)⊗n. We assume an orthonormal basis{ | 0〉, | 1〉 } is given for each qubit

spaceC2, soH has an orthonormal basis{ | w〉}w∈{0,1}∗, where|w〉 = |a1〉⊗ · · ·⊗ |an〉 for w= a1 · · ·an. We
call it the computational basisof H . Notice that the computational basis is indispensable to consider
descriptive complexity of qubit strings, just as in classical domain we need to work on{0,1}∗, notω.

Let B(H) be the set of all bounded operator onH , andL(H) be the set of all bounded hermitian
operator onH . We also writeCq≔ { x+yi | x,y ∈ Q }.
Definition 3.1. ρ ∈ L(H) is called asemi-density operatorif ρ ≥ 0 andTrρ ≤ 1. Let S̃(H) be the set of
all semi-density operators onH .

ρ ∈ L(H) is lower-semicomputable (upper-semicomputable)if there is a computable functionψ :
N× {0,1}∗× {0,1}∗→ Cq such that the sequence{ρn }∞n=1 ⊂ L(H) defined by

〈w|ρnv〉≔ ψ(n,w,v)

satisfiesρn ≤ ρn+1 (ρn ≥ ρn+1) andρn
n→∞−−−−→ ρ in WOT (i.e.〈ψ|ρnψ〉 → 〈ψ|ρψ〉 for any |ψ〉 ∈ H . WOT is an

abbreviation ofweak operator topology). We callψ a lower- (upper-) approximationof ρ.
ρ ∈ L(H) is computableif there is a computable functionψ :N×{0,1}∗×{0,1}∗→ Cq which defines

{ρn }∞n=1 ⊂ L(H) such that‖ρ−ρn‖ < 2−n, in the same manner as above. We callψ an approximationof
ρ.

Dimension of the string spaceH is almost the only difference between the definition by Gács and
us. A mode of convergence of{ρn }∞n=1 needs to be specified when we work on an infinite dimensional
space, so we choose WOT, which is equivalent to the pointwiseconvergence of each matrix coefficient.
Gács allows a lower-approximation function to take an algebraic number, but we do not feel it necessary,
so we only allow a complex-rational value.

Remark. Perhaps lower-semicomputability of operator can be definedfor unbounded hermitian opera-
tor, but we will content ourselves with this definition in this paper. We mainly treat lower-semicomputable
semi-density operators, which are automatically bounded.

It is equivalent to define the correspondence betweenψ and{ρn }∞n=1 as

ψ(n,w,v) =















〈w+v|ρ(w+v)〉 (w≤ v)

〈w+ iv|ρ(w+ iv)〉 (w> v).

In this definition, a lower approximationψ of any lower-semicomputable semi-density operator satisfies
ψ(n,w,v) ≤ ψ(n+ 1,w,v). Also notice that the converse is not true; there exists{ρn }∞n=1 which is not
increasing but correspondingψ is increasing with respect ton. In fact, the matrix

ρ≔



































3 2 0 . . .

2 1 0 . . .

0 0 0 . . .
...

...
...

. . .



































is not positive, but〈w+v|ρ(w+v)〉 ≥ 0 and〈w+ iv|ρ(w+ iv)〉 ≥ 0 hold for everyw,v∈ {0,1}∗.
In contrast, our computability of operator is equivalent tothat of its approximation function.

Proposition 3.2. ρ is computable if and only ifψ(w,v) = 〈w|ρv〉 is computable (in the classical sense).
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Proof. Supposeρ ∈ L(H) is computable and let{ρn }∞n=1 be an approximation ofρ. Then Schwarz
inequality tells us

| 〈w|(ρ−ρn)v〉 | ≤ ‖ρ−ρn‖ < 2−n,

which shows that〈w|ρnv〉 is ann-digit approximation of〈w|ρv〉.
Conversely, supposeψ(w,v) = 〈w|ρv〉 is computable, i.e. there is a computable functionψ̃ : {0,1}∗ ×

N2→ Cq such that|ψ(w,v)− ψ̃(w,v,n)| < 2−n for anyw,v,n. Thenϕ̃(w,v,n)≔ ψ̃(w,v, ⌈w+v+n
2 +1⌉) is an

approximation ofρ. In fact, let{σn }∞n=1 be the sequence of operators induced by ˜ϕ. then

‖ρ−σn‖ ≤ ‖ρ−σn‖HS ≤
∑

w,v

|ψ(w,v)− ϕ̃(w,v,n)|2 < 2−n.

Here,‖ · ‖HS is the Hilbert-Schmidt norm

‖ρ‖HS =
∑

w,v

| 〈w|ρv〉 |2.

�

In the classical domain, a function is computable if and onlyif it is lower- and upper-semicomputable.
The same thing can be said in our quantum modification.

Proposition 3.3. ρ is computable if and only if it is lower-semicomputable and upper-semicomputable.

Proof. Let ρ be lower- and upper-semicomputable. Also let{ρ
n
}∞
n=1

and{ρn }∞n=1 be an lower- and upper
approximation ofρ, respectively. Thenψ(w,v) = 〈w|ρv〉 is computable since

| 〈w|(ρ−ρn)v〉 | ≤ 1
4

3
∑

k=0

| 〈w+ ikv|(ρ−ρn)(w+ ikv)〉 |

≤ 1
4

3
∑

k=0

| 〈w+ ikv|(ρ
n
−ρn)(w+ ikv)〉 |

n→∞−−−−→ 0

holds, and we can compute the right side of inequality successively for alln. This means we can construct
a computable functionf :N→N which makes̃ψ(n,w,v)≔ 〈w|ρ f (n)v〉 an approximation ofρ. Notice that
this proof is slightly different from classical one since lower- and upper-approximation of ρ itself is not
a one ofψ.

Conversely, letρ be computable. Then we can obtain a lower-approximation{ ρ̃n }∞n=1 of ρ defining

ρ̃n≔ ρn−2−n+2I .

In fact, ‖ρ− ρ̃n‖ → 0 soρ̃n→ ρ in WOT. Using the inequalityρ ≤ ‖ρ‖I it can be shown

ρn−ρn+1 < 2−n+1I .

Hence

ρ̃n− ρ̃n+1 = ρn−ρn+1−2−n+1I ≤ 0.

Obviously{ ρ̃n }∞n=1 is induced by a computable function: letψ̃(w,v,n)≔ ψ(w,v,n)−2−n+2δi j . Upper-
semicomputability ofρ can be shown in the same manner. �
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We say a sequence{ | ψn〉 }∞n=1 of states isuniformly computableif there is a recursive functioñψ :
N2× {0,1}∗→ Cq such that

| 〈w|ψn〉− ψ̃(k,n,w)| < 2−k

for everyk,n∈ N andw∈ {0,1}∗.
Let mbe a lower-semicomputable semimeasure, and{ | ψn〉 }∞n=1 be a uniformly computable sequence

of states. If it holds〈w|ψn〉 〈ψn|v〉 ∈ Cq for everyw,v ∈ {0,1}∗ andn ∈ N, then obviously an operator
∑

nm(n) |ψn〉 〈ψn| is lower-semicomputable: in fact,{∑nm̃(k,n) | ψn〉 〈ψn | }∞k=1 is its lower-approximation.
It turns out that we can discard the last assumption.

Proposition 3.4. Let { | ψn〉 }∞n=1 be a uniformly computable sequence of states, and m be a lower-
semicomputable semimeasure. Thenρ≔

∑

n m(n) |ψn〉 〈ψn| is a lower-semicomputable semi-density op-
erator.

Proof. For everyk,n∈N andw∈ {0,1}∗, let |ψk,n〉 be a vector (not necessarily a state) which is identified
by an equation

〈w|ψk,n〉 = ψ̃(k+w,n,w).

Then it is routine to show that ˜ρ′k≔
∑

nm̃(n) |ψk,n〉 〈ψk,n| converges toρ in WOT (actually it converges in
norm). We can also show that ˜ρk≔ ρ̃′k−2−(k+1)I forms a lower-approximation ofρ in the same manner
as proposition 3.3. �

It is still open whether the converse is also true or not. Formally, can we find a uniformly computable
sequence{ | ψn〉 }∞n=1 of states and a lower-semicomputable semimeasuremsuch thatρ=

∑

n m(n) |ψn〉 〈ψn|
for any lower-semicomputable semi-density operatorρ? But at least, we expect that taking{ | ψn〉 }∞n=1 as
an orthonormal basis isnot always possible, since otherwise there is no universal operator, as we see in
proposition 3.12 and corollary 3.13.

We conclude this subsection with some examples which shows that some obvious property in classi-
cal domain fails to hold in our quantum version. In classicalcase, it is always possible to take a sequence
of positivefunctions as a lower-approximation of semimeasure, since if ψ is a lower-approximation ofm
then so isϕ(x,k)≔max{ψ(x,k),0}. This is not always true in our quantum modification.

Examples 3.5([15]). There is a lower-semicomputable semi-density operator which cannot be approxi-
mated by any sequence of positive operators from below. In fact, letρ be a rank-one projection of which

nonzero eigenvector is12 |λ〉+
√

3
2 |0〉. Matrix representation ofρ is

1
4





































1
√

3 0 . . .√
3 3 0 . . .

0 0 0 . . .
...

...
...

. . .





































.

Obviouslyρ is computable, so it is lower-semicomputable. On the other hand, sinceρ is rank-one
projection, if there isσ such that 0≤ σ ≤ ρ thenσ = cρ (0 ≤ c ≤ 1). But it holds that〈λ|ρλ〉 < Cq or
〈0|ρλ〉 < Cq for anyc ∈ R\0.

The same thing happens even if we allow a lower-approximation function to take an algebraic num-
ber, as Gács proposed in [3]. The operator

1

1+π2



































1 π 0 . . .

π π2 0 . . .

0 0 0 . . .
...

...
...

. . .
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cannot be approximated by any sequence of positive operators from below. �

3.2 Problem: the existence of a universal operator

Just like the classical case, we expect that there is a universal semi-density operator in the following
sense.

Definition 3.6. A lower-semicomputable semi-density operatorµ isuniversalif for any lower-semicomputable
semi-density operatorν there is a real number cν > 0 such that cνν ≤ µ.

Unfortunately, our proof of the existence of a universal operator has somewhat weak form: namely,
we need to assume some additional properties for each lower-approximation. We expect that these prop-
erties is derived from our definition.

Before stating the assumption and the proof, let us see the reason why we need such an additional
assumption. In Gács [3], the following question is said to be solved positively in the same manner as the
classical case, but it is not true.

Problem 3.7. Can we enumerate all lower-semicomputable semi-density operators effectively?

To see the difficulty of this problem, let us review a proof of theorem 2.1.

Proof of theorem 2.1.Let {ϕn }∞n=1 be an effective enumeration of all partial recursive function. Consider
the following algorithm:

Input n ∈ N.

1. Letαw≔ 0 for everyw ∈ {0,1}∗.
2. Dovetailϕn, regardingϕn as a function from{0,1}∗ ×N to Q. Wheneverϕn halts for an input
〈w,k〉, go to step 3.

3. Check whether the conditionsϕn(w,k) ≥ αw and (
∑

v,wαv) + ϕn(w,k) ≤ 1 hold. If so, then let
αw≔ ϕn(w,k). Otherwise, do nothing. go back to step 2.

Let ψ̃(w, t,n) be the value ofαw after thet-steps computation of the algorithm above for an input
n. Obviouslyψ̃(−,−,n) is an lower-approximation of some lower-semicomputable semimeasure.̃ψ can
approximate any lower-semiconputable semimeasure from below, since any lower-approximation of a
semimeasure is equal to someϕn, andψ̃(−,−,n) approximates the same semimeasure from below.�

When we naively interpret this proof into the quantum setting, the corresponding algorithm would
be like this:

Input n ∈ N.

1. Letαw,v≔ 0 for everyw,v∈ {0,1}∗, and letρ be an operator defined by〈w|ρv〉≔ αw,v.

2. Dovetailϕn, regardingϕn as a function from{0,1}∗ × {0,1}∗ ×N to Cq. Wheneverϕn halts for an
input 〈w′,v′,k〉, go to step 3.

3. Letρ′ be an operator defined by

〈w|ρ′v〉≔



























ϕn(w,v,k) ((w,v) = (w′,v′))

ϕn(w,v,k) ((w,v) = (v′,w′))

αw,v (otherwise).

Check whether the conditionρ′ ≥ ρ and Trρ′ ≤ 1 holds. If so, then letαw′,v′ ≔ ϕn(w′,v′,k) and
αv′,w′ ≔ ϕn(w′,v′,k). Otherwise, do nothing. go back to step 2.
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Forρ ∈Mn(Cq) it is always possible to decide whetherρ ≥ 0 or not (see [16]), so step 3 always ends
in finite time. Letψ̃(w,v, t,n) be the value ofαw,v after thet-steps computation of the algorithm above
for an inputn. The problem is that̃ψ(−,−,−,n) generally does not approximate the same semi-density
operator as which is approximated byϕn from below.

There are at least two main difficulties to construct the algorithm. First, updating process easily fails
to maintain the monotonicity of sequence of operators, as long as we try to change the coefficients of the
matrix pointwisely. For example, letϕn0 : {0,1}∗× {0,1}∗×N→ Cq be a recursive function such that

ϕn0(v,w,k) =















1
2 (w,v∈ {λ,0})
0 (otherwise),

andt(λ,λ,0)≪ t(1,1,0)≪ t(λ,1,0)≪ t(any other input), wheret(v,w,k) is the time needed to compute
ϕn0(v,w,k). We would expect thatρ is updated as follows when we run the algorithm above for an input
n0, but it is not true:

0→ 1
2



































1 0 0 . . .

0 0 0 . . .

0 0 0 . . .
...

...
...

. . .



































→ 1
2



































1 0 0 . . .

0 1 0 . . .

0 0 0 . . .
...

...
...

. . .



































→ 1
2



































1 1 0 . . .

1 1 0 . . .

0 0 0 . . .
...

...
...

. . .



































Actually ρ is never updated from the third step. Moreover, it turns out that for anyn ∈ N the operator
corresponds to limk→∞ ψ̃(−,−,k,n) is diagonal. Hence, if we use the algorithm above, the expected-to-
be-universal operator constructed in the same manner as theclassical case is also diagonal, which cannot
be universal (see proposition 3.13).

Second, as long as we initially setαw,v≔ 0 for everyw,v∈ {0,1}∗, ψ̃ cannot be a lower-approximation
of the operator described in the Example 3.5, since anyψ̃(−,−,−,n) corresponds to a sequence of positive
operators.

To avoid these problems, we assume some additional properties for each lower-approximation. This
is an analogous approach to the one of Tadaki [15], in which the notion oflower-computable semi-POVM
is introduced, and it is shown that a universal semi-POVM does exist. The properties are as follows:

1. For a lower-approximation{ρn }∞n=1 of any lower-semicomputable operator, eachρn has a “finite
matrix representation with respect to the computational basis”: that is, there is a recursive function
f : N→ {0,1}∗ such thatPf (n)ρnPf (n) = ρn, wherePw ≔

∑w
v=λ |v〉 〈v|. this property enables us to

encode eachρn to some natural number, and hence to avoid the difficulty to update the coefficients
of the matrix pointwisely.

2. {ρn }∞n=1 is a positive but “almost increasing” sequence: that is, there exists a computable density
operatorσ such that for everyn ∈ N it satisfies the conditionsρn ≥ 0 andρn+1− ρn ≥ −ρ−(n+1).
This is more restrictive than our definition since a sequence{ρn−σ−n } is always increasing and
approximates the same element.

It turns out that an operator1
2(ρ+σ), which multiplicatively dominatesρ, is also lower-semicomputable

semi-density and approximated by a sequence of positive operators. This property enables us to
overcome an inability to findn ∈ N which makesψ̃ a lower-approximation of certain operator.

Here we restate our assumption more formally. We would like to call it conjecture since these prop-
erties are expected to be derived from our definition.



212 On Gács’ quantum algorithmic entropy

Conjecture 3.8. For given lower-semicomputable semi-density operatorρ, there exists a sequence{ρn }∞n=1
of operator which satisfies the following conditions:

1. ρn ≥ 0, ρn
n→∞−−−−→ ρ (WOT), and there is a density operatorσ such thatρn+1−ρn ≥ −2−(n+1)σ.

2. There is a recursive functionψ andϕ such thatψ(w,v,n) = 〈w|ρnv〉 andϕ(w,v) = 〈w|σv〉.
3. There is a recursive function f: N→ {0,1}∗ such that Pf (n)ρnPf (n) = ρn.

4. Forσn≔ Pf (n)σPf (n), it holds thatσn+1 ≥ σn.

Proposition 3.9. Assume the conjecture above is true. Then there exists a universal operator.

Proof. First, we show an easy, but crucial fact.

Claim. Let ρ ∈ S̃(H) be lower-semicomputable, and{ρn }∞n=1, σ, and f be operators and a function
described in conjecture 3.8, respectively. Then an operator ρ′≔ 1

2(ρ+σ) is lower-semicomputable semi-
density, and there exists a lower-approximation{ρ′n }∞n=1 of ρ′ which satisfies the conditionsρ′n ≥ 0 and
Pf (n)ρ

′
nPf (n) = ρ

′
n.

In fact, letρ′n≔
1
2(ρn+ (1−2−n)σn). Then the conditionsρ′n ≥ 0 andPf (n)ρ

′
nPf (n) = ρ

′
n obviously hold,

and showingρ′n
n→∞−−−−→ ρ′ is also straightforward.{ρ′n }∞n=1 is increasing since from the condition 1 and 3

of the conjecture we get

ρn+1+ (1−2−(n+1))σn+1 = Pf (n+1)(ρn+1+ (1−2−(n+1))σ)Pf (n+1)

≥ Pf (n+1)(ρn+ (1−2−n)σ)Pf (n+1)

= ρn+ (1−2−n)σn+1,

and using the condition 4 of the conjecture we getρ′n+1 ≥ ρ′n.
Now consider the following algorithm. Here, we letLq(Cm) be the set of allm×mhermitian matrices

of which each coefficient is inCq, and often identify an operator inLq(Cm) with that onH in a canonical
way.

Input n ∈ N.

1. Letν≔ 0 (ν ∈ B(H)).

2. Dovetailϕn, regardingϕn as a function fromN to
⋃

m∈NLq(Cm). Wheneverϕn halts for an input
k, go to step 3.

3. Check whether the conditionsϕn(k) ≥ ν and Trϕn(k) ≤ 1 hold. If so, then letν≔ ϕn(k). Otherwise,
do nothing. go back to step 2.

Let ψ̃(n, t) be the value ofν after the t-steps computation of the algorithm above for an inputn. It can

be shown that for everyn ∈ N there existsνn ∈ B(H) such thatψ̃(n, t)
t→∞−−−−→ νn in WOT. Obviouslyνn is

lower-semicomputable semi-density.
Now letρ ∈ S̃(H) be lower-semicomputable, and{ρt },σ, and f be operators and a function described

in conjecture 3.8, respectively. Then there isn∈N such thatνn =
1
2(ρ+σ). In fact, there existsn∈N such

thatϕn(t) = ρ′t , whereρ′t is described in the claim above, and{ ψ̃(n, t) }∞t=1 is also a lower-approximation
of ρ′. This can be shown using the fact that{ ψ̃(n, t) }∞t=1 = {ρ′g(n)(t) }

∞
t=1

, whereg :N→N is an appropriate
nondecreasing, unbounded function (We assumeρ′1 = 0 without loss of generality).

Finally, we can showµ≔
∑∞

n=1 2−nνn is universal in the following way:

• Since{∑n
k=1 2−kνk }

∞
n=1 is a Cauchy sequence,µ is well-defined semi-density operator.
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• µ dominates any lower-semicomputable semi-density operator ρ, since there isn ∈ N such that
2νn = ρ+σ, soρ ≤ 2νn ≤ 2(n+1)µ.

• µ is also lower-semicomputable sinceϕ(n,w,v) ≔
∑n

k=1 2−kψk(n,w,v) is its lower-approximation,
whereψk is a lower-approximation ofνk. In fact, for givenǫ > 0 and a unit vector|ψ〉 ∈ H ,
there is an integerk0 such that‖∑∞k=k0+1 2−kνk‖ < ǫ, and there is an integerk1 ≥ k0 such that

〈ψ|(νn− νnk1)ψ〉 < 2n

k0
ǫ for everyn≤ k0. Hence

〈ψ|(µ−µk1)ψ〉 ≤ 〈ψ|µψ〉−
k0
∑

n=1

〈ψ|νnk1ψ〉

=

k0
∑

n=1

2−n 〈ψ|(νn− νnk1)ψ〉+ 〈ψ|(
∞
∑

n=k0+1

2−nνn)ψ〉

< 2ǫ,

so µn −→ µ in WOT. Obviouslyµn is increasing, andϕ(n,w,v) ∈ Cq for every n ∈ N and w,v ∈
{0,1}∗. �

Once we prove the existence of universal semi-density operator, we can define quantum algorithmic
entropyH andH in the same manner as Gács [3]:

H(|ψ〉) = −〈ψ|(logµ)ψ〉 , H(|ψ〉) = − log〈ψ|µψ〉 .

The following proposition claims thatH andH are the extensions of classical descriptive complexity.

Proposition 3.10. Assume a universal operatorµ exists. Then for any uniformly computable orthonor-
mal system{ | ψn〉 }∞n=1 (not necessarily a basis),

K(n) = H(|ψn〉)+O(1),

where H= H or H = H. In particular, for any w∈ {0,1}∗,

K(w) = H(|w〉)+O(1).

We strongly expect this equation holds, since there is an analogous consequence about qubit com-
plexity defined by Berthiaume et al [2]. Our eventual goal is to examine the equivalence of qubit com-
plexity and Gács’ quantum algorithmic entropy, so this is avery minimum requirement for us.

Proposition 3.11([8]). For any w∈ {0,1}∗,

C(w) = QC(|w〉)+O(1).

Here, QC(|ψ〉) is the qubit complexity of|ψ〉 (see[2]).

Proof of proposition 3.10. The proof is completely the same as the one in [3], but it is valid in our
definition. The functionf (n) = 〈ψn|µψn〉 is lower-semicomputable with

∑

n f (n) = Tr µ ≤ 1, henceK(n) ≤
H(n)+O(1).

On the other hand, the semi-density operatorρ =
∑

n m(n) |ψn〉 〈ψn| is lower-semicomputable (propo-
sition 3.4), so

K(n) = 〈ψn|(− logρ)ψn〉 ≥ 〈ψn|(− logµ)ψn〉+O(1)= H(|ψn〉)+O(1).

Notice that the inequality above holds sinceg(x) = logx is an operator monotone function. Finally, for
any state|ψ〉 we have an inequalityH(|ψn〉) ≥ H(|ψn〉), which completes the proof. �
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Remark. The statement which makes the problem in the definition by Gács is “
∑

n f (n) = Tr µ ≤ 1”. His
universal operator is actually the sequence{µn }∞n=1 of matrices, andµ in the definiton off is actually some
appropriateµkn. The value ofkn cannot be the same for alln∈ N since{ | ψn〉 }∞n=1 is an infinite sequence
of orthogonal states. So we do not know how to show

∑

n f (n) ≤ 1. Also we do not know what the
statement “ρ =

∑

n m(n) |ψn〉 〈ψn| is lower-semicomputable” means in his finite dimensional formulation.
In short, the proof is stated as if we work on an infinite dimensional setting, and it is one of the main
reasons we try to modify his definition into an infinite dimensional version.

We conclude this subsection with an easy corollary which evokes an analogous fact in classical
domain: for a universal semimeasurem and an infinite recursive set{wn } ⊂ {0,1}∗, a functionm′(n)≔
m(wn) is again universal. The following seems to be the quantum version of this fact.

Corollary 3.12. Assume a universal operatorµ exists. Let{ | ψn〉 } be a uniformly computable orthonor-
mal system ofH . Then a functionmψ(n)≔ 〈ψn|µψn〉 is a universal semimeasure.

3.3 µ is not diagonal

At first glance, one might expect that an operatorµ1≔
∑

i m(i) |i〉 〈i| is universal. In fact, for corollary
3.12, diagonal entries of universal operator should form a universal semimeasure, so it would be natural
to question whether the simplest operator with this property, i.e. a diagonal one, is universal.

It is rather disappointing if the answer is yes, since in thiscaseH is very simple combination of
classical complexity:

H(
∑

w

αw |w〉) = −
∑

w

|αw|2logm(w) , H(
∑

w

αw |w〉) = −log
∑

w

|αw|2m(w).

For good or bad, it turns outµ1 is not universal.

Proposition 3.13. There is a lower-semicomputable semi-density operator which cannot be multiplica-
tively dominated byµ1.

Proof. Assumeµ1 is universal, and let|ψn〉 ≔ 2−
n
2
∑

l(w)=n |w〉. Then for corollary 3.12, the function
m(n) ≔ 〈ψn|µ1ψn〉 = 2−n∑

l(w)=n m(w) must be a universal semimeasure, which is not true. In fact,The
function 2nm is also a lower-semicomputable semimeasure which cannot bedominated bym. �

We can derive a more general fact which tells us the set of eigenspaces and eigenvalues ofµ should
have certain ”incomputablilty”.

Corollary 3.14. There is no uniformly computable orthonormal basis{ | ψn〉 }∞n=1 of H and lower-
semicomputable semimeasure m which makes an operator

∑

n m(n)|ψn〉〈ψn| universal.

Proof. Let |ϕn〉≔ 2−
n
2
∑2n−1

l=2(n−1) |ψl〉 and consider the same argument as the previous proof. �

4 Discussion and perspective

We defined an infinite dimensional modification of lower-semicomputability of density operators by
Gács, and examined their properties, especially the well-definedness of his quantum algorithmic en-
tropy. We needed some additional assumption to establish well-defined notion, and checking whether
this assumption can be eliminated or not is left as a future task.

In particular, the condition 1 of conjecture 3.8 could be relaxed or eliminated in some way. As we saw
in the proof of proposition 3.9, for givenρ, we only needed to findνn which multiplicatively dominates
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ρ, not which is equal toρ itself. The necessity of the condition 1 has arisen from example 3.5, but
this operator is actually dominated by|λ〉 〈λ|+ |0〉 〈0|, which is apparently positively-approximated lower-
semicomputable operator. It is likely that there is some nice algorithm to find a dominating, positively-
approximated operator, for givenρ.
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