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In the study of quantum process algebras, researchers have introduced different notions of equiva-
lence between quantum processes like bisimulation or barbed congruence. However, there are intu-
itively equivalent quantum processes that these notions do not regard as equivalent. In this paper, we
introduce a notion of equivalence named observational equivalence into qCCS. Since quantum pro-
cesses have both probabilistic and nondeterministic transitions, we introduce schedulers that solve
nondeterministic choices and obtain probability distribution of quantum processes. By definition,
restrictions of schedulers change observational equivalence. We propose some definitions of sched-
ulers, and investigate the relation between the restrictions of schedulers and observational equiva-
lence.

1 Introduction

Quantum communication protocols have been proposed since Bennett and Brassard [2] proposed a quan-
tum key distribution (QKD) protocol. However, proving the correctness or security of communication
protocols is very complicated and error-prone because quantum mechanical behavior is often differ-
ent from our intuition based on classical mechanics. In order to analyze or verify quantum protocols
successfully, quantum process calculi have been proposed, for example, QPAlg [10], CQP [8], and
qCCS [6, 7, 14].

In quantum process calculi, it is one of the important notions whether two processes behave similarly
or not, in other words, whether they are behaviorally equivalent or not. One of the benefits of this notion
is to provide the following technique to verify the correctness of a communication protocol. First, write
a process that models the procedure of the communication protocol. Second, define a simpler process
that is the specification of the protocol. Then, if these two processes are behaviorally equivalent, it is
proved that the protocol satisfies the specification. For instance, the correctness of quantum teleportation
is shown by using qCCS in [7]. In the paper, the model and the specification of quantum teleporta-
tion are defined with qCCS as Tel = (Alicet ||Bobt)\{e} and Telspec = c?q.SWAP1,3[q,q1,q2].d!q2.nil
respectively, where

Alicet := c?q.CN[q,q1].H[q].M[q,q1;x].e!x.nil, Bobt := e?x. ∑
0≤i≤3

(
if x = i then σ

i[q2].d!q2.nil
)
,

and it is proved that the model Tel and the specification Telspec are behaviorally equivalent (definitions
of some symbols are in [7]).

There is a variety of the notions of behavioral equivalence such as (weak) bisimulation and barbed
congruence. For example, these notions for qCCS are defined in [5, 7]. Intuitively, bisimulation is the
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notion that one process can simulate the other’s behavior, and barbed congruence is the notion that any
observers (or attackers) cannot distinguish two processes.

These two notions have widely been used in formal verification of processes. However, there are
some processes that are not regarded as equivalent by these notions but intuitively equivalent. This prob-
lem occurs when the processes include quantum operations or communication. For example, consider
the following two processes: one sends a qubit |0〉 or |1〉 with the same probability, the other sends |+〉
or |−〉 with the same probability. These two processes are not regarded as equivalent by the notion of
bisimulation. However, we have intuitively regarded these two processes as the same process because
these qubits are expressed as the same density matrix. This kind of equation was used in the security
proof of BB84 by Shor and Preskill [13].

The aim of this paper is to define the notion of equivalence that regards above cases as equivalent
into the quantum process calculus qCCS. This notion is called observational equivalence. Intuitively,
two processes are observationally equivalent when they are observed the same by any attackers. Be-
cause attackers can observe their behavior only by watching the channels that they use, processes are
observed the same when they use the channels with the same probability. In addition, we must con-
sider the probability of using channels although the quantum processes of qCCS have both probabilistic
and nondeterministic transitions. In order to solve this inconvenience, we define schedulers that solve
nondeterministic choices and obtain probability distribution of quantum processes. By definition, the
restrictions of schedulers change observational equivalence. We propose some definitions of schedulers,
and investigate the relation between the restrictions of schedulers and observational equivalence.

2 Definitions of qCCS

In this section, we introduce the language qCCS proposed in [6, 7, 14].

2.1 Syntax

Three types of data are considered in qCCS: Bool for booleans, Real for real numbers and Qbt for
qubits. Let cVar be the set of classical variables, ranged over by x,y, . . . , and qVar be the set of quantum
variables, ranged over by q,r, . . . . We assume that cVar and qVar are both countably infinite and cVar∩
qVar = /0. The indexed set {q1, . . . ,qn} is often abbreviated to q̃. Let Exp be the set of classical data
expressions over Real, ranged over by e,e′, . . . , which includes cVar as a subset. Let BExp be the set of
boolean-valued expressions, ranged over by b,b′, . . . .

Two types of channels are used in qCCS: cChan for classical channels and qChan for quantum
channels. c,d, . . . range over cChan and c,d, . . . range over qChan. We assume that cChan∩qChan = /0.
Let Chan be the set of all channels, that is, Chan = cChan∪qChan. A relabeling function is a function
f : Chan→Chan such that f (cChan)⊂ cChan and f (qChan)⊂ qChan.

The set of quantum processes qProc is defined inductively as follows:

qProc 3 P,Q ::= nil | A(q̃; x̃) | τ.P | c?x.P | c!e.P | c?q.P | c!q.P | E [q̃].P |M[q̃;x].P |
P+Q | P||Q | P[ f ] | P\L | if b then P

where c ∈ cChan, x ∈ cVar, e ∈ Exp, c ∈ qChan, b ∈ BExp, q ∈ qVar, A(q̃; x̃) is a process constant, τ

is the silent action, f is a relabeling function, L ⊂fin Chan, E and M are respectively a trace-preserving
super-operator and a non-degenerate projective measurement applying on the Hilbert space associated
with the systems q̃. The process nil may be omitted, for instance, c!0 is used instead of c!0.nil.
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qv(nil) = /0
qv(A(q̃; x̃)) = q̃

qv(τ.P) = qv(P)
qv(c?x.P) = qv(P)
qv(c!e.P) = qv(P)

qv(c?q.P) = qv(P)−{q}
qv(c!q.P) = qv(P)∪{q}
qv(E [q̃].P) = qv(P)∪ q̃

qv(M[q̃;x].P) = qv(P)∪ q̃
qv(P+Q) = qv(P)∪qv(Q)

qv(P||Q) = qv(P)∪qv(Q)
qv(P[ f ]) = qv(P)
qv(P\L) = qv(P)

qv(if b then P) = qv(P)

Figure 1: Definition of qv

The free classical variable function f v : qProc→ 2cVar is defined in the usual way. Note that the
quantum measurement M[q̃;x] binds the variable x, that is, f v(M[q̃;x].P) = f v(P)−{x}. A process P is
closed if f v(P) = /0. The free quantum variable function qv : qProc→ 2qVar is defined inductively as in
Figure 1. For quantum processes to be legal, we require that

1. q 6∈ qv(P) in the process c!q.P;

2. qv(P)∩qv(Q) = /0 in the process P||Q;

3. each process constant A(q̃; x̃) has a defining equation A(q̃; x̃) := P, where P ∈ qProc, qv(P) ⊂ q̃
and f v(P)⊂ x̃.

We use P{v/x} to denote the substitution of v for x in P. We abbreviate P{v1/x1} . . .{vn/xn} to P{ṽ/x̃}.

2.2 Configuration

For each q ∈ qVar, we assume a 2-dimensional Hilbert space Hq to be the state space associated with
the system q. Let

HS =
⊗

q∈S

Hq

for any S ⊂ qVar. In particular, H = HqVar is the whole state space associated with all of the quantum
variables.

A configuration is a pair 〈P,ρ〉, where P ∈ qProc is closed and ρ is a density operator on H . Let
Con be the set of all configurations, ranged over by C,D, . . . . If the state associated with the system q
is |ψ〉〈ψ| , the notation |ψ〉〈ψ|q⊗ρ or [|ψ〉]q⊗ρ is used to denote this whole state, where ρ is a state
associated with the systems qVar−{q}.

Let D(Con) be the set of finite-support probability distribution over Con, ranged over by µ,ν , . . . .
When µ(C) = 1 for some C ∈Con, we use C instead of µ to denote the distribution. We sometimes use a
form µ =�i∈I pi •Ci to denote the distribution µ , where Ci are distinct elements of Con and µ(Ci) = pi.
For any µ = �i∈I pi • 〈Pi,ρi〉 and trace-preserving super-operator E , the notation �i∈I pi • 〈Pi,E (ρi)〉 is
often abbreviated to E (µ).

2.3 Operational semantics

Let Act = {τ}∪{c?v,c!v | c∈ cChan,v∈ Real}∪{c?r,c!r | c∈ qChan,r ∈ qVar}. For each α ∈ Act, let
cn(α) be the set of channel names used in the action α , that is, cn(τ) = /0, cn(c?v) = cn(c!v) = {c} and
cn(c?r) = cn(c!r) = {c}. For each α ∈ Act and relabeling function f , we use f (α) to denote the action
of which channel is relabeled by f . For example, f (τ) = τ , f (c?v) = f (c)?v and f (c!q) = f (c)!q.

The operational semantics of qCCS is defined by the probabilistic labeled transition system [5]
(Con,Act,−→), where −→⊂Con×Act×D(Con) is the smallest relation satisfying the rules defined in
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⟨τ.P,ρ⟩ τ−→ ⟨P,ρ⟩
(TAU)

v ∈ Real

⟨c?x.P,ρ⟩ c?v−→ ⟨P{v/x},ρ⟩
(C-INP)

v = [[e]]

⟨c!e.P,ρ⟩ c!v−→ ⟨P,ρ⟩
(C-OUTP)

⟨P1,ρ⟩ c?v−→
⟨
P′

1,ρ
⟩
, ⟨P2,ρ⟩ c!v−→

⟨
P′

2,ρ
⟩

⟨P1||P2,ρ⟩ τ−→
⟨
P′

1||P′
2,ρ

⟩ (C-COM)

r ̸∈ qv(c?q.P)

⟨c?q.P,ρ⟩ c?r−→ ⟨P{r/q},ρ⟩
(Q-INP)

⟨c!q.P,ρ⟩ c!q−→ ⟨P,ρ⟩
(Q-OUTP)

⟨P1,ρ⟩ c?r−→
⟨
P′

1,ρ
⟩
, ⟨P2,ρ⟩ c!r−→

⟨
P′

2,ρ
⟩

⟨P1||P2,ρ⟩ τ−→
⟨
P′

1||P′
2,ρ

⟩ (Q-COM)

⟨E [q̃].P,ρ⟩ τ−→
⟨
P,Eq̃(ρ)

⟩ (OPER)

M = ∑i∈I λiE i pi = tr(E i
q̃ρ)

⟨M[q̃;x].P,ρ⟩ τ−→ ∑i∈I∧pi ̸=0 pi

⟨
P{λi/x},E i

q̃ρE i
q̃/pi

⟩

(MEAS)

⟨P1,ρ⟩ c?r−→
⟨
P′

1,ρ
⟩
, r ̸∈ qv(P2)

⟨P1||P2,ρ⟩ c?r−→
⟨
P′

1||P2,ρ
⟩ (INP-INT)

⟨P1,ρ⟩ α−→ ⊞i∈I pi •
⟨
P′

i ,ρi
⟩
, α ̸= c?r

⟨P1||P2,ρ⟩ α−→ ⊞i∈I pi •
⟨
P′

i ||P2,ρi
⟩ (OTH-INT)

⟨P,ρ⟩ α−→ µ

⟨P+Q,ρ⟩ α−→ µ
(SUM)

⟨P,ρ⟩ α−→ ⊞i∈I pi • ⟨Pi,ρi⟩

⟨P[ f ],ρ⟩ f (α)−→ ⊞i∈I pi • ⟨Pi[ f ],ρi⟩
(REL)

⟨P,ρ⟩ α−→ ⊞i∈I pi • ⟨Pi,ρi⟩ , cn(α)∩L = /0

⟨P\L,ρ⟩ α−→ ⊞i∈I pi • ⟨Pi\L,ρi⟩
(RES)

⟨P,ρ⟩ α−→ µ, [[b]] = true

⟨if b then P,ρ⟩ α−→ µ
(CHO)

⟨P{r̃/q̃}{ṽ/x̃},ρ⟩ α−→ µ, A(q̃; x̃) := P

⟨A(r̃; ṽ),ρ⟩ α−→ µ
(DEF)

Figure 2: Transition rules of qCCS

Figure 2 (the symmetric forms for rules C-COM, Q-COM, INP-INT, OTH-INT and SUM are omitted).
Here, [[e]] and [[b]] are the usual interpretations of e ∈ Exp and b ∈ BExp respectively, and Eq̃ means that
the super-operator E applys on the state associated with the systems q̃. We write C α−→ µ instead of
(C,α,µ) ∈−→. We write C α−→ when there exists µ ∈ D(Con) such that C α−→ µ . We write C 6→ when
there do not exist α and µ such that C α−→ µ .

The transition relation −→ is lifted to D(Con)×Act×D(Con) as follows: we write µ
α−→ ν if for

any C ∈ supp(µ), C α−→ νC for some νC, and ν = ∑C∈supp(µ) µ(C)νC.

3 Bisimulation

In this section, we recall the relation called open bisimulation. To define it, we need to define the relation
=⇒ and a weight function. These definitions are introduced in [7].
Definition 1. The relation =⇒ ⊂ D(Con)×D(Con) is the smallest relation satisfying the following
conditions:

1. C =⇒C;

2. if C τ−→ µ and µ =⇒ ν , then C =⇒ ν ;

3. if µ = ∑i∈I piCi, and for any i ∈ I, Ci =⇒ νi for some νi, then µ =⇒ ∑i∈I piνi.
For any µ,ν ∈ D(Con) and s = α1 . . .αn ∈ Act∗, we say that µ can evolve into ν by a weak s-

transition, denoted by µ
s

=⇒ ν , if there exist µ1, . . . ,µn+1,ν1, . . . ,νn ∈ D(Con), such that µ =⇒ µ1,
µn+1 = ν , and for each i = 1, . . . ,n, µi

αi−→ νi and νi =⇒ µi+1.
For any s ∈ Act∗, ŝ is the string obtained from s by deleting all the occurrences of τ .
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Definition 2. Let R ⊂Con×Con and µ,ν ∈D(Con). A weight function for (µ,ν) w.r.t. R is a function
δ : Con×Con→ [0,1] that satisfies the following conditions:

1. for all C,D ∈Con,

∑
D′∈supp(ν)

δ (C,D′) = µ(C), ∑
C′∈supp(µ)

δ (C′,D) = ν(D);

2. for all C,D ∈Con, if δ (C,D)> 0, then CRD.

We write µRν if there exists a weight function for (µ,ν) w.r.t. R.

Lemma 1. Let µ,ν ∈ D(Con). Then µRν if and only if there exist {pi}i∈I , {Ci}i∈I , and {Di}i∈I such
that µ = ∑i∈I piCi, ν = ∑i∈I piDi, and CiRDi for each i ∈ I. In particular, if CRµ then CRD for each
D ∈ supp(µ).

Now we introduce open bisimulation on qCCS defined in [5].

Definition 3. A relation R ⊂Con×Con is an open bisimulation if 〈P,ρ〉R 〈Q,σ〉 implies that qv(P) =
qv(Q), trqv(P)(ρ) = trqv(Q)(σ), and for any super-operator E acting on Hqv(P),

1. whenever 〈P,E (ρ)〉 α−→ µ , there exists ν such that 〈Q,E (σ)〉 α̂
=⇒ ν and µRν ;

2. whenever 〈Q,E (σ)〉 α−→ ν , there exists µ such that 〈P,E (ρ)〉 α̂
=⇒ µ and µRν .

Let ≈o be the largest open bisimulation.

There are other notions of equivalence like open bisimulation on qCCS. For example, bisimulation
is defined in [7] and reduction barbed congruence is defined in [5]. According to [5], the largest open
bisimulation is strictly coarser than the largest bisimulation, and the reduction barbed congruence coin-
cides with the largest open bisimulation.

4 Observational equivalence

In this section, we introduce the notion of observational equivalence on qCCS. Intuitively, two configu-
rations are observationally equivalent when they are observed by foreign processes in the same way, in
other words, when they use the same channels with the same probability in any contexts.

First of all, we describe why we want to define the notion of observational equivalence with an exam-
ple. There are two different ways to express quantum measurements in qCCS: M[q;x] and E [q], where M
is the 1-qubit projective measurement such that M =∑1

i=0 i |i〉〈i|, E is the trace-preserving super-operator
such that E (ρ) = ∑1

i=0 |i〉〈i|ρ |i〉〈i|. We intuitively want to consider that these two processes are equiva-
lent, but they are not bisimilar. This gap is an obstacle to formalize Shor and Preskill’s security proof of
BB84 [12]. For simplicity, we consider the following example.

Example 1. Consider these two configurations:

C =
〈
M[q;x].(c!0+d!0), [|+〉]q⊗ρ

〉
, D =

〈
E [q].(c!0+d!0), [|+〉]q⊗ρ

〉

where M and E are described above. The pLTSs for these configurations are depicted as in Figure 3. It
is obvious that C 6≈o D. We want to consider that C and D are equivalent.
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C =
〈
M[q;x].(c!0+d!0), [|+〉]q⊗ρ

〉

τ

���)
1/2 PPPq

1/2
〈
c!0+d!0, [|0〉]q⊗ρ

〉 〈
c!0+d!0, [|1〉]q⊗ρ

〉

?
c!0

?
d!0

?
c!0

?
d!0

〈
nil, [|0〉]q⊗ρ

〉 〈
nil, [|0〉]q⊗ρ

〉 〈
nil, [|1〉]q⊗ρ

〉 〈
nil, [|1〉]q⊗ρ

〉

D =
〈
E [q].(c!0+d!0), [|+〉]q⊗ρ

〉

?
τ

〈
c!0+d!0,

(1
2 |0〉〈0|+ 1

2 |1〉〈1|
)

q⊗ρ

〉

?
c!0

?
d!0

〈
nil,
(1

2 |0〉〈0|+ 1
2 |1〉〈1|

)
q⊗ρ

〉 〈
nil,
(1

2 |0〉〈0|+ 1
2 |1〉〈1|

)
q⊗ρ

〉

Figure 3: pLTSs for Example 1

4.1 Scheduler

Even though quantum processes on qCCS have both probabilistic and nondeterministic transitions, we
have to consider a probability to use channels in order to define observational equivalence. So, we define
schedulers to solve nondeterministic choices and to obtain probability distribution of configurations.

Definition 4. A function F : Con→ (Act×D(Con))∪{⊥} is a scheduler if the following conditions are
satisfied:

1. F(C) = (α,µ) implies C α−→ µ ,

2. F(C) =⊥ implies C 6→.

We write C α−→F µ when F(C) = (α,µ). We write C α−→F when F(C) = (α,µ) for some µ ∈
D(Con).

The relation =⇒ is limited by a scheduler as follows:

Definition 5. The relation =⇒F ⊂ D(Con)×D(Con) is the smallest relation satisfying the following
conditions:

1. C =⇒F C;

2. if C τ−→F µ and µ =⇒F ν , then C =⇒F ν ;

3. if µ = ∑i∈I piCi, and for any i ∈ I, Ci =⇒F νi for some νi, then µ =⇒F ∑i∈I piνi.

4.2 Observational equivalence

We write C ⇓p
F c when there exists µ ∈ D(Con) such that

• C =⇒F µ holds;

• for each C′ ∈ supp(µ), either F(C′) =⊥ or C′ λ−→F holds for some λ 6= τ; and
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C =
〈
M[q;x].(c!0+d!0), [|+〉]q⊗ρ

〉

τ

���)
1/2 PPPq

1/2
〈
c!0+d!0, [|0〉]q⊗ρ

〉 〈
c!0+d!0, [|1〉]q⊗ρ

〉

?
c!0

?
d!0

?
c!0

?
d!0

〈
nil, [|0〉]q⊗ρ

〉 〈
nil, [|0〉]q⊗ρ

〉 〈
nil, [|1〉]q⊗ρ

〉 〈
nil, [|1〉]q⊗ρ

〉

D =
〈
M[q;x].c!0+M[q;x].d!0+M[q;x].A(x), [|+〉]q⊗ρ

〉

��
τ

��	
1/2 @@R

1/2
τ

���
1/2 HHj

1/2
@@

τ

��	
1/2 @@R

1/2
〈
c!0, [|0〉]q⊗ρ

〉 〈
c!0, [|1〉]q⊗ρ

〉 〈
d!0, [|0〉]q⊗ρ

〉 〈
d!0, [|1〉]q⊗ρ

〉 〈
A(0), [|0〉]q⊗ρ

〉 〈
A(1), [|1〉]q⊗ρ

〉

?
c!0

?
c!0

?
d!0

?
d!0

?
c!0

?
d!0

〈
nil, [|0〉]q⊗ρ

〉 〈
nil, [|1〉]q⊗ρ

〉 〈
nil, [|0〉]q⊗ρ

〉 〈
nil, [|1〉]q⊗ρ

〉 〈
nil, [|0〉]q⊗ρ

〉 〈
nil, [|1〉]q⊗ρ

〉

Figure 4: pLTSs for Example 2

• the equation ∑{µ(C′) |C′ c!v−→F for some v}= p holds.

This means, intuitively, that the configuration C uses the channel c with the probability p after all internal
transitions in accordance with the scheduler F .

Now, we define observational equivalence on qCCS.

Definition 6. Two configurations 〈P,ρ〉 ,〈Q,σ〉 ∈Con are observationally equivalent, we write 〈P,ρ〉≈oe
〈Q,σ〉, if qv(P) = qv(Q), trqv(P)(ρ) = trqv(Q)(σ) and for any quantum processes R ∈ qProc,

1. for each scheduler F there exists a scheduler F ′ such that, for any classical channel c ∈ cChan
〈P||R,ρ〉 ⇓p

F c implies that 〈Q||R,σ〉 ⇓p
F ′ c;

2. for each scheduler F there exists a scheduler F ′ such that, for any classical channel c ∈ cChan
〈Q||R,σ〉 ⇓p

F c implies that 〈P||R,ρ〉 ⇓p
F ′ c.

We can prove that ≈oe is an equivalence relation easily.
For example, we show two configurations that are not equivalent in the notion of open bisimulation

but observationally equivalent.
Example 2. Consider these two configurations:

C =
〈
M[q;x].(c!0+d!0), [|+〉]q⊗ρ

〉
,

D =
〈
M[q;x].c!0+M[q;x].d!0+M[q;x].A(x), [|+〉]q⊗ρ

〉

where A(x) := (if x = 0 then c!0)+ (if x = 1 then d!0) and M is as defined in Example 1. The pLTSs
for these configurations are depicted as in Figure 4. It is obvious that C 6≈o D. However, we can prove
that C ≈oe D.

Proposition 1. Let C, D be the configurations in Example 2. Then C ≈oe D.

Proof. Let P = M[q;x].(c!0+d!0) and Q = M[q;x].c!0+M[q;x].d!0+M[q;x].A(x).
We have qv(P) = qv(Q) = {q} and trqv(P)([|+〉]q⊗ρ) = trqv(Q)([|+〉]q⊗ρ) = ρ .
Let R be an arbitrary quantum process. First, we need to show that, for each scheduler F , there exists a

scheduler F ′ such that, for any classical channel c
〈
P||R, [|+〉]q⊗ρ

〉
⇓p

F c implies
〈
Q||R, [|+〉]q⊗ρ

〉
⇓p

F ′ c. To
prove it, we divide several cases of the scheduler F and construct a scheduler F ′ in each case.
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1. The scheduler F does not choose the τ transition caused by P. In this case, we can easily construct a
scheduler F ′ such that

〈
Q||R, [|+〉]q⊗ρ

〉
⇓p

F ′ c.

2. The scheduler F chooses the τ transition caused by P. In this case, we have

〈
P||R, [|+〉]q⊗ρ

〉
=⇒F �i∈I

(
1
2

pi •
〈
c!0+d!0||Ri, [|0〉]q⊗ρi

〉
� 1

2
pi •
〈
c!0+d!0||Ri, [|1〉]q⊗ρi

〉)

after all τ transitions caused by P and R independently in accordance with F . Then, there exists a scheduler
F ′ such that 〈

Q||R, [|+〉]q⊗ρ
〉
=⇒F ′ �i∈I pi •

〈
Q||Ri, [|+〉]q⊗ρi

〉
.

For each i ∈ I, we again divide some cases of F and construct F ′ in each cases. Here we show only one case
and omit the others.

When 〈
c!0+d!0||Ri, [|0〉]q⊗ρi

〉 c!0−→F
〈
nil||Ri, [|0〉]q⊗ρi

〉
,

〈
c!0+d!0||Ri, [|1〉]q⊗ρi

〉 c!0−→F
〈
nil||Ri, [|1〉]q⊗ρi

〉
,

the channel c is used with the probability 1. So, we can construct a scheduler F ′ such that

〈
Q||Ri, [|+〉]q⊗ρi

〉 τ−→F ′
1
2
•
〈
c!0||Ri, [|0〉]q⊗ρi

〉
� 1

2
•
〈
c!0||Ri, [|1〉]q⊗ρi

〉
,

〈
c!0||Ri, [|0〉]q⊗ρi

〉 c!0−→F ′
〈
nil||Ri, [|0〉]q⊗ρi

〉
,
〈
c!0||Ri, [|1〉]q⊗ρi

〉 c!0−→F ′
〈
nil||Ri, [|1〉]q⊗ρi

〉
.

The scheduler F ′ satisfies the requirement.

We show another example that means there exist configurations C,D that C 6≈oe D but C ≈o D.

Example 3. Consider these two configurations:

C =
〈
M[q;x].A(q;x), [|+〉]q⊗ρ

〉
, D =

〈
c!0.I [q]+d!0.I [q], [|0〉]q⊗ρ

〉

where

A(q;x) := (if x = 0 then (c!0.I [q]+d!0.I [q]))+(if x = 1 then (c!0.X [q]+d!0.X [q])) ,

I is an operator that does nothing, X is the Pauli-X operator, and M is as defined in Example 1. The
pLTSs for these configurations are depicted as in Figure 5.

We can prove that C ≈o D. However, C 6≈oe D. Consider a scheduler F such that

F(
〈
A(q;0), [|0〉]q⊗ρ

〉
) = (c!0,

〈
I [q], [|0〉]q⊗ρ

〉
),

F(
〈
A(q;1), [|1〉]q⊗ρ

〉
) = (d!0,

〈
X [q], [|1〉]q⊗ρ

〉
).

Then both C ⇓1/2
F c and C ⇓1/2

F d hold. But, for any schedulers F ′, neither D ⇓1/2
F ′ c nor D ⇓1/2

F ′ d holds.

Proposition 2. ≈o and ≈oe are incomparable.
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C =
〈
M[q;x].A(q;x), [|+〉]q⊗ρ

〉

τ

����)
1/2 PPPPq

1/2
〈
A(q;0), [|0〉]q⊗ρ

〉 〈
A(q;1), [|1〉]q⊗ρ

〉

�
�

�	
c!0

@
@
@R
d!0

�
�
�	

c!0
@
@
@R
d!0

〈
I [q], [|0〉]q⊗ρ

〉 〈
I [q], [|0〉]q⊗ρ

〉 〈
X [q], [|1〉]q⊗ρ

〉 〈
X [q], [|1〉]q⊗ρ

〉

?
τ

?
τ

?
τ

?
τ

〈
nil, [|0〉]q⊗ρ

〉 〈
nil, [|0〉]q⊗ρ

〉 〈
nil, [|0〉]q⊗ρ

〉 〈
nil, [|0〉]q⊗ρ

〉

D =
〈
c!0.I [q]+d!0.I [q], [|0〉]q⊗ρ

〉

?
c!0

?
d!0

〈
I [q], [|0〉]q⊗ρ

〉〈
I [q], [|0〉]q⊗ρ

〉

?
τ

?
τ

〈
nil, [|0〉]q⊗ρ

〉 〈
nil, [|0〉]q⊗ρ

〉

Figure 5: pLTSs for Example 3

4.3 Strategy: a limited scheduler

In previous section, we define schedulers and the observational equivalence. However, the processes in
Example 1 are not observationally equivalent. Consider a scheduler F such that

F(
〈
(c!0+d!0), [|0〉]q⊗ρ

〉
) = (c!0,

〈
nil, [|0〉]q⊗ρ

〉
),

F(
〈
(c!0+d!0), [|1〉]q⊗ρ

〉
) = (d!0,

〈
nil, [|1〉]q⊗ρ

〉
).

Then both C ⇓1/2
F c and C ⇓1/2

F d hold. But, for any schedulers F ′, neither D ⇓1/2
F ′ c nor D ⇓1/2

F ′ d holds.
This problem is due to the definition of schedulers, that is, because schedulers can choose different

transitions even though the processes are the same. In order to solve this problem, we propose strategies,
limited schedulers.
Definition 7. A function F : Con→ (Act×D(Con))∪{⊥} is a strategy if the following conditions are
satisfied:

1. F(C) = (α,µ) implies C α−→ µ ,

2. F(C) =⊥ implies C 6→,

3. if F(〈P,ρ〉) = (α,µ), then there exist a set of processes {Pi}i∈I , a set of super-operators {Ei}i∈I ,
acting on Hqv(P), and a set of projectors {Ei}i∈I , acting on Hqv(P) and ∑i∈I Ei = I, such that for
any density operators σ ,

F(〈P,σ〉) =
(

α, ∑
i∈I∧qσ

i 6=0
qσ

i 〈Pi,Ei(σ)/qσ
i 〉
)

and
µ = ∑

i∈I∧qρ

i 6=0

qρ

i

〈
Pi,Ei(ρ)/qρ

i

〉
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where qσ
i = tr(Eiσ).

The difference between schedulers and strategies is only the condition 3 in Definition 7. This condi-
tion means that strategies must choose the same transition for any density operators if the processes of
the configurations are the same. In order to validate this condition, we use the following lemma. This
lemma is stronger than Lemma 3.3 (2) in [7], but can still be easily observed from the transition rules of
qCCS.

Lemma 2. If 〈P,ρ〉 α−→ µ , then there exists a set of processes {Pi}i∈I , a set of super-operators {Ei}i∈I ,
acting on Hqv(P), and a set of projectors {Ei}i∈I , acting on Hqv(P) and ∑i∈I Ei = I, such that for any
density operators σ ,

〈P,σ〉 α−→ ∑
i∈I∧qσ

i 6=0
qσ

i 〈Pi,Ei(σ)/qσ
i 〉 ,

and
µ = ∑

i∈I∧qρ

i 6=0

qρ

i

〈
Pi,Ei(ρ)/qρ

i

〉

where qσ
i = tr(Eiσ).

We use the notations C α−→F µ , C α−→F and =⇒F for strategies F in the same way as schedulers.

4.4 Observational equivalence with strategies

We write C ⇓p
F c for strategies F in the same way as schedulers. Now, we define observational equivalence

using strategies instead of schedulers.

Definition 8. Two configurations 〈P,ρ〉 ,〈Q,σ〉 ∈ Con are observationally equivalent with strategies,
we write 〈P,ρ〉 ≈st

oe 〈Q,σ〉, if qv(P) = qv(Q), trqv(P)(ρ) = trqv(Q)(σ) and for any quantum processes
R ∈ qProc,

1. for each strategy F there exists a strategy F ′ such that, for any classical channel c ∈ cChan
〈P||R,ρ〉 ⇓p

F c implies that 〈Q||R,σ〉 ⇓p
F ′ c;

2. for each strategy F there exists a strategy F ′ such that, for any classical channel c ∈ cChan
〈Q||R,σ〉 ⇓p

F c implies that 〈P||R,ρ〉 ⇓p
F ′ c.

We can prove that ≈st
oe is an equivalence relation easily.

Now, we can check that the two configurations in Example 1 are observationally equivalent with
strategies.

Proposition 3. Let C and D be configurations in Example 1. Then C ≈st
oe D.

Let us consider the relation among open bisimulation ≈o, observational equivalence ≈oe, and obser-
vational equivalence with strategies ≈st

oe.
By Example 1 and Proposition 3, there exist some configurations C and D that C 6≈oe D but C ≈st

oe D.
However, ≈oe⊂≈st

oe does not hold. Consider Example 2 again. The configurations in Example 2 are
observationally equivalent, but they are not observationally equivalent with strategies. Consider the
strategy F such that

F(D) =

(
τ,

1
2
•
〈
A(0), [|0〉]q⊗ρ

〉
� 1

2
•
〈
A(1), [|1〉]q⊗ρ

〉)
,

F(
〈
A(0), [|0〉]q⊗ρ

〉
) =

(
c!0,

〈
nil, [|0〉]q⊗ρ

〉)
, F(

〈
A(1), [|1〉]q⊗ρ

〉
) =

(
d!0,

〈
nil, [|1〉]q⊗ρ

〉)
.
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Then both D ⇓1/2
F c and D ⇓1/2

F d are hold. However, neither C ⇓1/2
F ′ c nor C ⇓1/2

F ′ d holds for any strategies
F ′. It is because, for any strategies F ′, if

F ′(
〈
c!0+d!0, [|0〉]q⊗ρ

〉
) = (α0,µ0), F ′(

〈
c!0+d!0, [|1〉]q⊗ρ

〉
) = (α1,µ1),

then α0 and α1 must be the same action by the definition of strategies.

Proposition 4. ≈oe and ≈st
oe are incomparable.

In addition, ≈o⊂≈st
oe does not also hold, although there exist some configurations C and D that

C 6≈o D but C ≈st
oe D. Consider Example 3 again. It is proved that C ≈o D, but C 6≈st

oe D. Consider the
strategy F such that

F(C) =

(
τ,

1
2
•
〈
A(q;0), [|0〉]q⊗ρ

〉
� 1

2
•
〈
A(q;1), [|1〉]q⊗ρ

〉)
,

F(
〈
A(q;0), [|0〉]q⊗ρ

〉
) =

(
c!0,

〈
I [q], [|0〉]q⊗ρ

〉)
,

F(
〈
A(q;1), [|1〉]q⊗ρ

〉
) =

(
d!0,

〈
X [q], [|1〉]q⊗ρ

〉)
.

Then both C ⇓1/2
F c and C ⇓1/2

F d are hold. However, neither D ⇓1/2
F ′ c nor D ⇓1/2

F ′ d holds for any strategies
F ′.

Proposition 5. ≈o and ≈st
oe are incomparable.

5 Related work

There already exists “observational equivalence” or “observational congruence” on other process calculi
such as applied pi calculus [1] and probabilistic applied pi calculus [9]. However, they are essentially the
same as reduction barbed congruence because they are reduction-closed by definition. So, they are also
the same as the notion of open bisimulation.

The same notion of observational equivalence in this paper is defined along the line of applied pi
calculi in [11]. However, the study in [11] was not so sophisticated and many unsolved problems were
taken over by this study.

On the other hand, probabilistic branching bisimilarity, another notion of behavioral equivalence, is
defined on CQP in [3, 4]. The same idea as strategies in our work is used in its definition.

6 Conclusion

In this paper, we proposed the notion of observational equivalence. To define it, we used schedulers that
solve nondeterministic choices. Some processes that are not bisimilar became observationally equivalent,
but others remained nonequivalent. And so, we defined strategies, which are limited schedulers, and
the notion of observational equivalence with strategies. Some processes that are intuitively equivalent
became observationally equivalent with strategies. After that, we investigated the relation among three
notions, that is, open bisimulation ≈o, observational equivalence ≈oe, and observational equivalence
with strategies ≈st

oe, and we found that it is impossible to compare these three notions. Even so, we think
that ≈st

oe is the most intuitive of the three when we consider the situation like Example 1 or the formal
security proof of BB84.
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However, there remains a question whether our definition of observational equivalence is really intu-
itive. In order to solve this question, we must formalize the “intuition” at first. And then, we can discuss
whether our definition of equivalence is intuitive or not.

We should also discuss the congruence of our observational equivalences. Congruence is the prop-
erty that the equivalence is preserved under process constructs. The congruence property for parallel
compositions P||R, which are the most important case, holds by definition of our observational equiva-
lences. In addition, the property for relabelling functions P[ f ] and conditional executions if b then P also
holds. However, the property for channel restrictions P\L does not hold. For example, 〈c!0+d!0,ρ〉 ≈oe
〈τ.c!0+ τ.d!0,ρ〉 but 〈(c!0+d!0)\{c},ρ〉 6≈oe 〈(τ.c!0+ τ.d!0)\{c},ρ〉 for any density operator ρ . It
remains for future work to investigate whether they are preserved under other constructs or not.
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