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We describe the use of quantum process calculus to describe and analyze quantum communication
protocols, following the successful field of formal methods from classical computer science. We
have extended the quantum process calculus to describe d-dimensional quantum systems, which has
not been done before. We summarise the necessary theory in the generalisation of quantum gates
and Bell states and use the theory to apply the quantum process calculus CQP to quantum protocols,
namely qudit teleportation and superdense coding.

1 Introduction

Quantum computing and quantum communication have attracted great interest as quantum computing
offers great improvements in algorithmic efficiency and quantum cryptography helps to provide more
secure communication systems. Quantum computing, with its inherent parallelism from the superposi-
tion principle of quantum mechanics, offers the prospect of vast improvement over classical computing.
The most dramatic result is that Shor [21] showed a quantum algorithm which is more efficient than any
known classical algorithm for factorisation of integers.

Quantum process calculus is a particular field of formal languages which is used to describe and anal-
yse the behaviour of systems that combine both quantum and classical computation and communication.
Formal methods provide theories and tools which can be used to specify, develop and verify systems in
a systematic manner. This field has been successful in classical computer science and to use these math-
ematically based techniques to describe quantum systems is one reason for developing quantum formal
methods. Another motivation is that it supports the development of automated tools which can be used
in verifying the correctness of practical quantum technologies such as quantum cryptographic systems.

Our own approach is based on a particular quantum process calculus called Communicating Quantum
Processes (CQP), developed by Gay and Nagarajan [11]. Recent work on CQP has shown that the
idea of behavioural equivalence between processes is a congruence, meaning that it is preserved by
inclusion in any environment. This has been reported in Davidson’s Ph.D thesis [6]. The aim is to prove
the correctness of a system by using the following methodology. Initially, define a System which is a
process that models the system of interest. Then define the Specification, a simpler process that exhibits
the desired behaviour of the System. Finally, we prove that these two processes are equivalent. This
approach has been illustrated by analysing quantum teleportation, superdense coding and a quantum
error correction system. A similar theory has also been developed independently for qCCS by Feng et
al.[8].
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The quantum process calculi which have been developed to date are defined for modelling systems
that involves qubits, which are transmitted from process to process along communication channels. Ex-
periments in quantum optics show that the physical systems that represent quantum information process-
ing need not be limited to quantum bits (qubits) but can use higher dimensional systems, i.e. qudits (a
quantum system with d-dimensional Hilbert space) [4]. A photon can carry both spin and orbital angular
momentum (OAM) and either or both of these properties can be used to represent quantum information.
The spin angular momentum is associated with polarisation of light and is described completely within
a two dimensional Hilbert space. But the OAM states of light constitute an infinite-dimensional Hilbert
space with orthonormal basis states |l〉 characterised by an azimuthal phase factor exp(ilφ), carrying an
OAM of l} per photon,

|ψ〉=
∞

∑
l=−∞

al|l〉 (1)

Restricting to a finite number of basis states then leads to the implementation of qudits, which carry
quantum information in a finite d-dimensional basis. Experiments have shown that photon pair entangled
in their OAM up to |l|= 20, can be produced with high-fidelity by a parametric down-conversion process
[13]. In relation to quantum computation and communication, the higher dimensional Hilbert space
of orbital angular momentum allows the implementation of new quantum protocols, which can offer
higher information capacity and greater degree of security [9]. Recent studies have adopted the higher
dimensionality encoded in the polarisation and orbital angular momentum for quantum information and
cryptographic processing [5]. Because of growing interest in the use of higher-dimensional systems for
quantum information processing, we want to extend the theory of quantum process calculus to higher
dimensions.

The quantum teleportation protocol plays a vital role in quantum information theory. The concept
was first proposed by Bennett et al.[3] and has been an active study of research. This is a process by
which a qubit can be transmitted exactly from one location to another, without communicating it through
the intervening space. In qudit teleportation, we consider an arbitrary qudit state to be teleported with
the help of maximally entangled states or the so-called Bell states of two other qudits. Teleportation is
a standard protocol and we have quantum circuits which describe the protocol. But unlike the circuit
model, the CQP model of the protocol is able to clearly describe the actions of the processes involved.

The theory of equivalence have been developed in CQP for qubits and not qudits. Our future task
would be to extend the theory of equivalence to qudits and in this paper, we establish the foundation of
using equivalence in higher-dimensions by providing the definitions of CQP for qudits. With the help of
these definitions, we analyse the quantum protocols namely qudit teleportation and superdense coding.

The rest of the paper is organised as follows. In Section 2 we provide the basic definition of qudit and
the generalisation of the quantum operators for d dimensional systems. We review the language of CQP
in Section 3 and illustrate it with a model of a qudit teleportation. Section 4 provides the description
and execution of the superdense coding protocol in higher dimensions. Section 5 concludes with an
indication of directions of future work.

Related Work All the quantum process calculi which have been established so far, involved qubits and
not qudits. Lalire and Jorrand developed the quantum process calculus called Quantum Process Algebra
(QPAlg)[14] and Feng et al. [7] developed qCCS, a quantum extension of the classical value-passing
CCS [16]. The theory of equivalence has been defined for both QPAlg [15] and qCCS [8]. This is the
first time that the quantum process calculus (CQP) have been extended to higher dimensions.
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2 Quantum Gates for d-dimensional Systems

Any physical system is associated with a Hilbert space, called its state space. We denote by H, the
Hilbert space for a qudit, that is a d-dimensional vector space over the complex numbers, C with a basis
denoted by {|0〉, |1〉, . . . , |d − 1〉}. We fix each orthonormal basis state of the d-dimensional Hilbert
space to correspond to an element of Zd ; as such the basis {|0〉, |1〉, . . . , |d− 1〉} ⊂ Cd is called the
computational basis [2, 19]. The system is completely described by a unit vector |ψ〉 within its state
space, called the state vector. Our main system of interest is the qudit, a d-dimensional quantum state
|ψ〉 ∈H. The set of vectors {|0〉, |1〉, . . . , |d−1〉} is also called the standard basis of the qudit state space
Cd . An n-qudit state, in the tensor product Hilbert space is given by H⊗n = (Cd)⊗n = Cd ⊗ . . . ⊗Cd .
The standard basis of H⊗n is the orthonormal basis given by the dn classical n-qudits.

|i1i2 . . . in〉= |i1〉⊗ |i2〉⊗ . . . ⊗|in〉 (2)

where 0 ≤ i j ≤ d-1. We can write the general state of a qudit as

|ψ〉=
d−1

∑
i=0

αi|i〉 (3)

where αi ∈ C and Σ
d−1
i=0 | αi |2= 1.

2.1 Generalised CNOT Gate

We now introduce the elementary quantum gates or operators for d-dimensional systems. Let HA and
HB be d-dimensional Hilbert spaces, consider the set of d2×d2 unitary transformations U ∈U(d2) that
act on the two-qudit quantum system HA⊗HB. To generalise the NOT and the CNOT gates, we note that
in the context of qubits, the NOT gate, is basically a mod-2 adder. For qudits this operator gives way to a
mod-d adder, or a CNOT Right-Shift gate. Let RC ∈U(d2) represent the generalised CNOT Right-Shift
gate that has control qudit |ψ〉 ∈ HA and target qudit |φ〉 ∈ HB. The action of RC on the set of standard
basis states |m〉⊗ |n〉 of HA⊗HB is given by

RC|m〉⊗ |n〉= |m〉⊗ |n⊕m〉, m,n ∈ Zd (4)

with ⊕ denoting addition modulo d. Similarly, LC ∈ U(d2) denotes the generalised CNOT Left-Shift
gate.

R−1
C |m〉⊗ |n〉 ≡ LC|m〉⊗ |n〉= |m〉⊗ |n	m〉 (5)

2.2 Generalised Pauli Gates

The next set of operators which are used to perform theoretical investigations of quantum systems are
the Pauli operators. We now define the generalised Pauli operators for d-level quantum systems [2].

U = {X jZk : j,k ∈ Zd}. (6)

where X and Z are defined by their action on the standard basis

X j|m〉= |m⊕ j〉, (7)
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Zk|m〉= exp(2πikm/d)|m〉= ω
km|m〉, (8)

where
ω ≡ exp(2πi/d). (9)

The indices j and k refer to shift and phase changes in the standard basis, respectively. Therefore the
generalised Pauli operators can be represented in the form

U jk = Σm∈Zd ω
km|m⊕ j〉〈m| (10)

Note that X and Z do not commute; they obey

ZkX j = ω
jkX jZk (11)

and Xd = Zd = I.

2.3 Generalised Hadamard Gate and Bell States

We now define a generalisation of the Hadamard gate which is useful in manipulating qudits for various
applications [10].

H| j〉= 1√
d

d−1

∑
m=0

ω
− jm|m〉 (12)

This operator is also known as the quantum Fourier transform when d = 2n. In that case it acts on n
qudits. Here we assume it to be a basic gate on one single qudit, in the same way that the ordinary
Hadamard gate is a basic gate on one qubit. This operator is symmetric and unitary, but not Hermitian.

A generalisation of the familiar Bell states for qudits has been introduced in [1]. The entangled state
|Ψnm〉AB is called the generalised Bell state whereby A and B each possess one qudit of this two qudit
state. These are a set of d2 maximally entangled states and can be explicitly written as:

|Ψnm〉AB =
1√
d

d−1

∑
j=0

ω
− jn| j〉A⊗| j⊕m〉B (13)

where m and n run from 0 to d−1. These states have the properties 〈Ψnm||Ψn′m′〉= δnn′δmm′(orthonormality)
and tr(|Ψnm〉〈Ψnm|) = 1

d I(maximal entanglement). Later, we will use the particular Bell state

|Ψ00〉AB =
1√
d

d−1

∑
j=0
| j〉A⊗| j〉B (14)

To construct the generalised Bell state, we fist apply the Hadamard transform (H⊗ I) to the qudit A. This
acts on basis states |n〉A|m〉B as follows

(H⊗ I)|n〉A|m〉B =
1√
d

d−1

∑
j=0

ω
− jn| j〉A⊗|m〉B (15)

where ω is a primitive dth root of unity in C such that ωd = 1. Then we apply CNOT Right-Shift gate
after the Hadamard transform and we obtain the generalised Bell state

|Ψnm〉AB = RC[(H⊗ I)|n〉A|m〉B] =
1√
d

d−1

∑
j=0

ω
− jn| j〉A⊗| j⊕m〉B (16)
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x = |ψ〉 • H •

z = |0〉 H • LC •

y = |0〉 RC X−M1 ZM2 |ψ〉

Figure 1: Qudit Teleportation

3 Communicating Quantum Processes (CQP)

CQP is a quantum process calculus which was developed by Gay and Nagarajan [11]. This is used for
formally defining the structure and behaviour of systems that are a combination of both quantum and
classical communication and computation. CQP is based on the π-calculus [17, 18] with primitives for
quantum information. The general idea is that a system is considered to be made up of independent
components or processes. The processes can communicate by sending data along channels and these
data are qubits or classical values. The earlier operational semantics of CQP are defined with respect to
qubits and the full details can be found in Davidson’s Ph.D thesis [6]. The operational semantics of CQP
are defined using reductions under the assumption that quantum systems are closed to any environment.
The most distinctive feature of CQP is the inclusion of a static type system, the purpose of which is to
classify classical and quantum data and also to enforce the no-cloning property of quantum information.
A full treatment of the type system with associated proofs of soundness and a type checking algorithm
is presented by Gay and Nagarajan [12]. The language has been presented as a solid framework with the
ability to easily add new functionality as required.

We have extended CQP to describe d-dimensional quantum systems and in this paper we present the
application of CQP in describing two quantum protocols namely teleportation and superdense coding
for higher dimensional systems. Although typing is important, we will not discuss it in detail in the
present paper; however, our CQP definitions will include type information because it usually forms
useful documentation. We will not be giving the complete formal definition of the language, but will
explain it informally in relation to our model of qudit teleportation.

3.1 Qudit Teleportation

Quantum teleportation [1, 10] is a protocol, which allows two users who share an entangled pair of
qudits, to exchange an unknown quantum state by communicating only two classical values depending
on the dimension d of the system. The quantum circuit model of the protocol for qudits is shown in
Figure 1. This circuit model is similar to the quantum teleportation for qubits. The difference is that we
have to use the generalised quantum gates (CNOT and Hadamard) for qudits which we have explained
earlier. Although the circuit model represents the teleportation protocol, it defines the operation involved
in the protocol, but it does not give a full description of the protocol itself. For example, the circuit model
does not explain to us that the protocol consists of a definition of two users and the way in which they
communicate, as well as the definition of the quantum operation involved in the protocol. The benefit of
using our CQP model is that it not only provides the definition of the system but also be able to give a
clear and formal description of the actions of the two users involved in the protocol.

Our model of qudit teleportation protocol consists of two processes: Alice and Bob, we say the sender



20 Application of Quantum Process Calculus to Higher Dimensional Quantum Protocols

is Alice and the receiver is Bob. Alice possesses the qudit labelled x which is in some unknown state |ψ〉;
this is the qudit to be teleported. Qudits y and z are an entangled pair, which is generated by applying a
Hadamard and CNOT- Right Shift gate to the qudits. The entangled state |Ψ00〉zy is given by equation
(14). Then qudit z is given to Alice and qudit y is given to Bob.The CQP definition of Alice is as follows

Alice(c : [̂Qdit],e : [̂Val,Val]) = c?[x :Qdit] .{x,z∗=Lc} .{x∗=H} .e![measure z,measure x] .0

Alice is parameterized by two channels, c and e. She receives the qudit on channel c. The type of c
is [̂Qdit], which is the type of a channel on which the message communicated is a qudit. Channel e is
where Alice sends the classical values resulting from her measurement. Each message on e consists of
two classical values, as indicated by the type [̂Val,Val].

The right hand side of the definition specifies the behaviour of Alice. The first term, c?[x :Qdit]
specifies that a qudit is received from channel c and given the local name x. Then follows a sequence
of terms separated by dots which are an indication of temporal sequencing, from left to right. The term
{x,z∗=Lc} specifies that the CNOT- Left Shift operation is applied to qudits x and z and next term {x∗=
H} specifies that the Hadamard operation is applied to qudit x. The final term e![measure z,measure x]
indicates that the qudits x and z are measured which results in two classical values (M1 and M2) ranging
from 0 to d− 1 (where d is the dimension of the system). These two values are sent as a message on
channel e. The term 0 simply indicates termination.

We model the process Bob, which receives the two classical values from channel e (connected to
Alice) and outputs the teleported qudit through channel d.

Bob(e : [̂Val,Val],d : [̂Qdit]) = e?[M1 :Val,M2 :Val] .{y∗=X−M1} .{y∗=ZM2} .d![y] .0

Using the classical values, Bob performs the necessary unitary operations on his qudit y as indicated
by the terms {y ∗=X−M1} and {y ∗=ZM2}. By doing this, he can recover the original state |ψ〉. The
complete system is defined as follows.

Teleport = (qdit y,z)({z∗=H} .{z,y∗=Rc} .(new e)(Alice(c,e) |Bob(e,d)))

The complete Teleport process consists of Alice and Bob in parallel, indicated by the vertical bar. Putting
the two processes in parallel means that the output on e in Alice synchronises with the input on e in Bob.
Channel e is designated as a private local channel. This is specified by (new e), which is a construct
from pi-calculus to dynamically create fresh channels. The first term, (qdit y,z) in Teleport, allocates
two fresh qudits, each in state |0〉, and gives them the local names y and z. The next two terms create an
entangled pair with qudits y and z.

3.2 Semantics

In the previous section, we have described informally the behaviour of the processes in the qudit tele-
portation system. The precise behaviour can be specified by using the formal semantics of CQP. In this
section we will explain the formal semantics, although without giving all of the definitions.

The semantics are defined by labelled transitions between process terms in the same way as in clas-
sical process calculus. A transition is labelled by an action which is written as α−→ where α is an action.
The actions can be classified as input,out put and internal action where c?[x],c![x] and τ for input on
channel c, output on channel c, and internal action are used as the respective notations. For example, a
process of the form c![x] .P, where P is some continuation process, has the transition

c![x] .P
c![x]−→ P. (17)
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If there is another process Q in a system which is ready to receive on channel c, then this would become
an actual step in the behaviour of a system. The labelled transition representing the potential input is

c?[x] .Q
c?[x]−→ Q. (18)

When we consider the two process to be parallel with each other, the input and output actions combine,
resulting in a τ transition which represents a single step of behaviour:

c![x] .P | c?[x] .Q τ−→ P |Q.

The complete definition of the semantics takes the form of a collection of labelled transition rules.
Transition (17) becomes a general rule for output and transition (18) is a general rule for input. The
interaction between input and output is defined by the rule

P
c![v]−→ P′ Q

c?[v]−→ Q′

P |Q τ−→ P′ |Q′

which specifies that if the transitions above the line (hypotheses) are possible then so is the transition
below the line (conclusion). [17, 20].

We need to include a representation of the quantum state in order to define the semantics of CQP. The
execution of a system is not fully described by a process term, but also depends on the quantum state. For
this reason, the operational semantics are defined using configurations, which represent both the quantum
state and the process term. A configuration is a tuple (σ ;ω;P) where σ is a mapping from qudit names
to the quantum state, ω is a list of qudit names, and P is a process. We work with configurations such as

([q,r 7→ 1√
d

d−1

∑
j=0
| j〉q⊗| j〉r];q;c![q] .P). (19)

This configuration means that the global quantum state consists of two qudits, q and r, in the specified
state; that the process term under consideration has access to qudit q but not to qudit r ; and that the
process itself is c![q] .P. Now consider a configuration with the same quantum state but a different
process term:

([q,r 7→ 1√
d

d−1

∑
j=0
| j〉q⊗| j〉r];r;b![r] .Q).

The parallel composition of these configurations is the following:

([q,r 7→ 1√
d

d−1

∑
j=0
| j〉q⊗| j〉r];q,r;c![q] .P |b![r] .Q)

where the quantum state is still the same.
The semantics of CQP consists of labelled transitions between configurations, which are defined in

a similar way to classical process calculus. For example, configuration (19) has the transition

([q,r 7→ 1√
d

d−1

∑
j=0
| j〉q⊗| j〉r];q;c![q] .P)

c![q]−→ ([q,r 7→ 1√
d

d−1

∑
j=0
| j〉q⊗| j〉r]; /0;P).
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The quantum state is not changed by this transition, but because qudit q is output, the continuation
process P no longer has access to it; the final configuration has an empty list of owned qudits. The
labelled transitions were defined specifically for qubit systems and this is for the first time that the labelled
transition rules have been defined specifically for higher dimensional systems (qudits), which is the focus
of the present paper.

According to the original reduction semantics of CQP, we get a probability distribution over configu-
rations after a measurement. The next step then reduces probabilistically to one particular configuration.
But in order to prove that the equivalence of CQP for qubits, between the processes is congruent, we
had to include a more sophisticated analysis of measurement in the semantics called the mixed configu-
rations. Here we extend the definition of mixed configurations with respect to qudits. We define a mixed
configuration as a weighted distribution over pure configurations.

Definition 1 A mixed configuration is a weighted distribution, written as

⊕i∈I gi ([q 7→ |ψi〉];ω;λx•P; ṽi)

with weights gi where ∑i∈I gi = 1 and for each i ∈ I,0 < gi ≤ 1 and |ψi〉 ∈H2|q̃| and |ṽi|= |x̃|.

The operator ⊕ represents a distribution over the index set I with weights gi. The process term is
replaced by the expression λ x̃.P; ṽi which indicates that in each component the variables x̃, appearing in
P as placeholders, should be substituted for the values ṽi. A pure configuration can be considered as a
mixed configurations with a single component.

If the observer does not get the result of a quantum measurement then we say that the system is in a
mixed state. As the measurement result occurs with the process term, we need to write the configuration
as a mixture which includes the mixed quantum state and the process term. Let us consider a few
examples.

Example 1 ([q 7→ ∑
d−1
l=0 αl|l〉];q;c![measure q].P) τ−→⊕i∈{0,1,..,d−1} |αi|2 ([q 7→ |i〉];q;λx• c![x].P; i).

The example illustrates a transition which represents the effect of a measurement, within a process
which is going to output the result of a measurement. But the output is not part of the transition and hence
we say that this is a τ transition and the process term on the right still contains c![]. The configuration
on the left is a pure configuration, as described before. On the right we have a mixed configuration
in which the ⊕ ranges over the possible outcomes of the measurement and the |αi|2 are the weights of
the components in the mixture. The quantum state [q 7→ |i〉] corresponds to the measurement outcome.
The expression λx • c![x].P is not a λ -calculus function, but represents the fact that the components of
the mixed configuration have the same process structure and differ only in the values corresponding
to measurement outcomes. The final term in the configuration, i, shows how the abstracted variable x
should be instantiated in each component. Thus the λx represents a term into which expressions may
be substituted, which is the reason for the λ notation. So the mixed configuration is essentially an
abbreviation of

|α0|2([q 7→ |0〉];q;c![0].P{0/x})⊕|α1|2([q 7→ |1〉];q;c![1].P{1/x} . . .
⊕|αd−1|2([q 7→ |d−1〉];q;c![d−1].P{d−1/x})

If a measurement result is output then the observer would know which of the possible states the
system is in. This is represented by probabilistic branching, where we say that system to be in one
branch or the other and it is no longer a mixture of components depending on the dimension d.
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Example 2

⊕i∈Ω |α|2i ([q 7→ |i〉];q;λx• c![x].P; i)
c![Ω]−→�i∈Ω|αi|2([q 7→ |i〉];q;λx•P; i)

|α0|2
 ([q 7→ |0〉];q;λx•P;0)

Example 2 shows the effect of the output from the final configuration of Example 1. The output transi-
tion produces the intermediate configuration, which is a probability distribution over pure configurations
(which is represented as the change from ⊕ to �). Because it comes from a mixed configuration, the
output transition contains a set of possible values. From the intermediate configuration there are prob-
abilistic transitions and the number of transitions depends on the dimension d, of which one is shown

(
|α0|2
 ). Here Ω is a set of values given by {0,1,..,d-1}. Measurement outcomes may be communicated be-

tween processes without creating a probability distribution. In these cases an observer must still consider
the system to be in a mixed configuration.

Example 3

⊕i∈Ω gi ([q 7→ |i〉];q;λx• (c![x].P ‖ c?[y].Q); i) τ−→⊕i∈Ω gi ([q 7→ |i〉];q;λx• (P ‖ Q{x/y}); i)

In Example 3 there is a mixed configuration on the left, with arbitrary weights gi, which we imagine
to have been produced by a measurement. If we now have a receiver for the output, there will be no differ-
ence in process Q between the d components of the mixed configuration. However, after communication,
the different values for x have been propagated to Q, so we include Q in the abstraction.

3.2.1 Expression Transition Relations for qudits

In this section, we provide and discuss the necessary transition rules which has been modified for qudits.
The transition relations−→v for evaluating values and−→e for evaluating expressions are defined by the
rules in Figure 2. Rules R-PLUS and R-TRANS deal with the evaluation of terms that result in values.
R-PLUS introduces a variable x as a placeholder for the value w. The placeholder is important as when
we consider mixed expression configurations in R-CONTEXT, there may be a different value resulting
from each component.

The transition relations for qudit are similar to that for qubits given in [6]. The difference is in
the rule R-MEASURE. Since qudits are d-level quantum systems, we need to consider the number of
dimensions as d, compared to qubits which is two. R-MEASURE is a measurement rule which produces
a mixed configuration in which each component corresponds to a specific outcome m. The variable x is to
maintain a constant expression term across all components, while the measurement value m is different
for each component. Applying a unitary operator always results in the value unit, hence R-TRANS does
not introduce a new variable.

The rule R-CONTEXT has two main purposes, it is used for the evaluation of expressions in an ex-
pression context E and is also used for the evaluation. The evaluation of a mixed expression configuration
configuration ⊕i∈I hi (σi;ω;λ ỹ.E[e]; ũi) is determined by the evaluation of each component. With the
new set of transition rules, we will be able to describe the execution of the higher dimensional quantum
protocols namely teleportation and superdense coding in the next sections.

3.3 Execution of Teleportation

We present the interesting steps in one possible execution of Teleport. The semantics of CQP is not
deterministic and hence the transitions can proceed in a different order. The order shown here is chosen
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([q̃ 7→ |ψ〉];ω;u+ v)−→v ([q̃ 7→ |ψ〉];ω;λx• x;w) where w = u+ v (R-PLUS)

([q0, . . . ,qn−1 7→ α0|φ0〉+ · · ·+αdn−1|φdn−1〉];ω;measure q0, . . . ,qr−1)−→v

⊕0≤m<dr gm ([q0, . . . ,qn−1 7→ αlm√
gm
|φlm〉+ · · ·+

αum√
gm
|φum〉];ω;λx• x;m)

(R-MEASURE)

where lm = dn−rm,um = dn−r(m+1)−1,gm = |αlm |2 + · · ·+ |αum |2

([q0, . . . ,qn−1 7→ |φ〉];ω;q0, . . . ,qr−1 ∗=Um)−→v (R-TRANS)

([q0, . . . ,qn−1 7→ (Um⊗ In−r)|φ〉];ω;unit; ·)
∀i ∈ I.([q̃ 7→ |ψi〉];ω;e{ũi/ỹ})−→v ⊕ j∈Ji gi j ([q̃ 7→ |ψi j〉];ω;λ x̃• e′{ũi/ỹ}; ṽi j)

⊕i∈I hi ([q̃ 7→ |ψi〉];ω;λ ỹ•E[e]; ũi)−→e ⊕ i∈I
j∈Ji

higi j ([q̃ 7→ |ψi j〉];ω;λ ỹx̃•E[e′]; ũi, ṽi j)

(R-CONTEXT)

Figure 2: Transition rules for values and expressions.

for presentation convenience. Consider a qudit to be teleported is given by the quantum state |ψ〉 =
∑

d−1
l=0 αl|l〉. The initial configuration is ((r̃x = ∑

d−1
l=0 αl|l〉x); /0;Teleport). In the first few steps, the system

executes Qdit terms, the Hadamard operation and the CNOT Right-Shift (RC), constructing the global
quantum state:

(r̃pq1q2 =
d−1

∑
l=0

αl|l〉x⊗
1√
d

d−1

∑
k=0
|k〉q2⊗|k〉q1);q1,q2;(new e)(Alice{q2/z} |Bob{q1/y}))

Alice receives the qudit x, in state ψ , from the environment, through the input transition c?[x]
−→ , which gives

us the 3 qudit state. After some τ transitions corresponding to Alice′s Hadamard and CNOT Left-Shift
(LC) operations, we have:

(r̃xq1q2 = |Φ2〉);q1,q2, p;(new e)(e![measure q2,measure x] .0 |Bob{q1/y}))

where |Φ2〉 = 1
d ∑

d−1
l, j,k=0 ω−l jαl| j〉x⊗ |k	 l〉q2 ⊗ |k〉q1 . Alice does the measurement of her qudits in the

standard basis and the results are communicated to Bob via channel e. Since the communication is
internal within the system, this produces a mixed configuration which is given as:

⊕ j∈Ω,s∈Ω((r̃xq1q2 = |Ψ js〉);q1,q2,x;λM1,M2 .(new e)(e![M1,M2] .0 |Bob{q1/y}); j,s)

where |Ψ js〉 = 1
d2 ∑

d−1
j,s=0 | j〉x|s〉q2 ∑

d−1
l=0 ω−l jαl|l⊕ s〉q1 . Depending on the classical values (M1 and M2)

Bob does his unitary operations on his qudit q1 to get the same state of the qudit x which Alice possesses.
The qudit is then output through channel d.

⊕ j∈Ω,s∈Ω((r̃pq1q2 = |Ψ′js〉);q2, p;λM1,M2 .0; j,s)

where |Ψ′js〉= 1
d2 ∑

d−1
l=0 αl|l〉q1 .

4 Superdense Coding Protocol for Qudits

In this section, we will describe the superdense coding protocol with respect to qudits. This protocol is
considered the opposite of teleportation, where two values of classical information are communicated
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a •

b •

y = |0〉 H • X Z • H a

z = |0〉 RC LC b

Figure 3: Superdense Coding Protocol

by exchanging a single qudit. Superdense coding also involves two users sharing a pair of entangled
qudits. The quantum circuit for this protocol is given in Figure 3. The goal is to transmit some classical
information from one user (Alice) to another (Bob). Like the previous protocol, this also begins with the
preparation of an entangled pair. Alice is in possession of the first qudit, while Bob has possession of the
second qudit. By sending the single qudit in her possession to Bob, it turns out Alice can communicate
two classical values (ranging from 0 to d−1) to Bob ,where d is the dimension of the system. The CQP
definition of the system is given below:

SDC = (Qdit : q1,q2)({q1 ∗=H} .{q1,q2 ∗=Rc} .(new e)(Alice(c,e) |Bob(e,d)))

Alice(c : [̂Val,Val],e : [̂Qdit]) = c?[a :Val,b :Val] .{q1 ∗=Xb} .{q1 ∗=Za} .e![q1] .0

Bob(e : [̂Qdit],d : [̂bit,bit]) = e?[q1 :Qdit] .{q1,q2 ∗=Lc} .{q1 ∗=H} .d![measure q1,measure q2] .0

This CQP model, unlike the circuit model (Figure 3), is able to clearly describe the actions of the two
users using the processes Alice and Bob. Alice takes one qudit (q1) of the pair and Bob takes the other
(q2). The classical values to be transmitted are labelled a and b. When Alice is ready to send, she applies
a combination of the X and Z operators to qudit q1 depending on the values a and b.

After Alice has done her encoding, she send her single qudit to Bob. Now that Bob has both qudits,
he can determine which encoding Alice used, and therefore the corresponding values a and b. First, he
applies a CNOT Left shift operator to qudits q1 and q2, followed by the Hadamard operator applied to
q1. He then measures both of these qudits to reveal the respective values. Since the state he measures is
not a superposition, the outcome will be certain.

4.1 Execution of SDC

In this section, we show the step-by-step execution of the superdense coding protocol, in order to il-
lustrate the operational semantics. Teleportation can also be executed in a similar way according to the
transition rules.

Consider an arbitrary quantum state r̃ = |ψ〉. Let s = (r̃ = |ψ〉; /0;SDC), then the execution of super-
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dense coding is as follows.

s τ
=⇒((r̃q1q2 = |ψ1〉);q1,q2;(new e)(Alice(c,e) |Bob(e,d))

c?[a,b]−→ ((r̃q1q2 = |ψ1〉);q1,q2;(new e)({q1 ∗=Xb} .{q1 ∗=Za} .e![q1] .0 |Bob(e,d)))

τ−→((r̃q1q2 = |ψ2〉);q1,q2;(new e)({q1 ∗=Za} .e![q1] .0 |Bob(e,d)))

τ−→((r̃q1q2 = |ψ3〉);q1,q2;(new e)(e![q1] .0 |Bob(e,d)))

τ−→((r̃q1q2 = |ψ3〉);q1,q2;(new e)({q1,q2 ∗=Lc} .{q1 ∗=H} .d![measure q1,measure q2] .0))

τ−→((r̃q1q2 = |ψ4〉);q1,q2;(new e)({q1 ∗=H} .d![measure q1,measure q2] .0))

τ−→((r̃q1q2 = |ψ5〉);q1,q2;(new e)(d![measure q1,measure q2] .0))

d![a,b]−→ ((r̃q1q2 = |ψ6〉);q1,q2;0)

where

|ψ1〉= 1√
d ∑

d−1
j=0 | j〉q1⊗| j〉q2

|ψ2〉= 1√
d ∑

d−1
j=0 | j⊕b〉q1⊗| j〉q2

|ψ3〉= 1√
d ∑

d−1
j=0 ωa( j⊕b)| j⊕b〉q1⊗| j〉q2

|ψ4〉= 1√
d ∑

d−1
j=0 ωa( j⊕b)| j⊕b〉q1⊗| j	 ( j⊕b)〉q2 =

1√
d ∑

d−1
k=0 ωak|k〉q1⊗|−b〉q2

|ψ5〉= |ψ6〉= |a〉q1⊗|−b〉q2

5 Conclusion and Future Work

We have explained the use of the quantum process calculus CQP, and extended it to model d-dimensional
quantum systems. With the help of the generalised quantum gates and generalised Bell states, we have
applied CQP to describe two quantum protocols, namely teleportation and superdense coding for higher
dimensional systems. The next task would be to extend the CQP definitions with respect to orbital angu-
lar momentum of light and this would provide a platform to express or model in CQP the real quantum
information processing systems which are used in quantum optical experiments.

Quantum protocols can be represented by quantum circuits but it does not provide the full descrip-
tion of the protocol. Although the circuit model defines the operation involved in the protocol, it does
not indicate the number of users involved in the protocol. But with process calculus, we have a formal
definition of the users or the processes involved in the protocol. In addition to a clear description of the
actions of the processes, we also have an indication of the way in which the processes communicate.
Quantum process calculus provides a systematic methodology for verification of quantum systems and
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in the previous work of CQP, the behavioural equivalence of CQP [6] is defined with respect to qubits
and also the equivalence is proved to be a congruence. Analysis and verification of quantum protocols
were done with respect to qubits. Although we have not yet defined a theory of behavioural equivalence
for qudits, we believe it should be a straightforward task. The fact that CQP can also express classical
behaviour, means that we have a uniform framework in which to analyze classical and quantum com-
putation and communication. The long-term goal is to develop software for automate analysis of CQP
models, including both qubits and qudits, following established work in classical process calculus.
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